508 строки
17 KiB
C
508 строки
17 KiB
C
/*Daala video codec
|
|
Copyright (c) 2001-2013 Daala project contributors. All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
- Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "./config.h"
|
|
#endif
|
|
|
|
#include "aom_dsp/entdec.h"
|
|
|
|
/*A range decoder.
|
|
This is an entropy decoder based upon \cite{Mar79}, which is itself a
|
|
rediscovery of the FIFO arithmetic code introduced by \cite{Pas76}.
|
|
It is very similar to arithmetic encoding, except that encoding is done with
|
|
digits in any base, instead of with bits, and so it is faster when using
|
|
larger bases (i.e.: a byte).
|
|
The author claims an average waste of $\frac{1}{2}\log_b(2b)$ bits, where $b$
|
|
is the base, longer than the theoretical optimum, but to my knowledge there
|
|
is no published justification for this claim.
|
|
This only seems true when using near-infinite precision arithmetic so that
|
|
the process is carried out with no rounding errors.
|
|
|
|
An excellent description of implementation details is available at
|
|
http://www.arturocampos.com/ac_range.html
|
|
A recent work \cite{MNW98} which proposes several changes to arithmetic
|
|
encoding for efficiency actually re-discovers many of the principles
|
|
behind range encoding, and presents a good theoretical analysis of them.
|
|
|
|
End of stream is handled by writing out the smallest number of bits that
|
|
ensures that the stream will be correctly decoded regardless of the value of
|
|
any subsequent bits.
|
|
od_ec_dec_tell() can be used to determine how many bits were needed to decode
|
|
all the symbols thus far; other data can be packed in the remaining bits of
|
|
the input buffer.
|
|
@PHDTHESIS{Pas76,
|
|
author="Richard Clark Pasco",
|
|
title="Source coding algorithms for fast data compression",
|
|
school="Dept. of Electrical Engineering, Stanford University",
|
|
address="Stanford, CA",
|
|
month=May,
|
|
year=1976,
|
|
URL="http://www.richpasco.org/scaffdc.pdf"
|
|
}
|
|
@INPROCEEDINGS{Mar79,
|
|
author="Martin, G.N.N.",
|
|
title="Range encoding: an algorithm for removing redundancy from a digitised
|
|
message",
|
|
booktitle="Video & Data Recording Conference",
|
|
year=1979,
|
|
address="Southampton",
|
|
month=Jul,
|
|
URL="http://www.compressconsult.com/rangecoder/rngcod.pdf.gz"
|
|
}
|
|
@ARTICLE{MNW98,
|
|
author="Alistair Moffat and Radford Neal and Ian H. Witten",
|
|
title="Arithmetic Coding Revisited",
|
|
journal="{ACM} Transactions on Information Systems",
|
|
year=1998,
|
|
volume=16,
|
|
number=3,
|
|
pages="256--294",
|
|
month=Jul,
|
|
URL="http://researchcommons.waikato.ac.nz/bitstream/handle/10289/78/content.pdf"
|
|
}*/
|
|
|
|
/*This is meant to be a large, positive constant that can still be efficiently
|
|
loaded as an immediate (on platforms like ARM, for example).
|
|
Even relatively modest values like 100 would work fine.*/
|
|
#define OD_EC_LOTS_OF_BITS (0x4000)
|
|
|
|
static void od_ec_dec_refill(od_ec_dec *dec) {
|
|
int s;
|
|
od_ec_window dif;
|
|
int16_t cnt;
|
|
const unsigned char *bptr;
|
|
const unsigned char *end;
|
|
dif = dec->dif;
|
|
cnt = dec->cnt;
|
|
bptr = dec->bptr;
|
|
end = dec->end;
|
|
s = OD_EC_WINDOW_SIZE - 9 - (cnt + 15);
|
|
for (; s >= 0 && bptr < end; s -= 8, bptr++) {
|
|
OD_ASSERT(s <= OD_EC_WINDOW_SIZE - 8);
|
|
dif |= (od_ec_window)bptr[0] << s;
|
|
cnt += 8;
|
|
}
|
|
if (bptr >= end) {
|
|
dec->tell_offs += OD_EC_LOTS_OF_BITS - cnt;
|
|
cnt = OD_EC_LOTS_OF_BITS;
|
|
}
|
|
dec->dif = dif;
|
|
dec->cnt = cnt;
|
|
dec->bptr = bptr;
|
|
}
|
|
|
|
/*Takes updated dif and range values, renormalizes them so that
|
|
32768 <= rng < 65536 (reading more bytes from the stream into dif if
|
|
necessary), and stores them back in the decoder context.
