aom/vp10/common/reconinter.h

201 строка
8.1 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP10_COMMON_RECONINTER_H_
#define VP10_COMMON_RECONINTER_H_
#include "vp10/common/filter.h"
#include "vp10/common/onyxc_int.h"
#include "vpx/vpx_integer.h"
#include "vpx_dsp/vpx_filter.h"
#ifdef __cplusplus
extern "C" {
#endif
static INLINE void inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int subpel_x,
const int subpel_y,
const struct scale_factors *sf,
int w, int h, int ref,
const InterpKernel *kernel,
int xs, int ys) {
sf->predict[subpel_x != 0][subpel_y != 0][ref](
src, src_stride, dst, dst_stride,
kernel[subpel_x], xs, kernel[subpel_y], ys, w, h);
}
#if CONFIG_VP9_HIGHBITDEPTH
static INLINE void high_inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int subpel_x,
const int subpel_y,
const struct scale_factors *sf,
int w, int h, int ref,
const InterpKernel *kernel,
int xs, int ys, int bd) {
sf->highbd_predict[subpel_x != 0][subpel_y != 0][ref](
src, src_stride, dst, dst_stride,
kernel[subpel_x], xs, kernel[subpel_y], ys, w, h, bd);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static INLINE int round_mv_comp_q4(int value) {
return (value < 0 ? value - 2 : value + 2) / 4;
}
static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row +
mi->bmi[1].as_mv[idx].as_mv.row +
mi->bmi[2].as_mv[idx].as_mv.row +
mi->bmi[3].as_mv[idx].as_mv.row),
round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col +
mi->bmi[1].as_mv[idx].as_mv.col +
mi->bmi[2].as_mv[idx].as_mv.col +
mi->bmi[3].as_mv[idx].as_mv.col) };
return res;
}
static INLINE int round_mv_comp_q2(int value) {
return (value < 0 ? value - 1 : value + 1) / 2;
}
static MV mi_mv_pred_q2(const MODE_INFO *mi, int idx, int block0, int block1) {
MV res = { round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.row +
mi->bmi[block1].as_mv[idx].as_mv.row),
round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.col +
mi->bmi[block1].as_mv[idx].as_mv.col) };
return res;
}
// TODO(jkoleszar): yet another mv clamping function :-(
static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd,
const MV *src_mv,
int bw, int bh, int ss_x, int ss_y) {
// If the MV points so far into the UMV border that no visible pixels
// are used for reconstruction, the subpel part of the MV can be
// discarded and the MV limited to 16 pixels with equivalent results.
const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS;
const int spel_right = spel_left - SUBPEL_SHIFTS;
const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS;
const int spel_bottom = spel_top - SUBPEL_SHIFTS;
MV clamped_mv = {
src_mv->row * (1 << (1 - ss_y)),
src_mv->col * (1 << (1 - ss_x))
};
assert(ss_x <= 1);
assert(ss_y <= 1);
clamp_mv(&clamped_mv,
xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);
return clamped_mv;
}
static INLINE MV average_split_mvs(const struct macroblockd_plane *pd,
const MODE_INFO *mi, int ref, int block) {
const int ss_idx = ((pd->subsampling_x > 0) << 1) | (pd->subsampling_y > 0);
MV res = {0, 0};
switch (ss_idx) {
case 0:
res = mi->bmi[block].as_mv[ref].as_mv;
break;
case 1:
res = mi_mv_pred_q2(mi, ref, block, block + 2);
break;
case 2:
res = mi_mv_pred_q2(mi, ref, block, block + 1);
break;
case 3:
res = mi_mv_pred_q4(mi, ref);
break;
default:
assert(ss_idx <= 3 && ss_idx >= 0);
}
return res;
}
void build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
int bw, int bh,
int x, int y, int w, int h,
int mi_x, int mi_y);
void vp10_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane,
int i, int ir, int ic,
int mi_row, int mi_col);
void vp10_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize);
void vp10_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize, int plane);
void vp10_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize);
void vp10_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize);
void vp10_build_inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const MV *mv_q3,
const struct scale_factors *sf,
int w, int h, int do_avg,
const InterpKernel *kernel,
enum mv_precision precision,
int x, int y);
#if CONFIG_VP9_HIGHBITDEPTH
void vp10_highbd_build_inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const MV *mv_q3,
const struct scale_factors *sf,
int w, int h, int do_avg,
const InterpKernel *kernel,
enum mv_precision precision,
int x, int y, int bd);
#endif
static INLINE int scaled_buffer_offset(int x_offset, int y_offset, int stride,
const struct scale_factors *sf) {
const int x = sf ? sf->scale_value_x(x_offset, sf) : x_offset;
const int y = sf ? sf->scale_value_y(y_offset, sf) : y_offset;
return y * stride + x;
}
static INLINE void setup_pred_plane(struct buf_2d *dst,
uint8_t *src, int stride,
int mi_row, int mi_col,
const struct scale_factors *scale,
int subsampling_x, int subsampling_y) {
const int x = (MI_SIZE * mi_col) >> subsampling_x;
const int y = (MI_SIZE * mi_row) >> subsampling_y;
dst->buf = src + scaled_buffer_offset(x, y, stride, scale);
dst->stride = stride;
}
void vp10_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col);
void vp10_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *sf);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // VP10_COMMON_RECONINTER_H_