aom/vp8/common/mips/dspr2/idctllm_dspr2.c

370 строки
10 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp8_rtcd.h"
#if HAVE_DSPR2
#define CROP_WIDTH 256
/******************************************************************************
* Notes:
*
* This implementation makes use of 16 bit fixed point version of two multiply
* constants:
* 1. sqrt(2) * cos (pi/8)
* 2. sqrt(2) * sin (pi/8)
* Since the first constant is bigger than 1, to maintain the same 16 bit
* fixed point precision as the second one, we use a trick of
* x * a = x + x*(a-1)
* so
* x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) *cos(pi/8)-1).
****************************************************************************/
extern unsigned char ff_cropTbl[256 + 2 * CROP_WIDTH];
static const int cospi8sqrt2minus1 = 20091;
static const int sinpi8sqrt2 = 35468;
inline void prefetch_load_short(short *src)
{
__asm__ __volatile__ (
"pref 0, 0(%[src]) \n\t"
:
: [src] "r" (src)
);
}
void vp8_short_idct4x4llm_dspr2(short *input, unsigned char *pred_ptr,
int pred_stride, unsigned char *dst_ptr,
int dst_stride)
{
int r, c;
int a1, b1, c1, d1;
short output[16];
short *ip = input;
short *op = output;
int temp1, temp2;
int shortpitch = 4;
int c2, d2;
int temp3, temp4;
unsigned char *cm = ff_cropTbl + CROP_WIDTH;
/* prepare data for load */
prefetch_load_short(ip + 8);
/* first loop is unrolled */
a1 = ip[0] + ip[8];
b1 = ip[0] - ip[8];
temp1 = (ip[4] * sinpi8sqrt2) >> 16;
temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1) >> 16);
c1 = temp1 - temp2;
temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1) >> 16);
temp2 = (ip[12] * sinpi8sqrt2) >> 16;
d1 = temp1 + temp2;
temp3 = (ip[5] * sinpi8sqrt2) >> 16;
temp4 = ip[13] + ((ip[13] * cospi8sqrt2minus1) >> 16);
c2 = temp3 - temp4;
temp3 = ip[5] + ((ip[5] * cospi8sqrt2minus1) >> 16);
temp4 = (ip[13] * sinpi8sqrt2) >> 16;
d2 = temp3 + temp4;
op[0] = a1 + d1;
op[12] = a1 - d1;
op[4] = b1 + c1;
op[8] = b1 - c1;
a1 = ip[1] + ip[9];
b1 = ip[1] - ip[9];
op[1] = a1 + d2;
op[13] = a1 - d2;
op[5] = b1 + c2;
op[9] = b1 - c2;
a1 = ip[2] + ip[10];
b1 = ip[2] - ip[10];
temp1 = (ip[6] * sinpi8sqrt2) >> 16;
temp2 = ip[14] + ((ip[14] * cospi8sqrt2minus1) >> 16);
c1 = temp1 - temp2;
temp1 = ip[6] + ((ip[6] * cospi8sqrt2minus1) >> 16);
temp2 = (ip[14] * sinpi8sqrt2) >> 16;
d1 = temp1 + temp2;
temp3 = (ip[7] * sinpi8sqrt2) >> 16;
temp4 = ip[15] + ((ip[15] * cospi8sqrt2minus1) >> 16);
c2 = temp3 - temp4;
temp3 = ip[7] + ((ip[7] * cospi8sqrt2minus1) >> 16);
temp4 = (ip[15] * sinpi8sqrt2) >> 16;
d2 = temp3 + temp4;
op[2] = a1 + d1;
op[14] = a1 - d1;
op[6] = b1 + c1;