|
|
dif: The new value of dif.
|
|
rng: The new value of the range.
|
|
ret: The value to return.
|
|
Return: ret.
|
|
This allows the compiler to jump to this function via a tail-call.*/
|
|
static int od_ec_dec_normalize(od_ec_dec *dec, od_ec_window dif, unsigned rng,
|
|
int ret) {
|
|
int d;
|
|
OD_ASSERT(rng <= 65535U);
|
|
d = 16 - OD_ILOG_NZ(rng);
|
|
dec->cnt -= d;
|
|
dec->dif = dif << d;
|
|
dec->rng = rng << d;
|
|
if (dec->cnt < 0) od_ec_dec_refill(dec);
|
|
return ret;
|
|
}
|
|
|
|
/*Initializes the decoder.
|
|
buf: The input buffer to use.
|
|
Return: 0 on success, or a negative value on error.*/
|
|
void od_ec_dec_init(od_ec_dec *dec, const unsigned char *buf,
|
|
uint32_t storage) {
|
|
dec->buf = buf;
|
|
dec->eptr = buf + storage;
|
|
dec->end_window = 0;
|
|
dec->nend_bits = 0;
|
|
dec->tell_offs = 10 - (OD_EC_WINDOW_SIZE - 8);
|
|
dec->end = buf + storage;
|
|
dec->bptr = buf;
|
|
dec->dif = 0;
|
|
dec->rng = 0x8000;
|
|
dec->cnt = -15;
|
|
dec->error = 0;
|
|
od_ec_dec_refill(dec);
|
|
}
|
|
|
|
/*Decode a bit that has an fz/ft probability of being a zero.
|
|
fz: The probability that the bit is zero, scaled by _ft.
|
|
ft: The total probability.
|
|
This must be at least 16384 and no more than 32768.
|
|
Return: The value decoded (0 or 1).*/
|
|
int od_ec_decode_bool(od_ec_dec *dec, unsigned fz, unsigned ft) {
|
|
od_ec_window dif;
|
|
od_ec_window vw;
|
|
unsigned r;
|
|
int s;
|
|
unsigned v;
|
|
int ret;
|
|
OD_ASSERT(0 < fz);
|
|
OD_ASSERT(fz < ft);
|
|
OD_ASSERT(16384 <= ft);
|
|
OD_ASSERT(ft <= 32768U);
|
|
dif = dec->dif;
|
|
r = dec->rng;
|
|
OD_ASSERT(dif >> (OD_EC_WINDOW_SIZE - 16) < r);
|
|
OD_ASSERT(ft <= r);
|
|
s = r - ft >= ft;
|
|
ft <<= s;
|
|
fz <<= s;
|
|
OD_ASSERT(r - ft < ft);
|
|
#if OD_EC_REDUCED_OVERHEAD
|
|
{
|
|
unsigned d;
|
|
unsigned e;
|
|
d = r - ft;
|
|
e = OD_SUBSATU(2 * d, ft);
|
|
v = fz + OD_MINI(fz, e) + OD_MINI(OD_SUBSATU(fz, e) >> 1, d);
|
|
}
|
|
#else
|
|
v = fz + OD_MINI(fz, r - ft);
|
|
#endif
|
|
vw = (od_ec_window)v << (OD_EC_WINDOW_SIZE - 16);
|
|
ret = dif >= vw;
|
|
if (ret) dif -= vw;
|
|
r = ret ? r - v : v;
|
|
return od_ec_dec_normalize(dec, dif, r, ret);
|
|
}
|
|
|
|
/*Decode a bit that has an fz probability of being a zero in Q15.
|
|
This is a simpler, lower overhead version of od_ec_decode_bool() for use when
|
|
ft == 32768.
|
|
To be decoded properly by this function, symbols cannot have been encoded by
|
|
od_ec_encode(), but must have been encoded with one of the equivalent _q15()
|
|
or _dyadic() functions instead.
|
|
fz: The probability that the bit is zero, scaled by 32768.
|
|
Return: The value decoded (0 or 1).*/
|
|
int od_ec_decode_bool_q15(od_ec_dec *dec, unsigned fz) {
|
|
od_ec_window dif;
|
|
od_ec_window vw;
|
|
unsigned r;
|
|
unsigned r_new;
|
|
unsigned v;
|
|
int ret;
|
|
OD_ASSERT(0 < fz);
|
|
OD_ASSERT(fz < 32768U);
|
|
dif = dec->dif;
|
|
r = dec->rng;
|
|
OD_ASSERT(dif >> (OD_EC_WINDOW_SIZE - 16) < r);
|
|
OD_ASSERT(32768U <= r);
|
|
v = fz * (uint32_t)r >> 15;
|
|
vw = (od_ec_window)v << (OD_EC_WINDOW_SIZE - 16);
|
|
ret = 0;
|
|
r_new = v;
|
|
if (dif >= vw) {
|
|
r_new = r - v;
|
|
dif -= vw;
|
|
ret = 1;
|
|
}
|
|
return od_ec_dec_normalize(dec, dif, r_new, ret);
|
|
}
|
|
|
|
/*Decodes a symbol given a cumulative distribution function (CDF) table.
|
|
cdf: The CDF, such that symbol s falls in the range
|
|
[s > 0 ? cdf[s - 1] : 0, cdf[s]).
|
|
The values must be monotonically non-increasing, and cdf[nsyms - 1]
|
|
must be at least 16384, and no more than 32768.
|
|
nsyms: The number of symbols in the alphabet.
|
|
This should be at most 16.
|
|
Return: The decoded symbol s.*/
|
|
int od_ec_decode_cdf(od_ec_dec *dec, const uint16_t *cdf, int nsyms) {
|
|
od_ec_window dif;
|
|
unsigned r;
|
|
unsigned c;
|
|
unsigned d;
|
|
#if OD_EC_REDUCED_OVERHEAD
|
|
unsigned e;
|
|
#endif
|
|
int s;
|
|
unsigned u;
|
|
unsigned v;
|
|
unsigned q;
|
|
unsigned fl;
|
|
unsigned fh;
|
|
unsigned ft;
|
|
int ret;
|
|
dif = dec->dif;
|
|
r = dec->rng;
|
|
OD_ASSERT(dif >> (OD_EC_WINDOW_SIZE - 16) < r);
|
|
OD_ASSERT(nsyms > 0);
|
|
ft = cdf[nsyms - 1];
|
|
OD_ASSERT(16384 <= ft);
|
|
OD_ASSERT(ft <= 32768U);
|
|
OD_ASSERT(ft <= r);
|
|
s = r - ft >= ft;
|
|
ft <<= s;
|
|
d = r - ft;
|
|
OD_ASSERT(d < ft);
|
|
c = (unsigned)(dif >> (OD_EC_WINDOW_SIZE - 16));
|
|
q = OD_MAXI((int)(c >> 1), (int)(c - d));
|
|
#if OD_EC_REDUCED_OVERHEAD
|
|
e = OD_SUBSATU(2 * d, ft);
|
|
/*The correctness of this inverse partition function is not obvious, but it
|
|
was checked exhaustively for all possible values of r, ft, and c.
|
|
TODO: It should be possible to optimize this better than the compiler,
|
|
given that we do not care about the accuracy of negative results (as we
|
|
will not use them).