op[10] = b1 - c1;
a1 = ip[3] + ip[11];
b1 = ip[3] - ip[11];
op[3] = a1 + d2;
op[15] = a1 - d2;
op[7] = b1 + c2;
op[11] = b1 - c2;
ip = output;
/* prepare data for load */
prefetch_load_short(ip + shortpitch);
/* second loop is unrolled */
a1 = ip[0] + ip[2];
b1 = ip[0] - ip[2];
temp1 = (ip[1] * sinpi8sqrt2) >> 16;
temp2 = ip[3] + ((ip[3] * cospi8sqrt2minus1) >> 16);
c1 = temp1 - temp2;
temp1 = ip[1] + ((ip[1] * cospi8sqrt2minus1) >> 16);
temp2 = (ip[3] * sinpi8sqrt2) >> 16;
d1 = temp1 + temp2;
temp3 = (ip[5] * sinpi8sqrt2) >> 16;
temp4 = ip[7] + ((ip[7] * cospi8sqrt2minus1) >> 16);
c2 = temp3 - temp4;
temp3 = ip[5] + ((ip[5] * cospi8sqrt2minus1) >> 16);
temp4 = (ip[7] * sinpi8sqrt2) >> 16;
d2 = temp3 + temp4;
op[0] = (a1 + d1 + 4) >> 3;
op[3] = (a1 - d1 + 4) >> 3;
op[1] = (b1 + c1 + 4) >> 3;
op[2] = (b1 - c1 + 4) >> 3;
a1 = ip[4] + ip[6];
b1 = ip[4] - ip[6];
op[4] = (a1 + d2 + 4) >> 3;
op[7] = (a1 - d2 + 4) >> 3;
op[5] = (b1 + c2 + 4) >> 3;
op[6] = (b1 - c2 + 4) >> 3;
a1 = ip[8] + ip[10];
b1 = ip[8] - ip[10];
temp1 = (ip[9] * sinpi8sqrt2) >> 16;
temp2 = ip[11] + ((ip[11] * cospi8sqrt2minus1) >> 16);
c1 = temp1 - temp2;
temp1 = ip[9] + ((ip[9] * cospi8sqrt2minus1) >> 16);
temp2 = (ip[11] * sinpi8sqrt2) >> 16;
d1 = temp1 + temp2;
temp3 = (ip[13] * sinpi8sqrt2) >> 16;
temp4 = ip[15] + ((ip[15] * cospi8sqrt2minus1) >> 16);
c2 = temp3 - temp4;
temp3 = ip[13] + ((ip[13] * cospi8sqrt2minus1) >> 16);
temp4 = (ip[15] * sinpi8sqrt2) >> 16;
d2 = temp3 + temp4;
op[8] = (a1 + d1 + 4) >> 3;
op[11] = (a1 - d1 + 4) >> 3;
op[9] = (b1 + c1 + 4) >> 3;
op[10] = (b1 - c1 + 4) >> 3;
a1 = ip[12] + ip[14];
b1 = ip[12] - ip[14];
op[12] = (a1 + d2 + 4) >> 3;
op[15] = (a1 - d2 + 4) >> 3;
op[13] = (b1 + c2 + 4) >> 3;
op[14] = (b1 - c2 + 4) >> 3;
ip = output;
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
short a = ip[c] + pred_ptr[c] ;
dst_ptr[c] = cm[a] ;
}
ip += 4;
dst_ptr += dst_stride;
pred_ptr += pred_stride;
}
}
void vp8_dc_only_idct_add_dspr2(short input_dc, unsigned char *pred_ptr, int pred_stride, unsigned char *dst_ptr, int dst_stride)
{
int a1;
int i, absa1;
int t2, vector_a1, vector_a;
/* a1 = ((input_dc + 4) >> 3); */
__asm__ __volatile__ (
"addi %[a1], %[input_dc], 4 \n\t"
"sra %[a1], %[a1], 3 \n\t"
: [a1] "=r" (a1)
: [input_dc] "r" (input_dc)
);
if (a1 < 0)
{
/* use quad-byte
* input and output memory are four byte aligned
*/
__asm__ __volatile__ (
"abs %[absa1], %[a1] \n\t"
"replv.qb %[vector_a1], %[absa1] \n\t"
: [absa1] "=r" (absa1), [vector_a1] "=r" (vector_a1)
: [a1] "r" (a1)
);
/* use (a1 - predptr[c]) instead a1 + predptr[c] */
for (i = 4; i--;)
{