|
|
It would also be nice to get rid of the 32-bit dividend, as it requires a
|
|
32x32->64 bit multiply to invert.*/
|
|
q = OD_MAXI((int)q, (int)((2 * (int32_t)c + 1 - (int32_t)e) / 3));
|
|
#endif
|
|
q >>= s;
|
|
OD_ASSERT(q<ft>> s);
|
|
fl = 0;
|
|
ret = 0;
|
|
for (fh = cdf[ret]; fh <= q; fh = cdf[++ret]) fl = fh;
|
|
OD_ASSERT(fh <= ft >> s);
|
|
fl <<= s;
|
|
fh <<= s;
|
|
#if OD_EC_REDUCED_OVERHEAD
|
|
u = fl + OD_MINI(fl, e) + OD_MINI(OD_SUBSATU(fl, e) >> 1, d);
|
|
v = fh + OD_MINI(fh, e) + OD_MINI(OD_SUBSATU(fh, e) >> 1, d);
|
|
#else
|
|
u = fl + OD_MINI(fl, d);
|
|
v = fh + OD_MINI(fh, d);
|
|
#endif
|
|
r = v - u;
|
|
dif -= (od_ec_window)u << (OD_EC_WINDOW_SIZE - 16);
|
|
return od_ec_dec_normalize(dec, dif, r, ret);
|
|
}
|
|
|
|
/*Decodes a symbol given a cumulative distribution function (CDF) table.
|
|
cdf: The CDF, such that symbol s falls in the range
|
|
[s > 0 ? cdf[s - 1] : 0, cdf[s]).
|
|
The values must be monotonically non-increasing, and cdf[nsyms - 1]
|
|
must be at least 2, and no more than 32768.
|
|
nsyms: The number of symbols in the alphabet.
|
|
This should be at most 16.
|
|
Return: The decoded symbol s.*/
|
|
int od_ec_decode_cdf_unscaled(od_ec_dec *dec, const uint16_t *cdf, int nsyms) {
|
|
od_ec_window dif;
|
|
unsigned r;
|
|
unsigned c;
|
|
unsigned d;
|
|
#if OD_EC_REDUCED_OVERHEAD
|
|
unsigned e;
|
|
#endif
|
|
int s;
|
|
unsigned u;
|
|
unsigned v;
|
|
unsigned q;
|
|
unsigned fl;
|
|
unsigned fh;
|
|
unsigned ft;
|
|
int ret;
|
|
dif = dec->dif;
|
|
r = dec->rng;
|
|
OD_ASSERT(dif >> (OD_EC_WINDOW_SIZE - 16) < r);
|
|
OD_ASSERT(nsyms > 0);
|
|
ft = cdf[nsyms - 1];
|
|
OD_ASSERT(2 <= ft);
|
|
OD_ASSERT(ft <= 32768U);
|
|
s = 15 - OD_ILOG_NZ(ft - 1);
|
|
ft <<= s;
|
|
OD_ASSERT(ft <= r);
|
|
if (r - ft >= ft) {
|
|
ft <<= 1;
|
|
s++;
|
|
}
|
|
d = r - ft;
|
|
OD_ASSERT(d < ft);
|
|
c = (unsigned)(dif >> (OD_EC_WINDOW_SIZE - 16));
|
|
q = OD_MAXI((int)(c >> 1), (int)(c - d));
|
|
#if OD_EC_REDUCED_OVERHEAD
|
|
e = OD_SUBSATU(2 * d, ft);
|
|
/*TODO: See TODO above.*/
|
|
q = OD_MAXI((int)q, (int)((2 * (int32_t)c + 1 - (int32_t)e) / 3));
|
|
#endif
|
|
q >>= s;
|
|
OD_ASSERT(q<ft>> s);
|
|
fl = 0;
|
|
ret = 0;
|
|
for (fh = cdf[ret]; fh <= q; fh = cdf[++ret]) fl = fh;
|
|
OD_ASSERT(fh <= ft >> s);
|
|
fl <<= s;
|
|
fh <<= s;
|
|
#if OD_EC_REDUCED_OVERHEAD
|
|
u = fl + OD_MINI(fl, e) + OD_MINI(OD_SUBSATU(fl, e) >> 1, d);
|
|
v = fh + OD_MINI(fh, e) + OD_MINI(OD_SUBSATU(fh, e) >> 1, d);
|
|
#else
|
|
u = fl + OD_MINI(fl, d);
|
|
v = fh + OD_MINI(fh, d);
|
|
#endif
|
|
r = v - u;
|
|
dif -= (od_ec_window)u << (OD_EC_WINDOW_SIZE - 16);
|
|
return od_ec_dec_normalize(dec, dif, r, ret);
|
|
}
|
|
|
|
/*Decodes a symbol given a cumulative distribution function (CDF) table that
|
|
sums to a power of two.
|
|
This is a simpler, lower overhead version of od_ec_decode_cdf() for use when
|
|
cdf[nsyms - 1] is a power of two.
|
|
To be decoded properly by this function, symbols cannot have been encoded by
|
|
od_ec_encode(), but must have been encoded with one of the equivalent _q15()
|
|
functions instead.
|
|
cdf: The CDF, such that symbol s falls in the range
|
|
[s > 0 ? cdf[s - 1] : 0, cdf[s]).
|
|
The values must be monotonically non-increasing, and cdf[nsyms - 1]
|
|
must be exactly 1 << ftb.
|
|
nsyms: The number of symbols in the alphabet.
|
|
This should be at most 16.
|
|
ftb: The number of bits of precision in the cumulative distribution.
|
|
This must be no more than 15.
|
|
Return: The decoded symbol s.*/
|
|
int od_ec_decode_cdf_unscaled_dyadic(od_ec_dec *dec, const uint16_t *cdf,
|
|
int nsyms, unsigned ftb) {
|
|
od_ec_window dif;
|
|
unsigned r;
|
|
unsigned c;
|
|
unsigned u;
|
|
unsigned v;
|
|
int ret;
|
|
(void)nsyms;
|
|
dif = dec->dif;
|
|
r = dec->rng;
|
|
OD_ASSERT(dif >> (OD_EC_WINDOW_SIZE - 16) < r);
|
|
OD_ASSERT(ftb <= 15);
|
|
OD_ASSERT(cdf[nsyms - 1] == 1U << ftb);
|
|
OD_ASSERT(32768U <= r);
|
|
c = (unsigned)(dif >> (OD_EC_WINDOW_SIZE - 16));
|
|
v = 0;
|
|
ret = -1;
|
|
do {
|
|
u = v;
|
|
v = cdf[++ret] * (uint32_t)r >> ftb;
|
|
} while (v <= c);
|
|
OD_ASSERT(v <= r);
|
|
r = v - u;
|
|
dif -= (od_ec_window)u << (OD_EC_WINDOW_SIZE - 16);
|
|
return od_ec_dec_normalize(dec, dif, r, ret);
|
|
}
|
|
|
|
/*Decodes a symbol given a cumulative distribution function (CDF) table in Q15.
|
|
This is a simpler, lower overhead version of od_ec_decode_cdf() for use when
|
|
cdf[nsyms - 1] == 32768.
|
|
To be decoded properly by this function, symbols cannot have been encoded by
|
|
od_ec_encode(), but must have been encoded with one of the equivalent _q15()
|
|
or dyadic() functions instead.
|
|
cdf: The CDF, such that symbol s falls in the range
|
|
[s > 0 ? cdf[s - 1] : 0, cdf[s]).
|
|
The values must be monotonically non-increasing, and cdf[nsyms - 1]
|
|
must be 32768.
|
|
nsyms: The number of symbols in the alphabet.
|
|
This should be at most 16.
|
|
Return: The decoded symbol s.*/
|
|
int od_ec_decode_cdf_q15(od_ec_dec *dec, const uint16_t *cdf, int nsyms) {
|
|
return od_ec_decode_cdf_unscaled_dyadic(dec, cdf, nsyms, 15);
|
|
}
|
|
|
|
/*Extracts a raw unsigned integer with a non-power-of-2 range from the stream.
|
|
The integer must have been encoded with od_ec_enc_uint().