__asm__ __volatile__ (
"lw %[t2], 0(%[pred_ptr]) \n\t"
"add %[pred_ptr], %[pred_ptr], %[pred_stride] \n\t"
"subu_s.qb %[vector_a], %[t2], %[vector_a1] \n\t"
"sw %[vector_a], 0(%[dst_ptr]) \n\t"
"add %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t"
: [t2] "=&r" (t2), [vector_a] "=&r" (vector_a),
[dst_ptr] "+&r" (dst_ptr), [pred_ptr] "+&r" (pred_ptr)
: [dst_stride] "r" (dst_stride), [pred_stride] "r" (pred_stride), [vector_a1] "r" (vector_a1)
);
}
}
else
{
/* use quad-byte
* input and output memory are four byte aligned
*/
__asm__ __volatile__ (
"replv.qb %[vector_a1], %[a1] \n\t"
: [vector_a1] "=r" (vector_a1)
: [a1] "r" (a1)
);
for (i = 4; i--;)
{
__asm__ __volatile__ (
"lw %[t2], 0(%[pred_ptr]) \n\t"
"add %[pred_ptr], %[pred_ptr], %[pred_stride] \n\t"
"addu_s.qb %[vector_a], %[vector_a1], %[t2] \n\t"
"sw %[vector_a], 0(%[dst_ptr]) \n\t"
"add %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t"
: [t2] "=&r" (t2), [vector_a] "=&r" (vector_a),
[dst_ptr] "+&r" (dst_ptr), [pred_ptr] "+&r" (pred_ptr)
: [dst_stride] "r" (dst_stride), [pred_stride] "r" (pred_stride), [vector_a1] "r" (vector_a1)
);
}
}
}
void vp8_short_inv_walsh4x4_dspr2(short *input, short *mb_dqcoeff)
{
short output[16];
int i;
int a1, b1, c1, d1;
int a2, b2, c2, d2;
short *ip = input;
short *op = output;
prefetch_load_short(ip);
for (i = 4; i--;)
{
a1 = ip[0] + ip[12];
b1 = ip[4] + ip[8];
c1 = ip[4] - ip[8];
d1 = ip[0] - ip[12];
op[0] = a1 + b1;
op[4] = c1 + d1;
op[8] = a1 - b1;
op[12] = d1 - c1;
ip++;
op++;
}
ip = output;
op = output;
prefetch_load_short(ip);
for (i = 4; i--;)
{
a1 = ip[0] + ip[3] + 3;
b1 = ip[1] + ip[2];
c1 = ip[1] - ip[2];
d1 = ip[0] - ip[3] + 3;
a2 = a1 + b1;
b2 = d1 + c1;
c2 = a1 - b1;
d2 = d1 - c1;
op[0] = a2 >> 3;
op[1] = b2 >> 3;
op[2] = c2 >> 3;
op[3] = d2 >> 3;
ip += 4;
op += 4;
}
for (i = 0; i < 16; i++)
{
mb_dqcoeff[i * 16] = output[i];
}
}
void vp8_short_inv_walsh4x4_1_dspr2(short *input, short *mb_dqcoeff)
{
int a1;
a1 = ((input[0] + 3) >> 3);
__asm__ __volatile__ (
"sh %[a1], 0(%[mb_dqcoeff]) \n\t"
"sh %[a1], 32(%[mb_dqcoeff]) \n\t"
"sh %[a1], 64(%[mb_dqcoeff]) \n\t"
"sh %[a1], 96(%[mb_dqcoeff]) \n\t"
"sh %[a1], 128(%[mb_dqcoeff]) \n\t"
"sh %[a1], 160(%[mb_dqcoeff]) \n\t"
"sh %[a1], 192(%[mb_dqcoeff]) \n\t"
"sh %[a1], 224(%[mb_dqcoeff]) \n\t"
"sh %[a1], 256(%[mb_dqcoeff]) \n\t"
"sh %[a1], 288(%[mb_dqcoeff]) \n\t"
"sh %[a1], 320(%[mb_dqcoeff]) \n\t"
"sh %[a1], 352(%[mb_dqcoeff]) \n\t"
"sh %[a1], 384(%[mb_dqcoeff]) \n\t"
"sh %[a1], 416(%[mb_dqcoeff]) \n\t"
"sh %[a1], 448(%[mb_dqcoeff]) \n\t"
"sh %[a1], 480(%[mb_dqcoeff]) \n\t"
:
: [a1] "r" (a1), [mb_dqcoeff] "r" (mb_dqcoeff)
);
}
#endif