|
|
ft: The number of integers that can be decoded (one more than the max).
|
|
This must be at least 2, and no more than 2**29.
|
|
Return: The decoded bits.*/
|
|
uint32_t od_ec_dec_uint(od_ec_dec *dec, uint32_t ft) {
|
|
OD_ASSERT(ft >= 2);
|
|
OD_ASSERT(ft <= (uint32_t)1 << (25 + OD_EC_UINT_BITS));
|
|
if (ft > 1U << OD_EC_UINT_BITS) {
|
|
uint32_t t;
|
|
int ft1;
|
|
int ftb;
|
|
ft--;
|
|
ftb = OD_ILOG_NZ(ft) - OD_EC_UINT_BITS;
|
|
ft1 = (int)(ft >> ftb) + 1;
|
|
t = od_ec_decode_cdf_q15(dec, OD_UNIFORM_CDF_Q15(ft1), ft1);
|
|
t = t << ftb | od_ec_dec_bits(dec, ftb);
|
|
if (t <= ft) return t;
|
|
dec->error = 1;
|
|
return ft;
|
|
}
|
|
return od_ec_decode_cdf_q15(dec, OD_UNIFORM_CDF_Q15(ft), (int)ft);
|
|
}
|
|
|
|
/*Extracts a sequence of raw bits from the stream.
|
|
The bits must have been encoded with od_ec_enc_bits().
|
|
ftb: The number of bits to extract.
|
|
This must be between 0 and 25, inclusive.
|
|
Return: The decoded bits.*/
|
|
uint32_t od_ec_dec_bits(od_ec_dec *dec, unsigned ftb) {
|
|
od_ec_window window;
|
|
int available;
|
|
uint32_t ret;
|
|
OD_ASSERT(ftb <= 25);
|
|
window = dec->end_window;
|
|
available = dec->nend_bits;
|
|
if ((unsigned)available < ftb) {
|
|
const unsigned char *buf;
|
|
const unsigned char *eptr;
|
|
buf = dec->buf;
|
|
eptr = dec->eptr;
|
|
OD_ASSERT(available <= OD_EC_WINDOW_SIZE - 8);
|
|
do {
|
|
if (eptr <= buf) {
|
|
dec->tell_offs += OD_EC_LOTS_OF_BITS - available;
|
|
available = OD_EC_LOTS_OF_BITS;
|
|
break;
|
|
}
|
|
window |= (od_ec_window) * --eptr << available;
|
|
available += 8;
|
|
} while (available <= OD_EC_WINDOW_SIZE - 8);
|
|
dec->eptr = eptr;
|
|
}
|
|
ret = (uint32_t)window & (((uint32_t)1 << ftb) - 1);
|
|
window >>= ftb;
|
|
available -= ftb;
|
|
dec->end_window = window;
|
|
dec->nend_bits = available;
|
|
return ret;
|
|
}
|
|
|
|
/*Returns the number of bits "used" by the decoded symbols so far.
|
|
This same number can be computed in either the encoder or the decoder, and is
|
|
suitable for making coding decisions.
|
|
Return: The number of bits.
|
|
This will always be slightly larger than the exact value (e.g., all
|
|
rounding error is in the positive direction).*/
|
|
int od_ec_dec_tell(const od_ec_dec *dec) {
|
|
return ((dec->end - dec->eptr) + (dec->bptr - dec->buf)) * 8 - dec->cnt -
|
|
dec->nend_bits + dec->tell_offs;
|
|
}
|
|
|
|
/*Returns the number of bits "used" by the decoded symbols so far.
|
|
This same number can be computed in either the encoder or the decoder, and is
|
|
suitable for making coding decisions.
|
|
Return: The number of bits scaled by 2**OD_BITRES.
|
|
This will always be slightly larger than the exact value (e.g., all
|
|
rounding error is in the positive direction).*/
|
|
uint32_t od_ec_dec_tell_frac(const od_ec_dec *dec) {
|
|
return od_ec_tell_frac(od_ec_dec_tell(dec), dec->rng);
|
|
}
|