aom/vp9/encoder/vp9_encoder.c

5027 строки
170 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdio.h>
#include <limits.h>
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "./vpx_scale_rtcd.h"
#include "vpx/internal/vpx_psnr.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_dsp/vpx_filter.h"
#if CONFIG_INTERNAL_STATS
#include "vpx_dsp/ssim.h"
#endif
#include "vpx_ports/mem.h"
#include "vpx_ports/system_state.h"
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_idct.h"
#if CONFIG_VP9_POSTPROC
#include "vp9/common/vp9_postproc.h"
#endif
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_aq_360.h"
#include "vp9/encoder/vp9_aq_complexity.h"
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
#include "vp9/encoder/vp9_aq_variance.h"
#include "vp9/encoder/vp9_bitstream.h"
#include "vp9/encoder/vp9_context_tree.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_ethread.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_mbgraph.h"
#include "vp9/encoder/vp9_noise_estimate.h"
#include "vp9/encoder/vp9_picklpf.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rd.h"
#include "vp9/encoder/vp9_resize.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_skin_detection.h"
#include "vp9/encoder/vp9_speed_features.h"
#include "vp9/encoder/vp9_svc_layercontext.h"
#include "vp9/encoder/vp9_temporal_filter.h"
#define AM_SEGMENT_ID_INACTIVE 7
#define AM_SEGMENT_ID_ACTIVE 0
#define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv
// for altref computation.
#define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision
// mv. Choose a very high value for
// now so that HIGH_PRECISION is always
// chosen.
// #define OUTPUT_YUV_REC
#ifdef OUTPUT_YUV_DENOISED
FILE *yuv_denoised_file = NULL;
#endif
#ifdef OUTPUT_YUV_SKINMAP
FILE *yuv_skinmap_file = NULL;
#endif
#ifdef OUTPUT_YUV_REC
FILE *yuv_rec_file;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
static INLINE void Scale2Ratio(VPX_SCALING mode, int *hr, int *hs) {
switch (mode) {
case NORMAL:
*hr = 1;
*hs = 1;
break;
case FOURFIVE:
*hr = 4;
*hs = 5;
break;
case THREEFIVE:
*hr = 3;
*hs = 5;
break;
case ONETWO:
*hr = 1;
*hs = 2;
break;
default:
*hr = 1;
*hs = 1;
assert(0);
break;
}
}
// Mark all inactive blocks as active. Other segmentation features may be set
// so memset cannot be used, instead only inactive blocks should be reset.
static void suppress_active_map(VP9_COMP *cpi) {
unsigned char *const seg_map = cpi->segmentation_map;
int i;
if (cpi->active_map.enabled || cpi->active_map.update)
for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
if (seg_map[i] == AM_SEGMENT_ID_INACTIVE)
seg_map[i] = AM_SEGMENT_ID_ACTIVE;
}
static void apply_active_map(VP9_COMP *cpi) {
struct segmentation *const seg = &cpi->common.seg;
unsigned char *const seg_map = cpi->segmentation_map;
const unsigned char *const active_map = cpi->active_map.map;
int i;
assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE);
if (frame_is_intra_only(&cpi->common)) {
cpi->active_map.enabled = 0;
cpi->active_map.update = 1;
}
if (cpi->active_map.update) {
if (cpi->active_map.enabled) {
for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i];
vp9_enable_segmentation(seg);
vp9_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
vp9_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
// Setting the data to -MAX_LOOP_FILTER will result in the computed loop
// filter level being zero regardless of the value of seg->abs_delta.
vp9_set_segdata(seg, AM_SEGMENT_ID_INACTIVE,
SEG_LVL_ALT_LF, -MAX_LOOP_FILTER);
} else {
vp9_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
vp9_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
if (seg->enabled) {
seg->update_data = 1;
seg->update_map = 1;
}
}
cpi->active_map.update = 0;
}
}
int vp9_set_active_map(VP9_COMP* cpi,
unsigned char* new_map_16x16,
int rows,
int cols) {
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
unsigned char *const active_map_8x8 = cpi->active_map.map;
const int mi_rows = cpi->common.mi_rows;
const int mi_cols = cpi->common.mi_cols;
cpi->active_map.update = 1;
if (new_map_16x16) {
int r, c;
for (r = 0; r < mi_rows; ++r) {
for (c = 0; c < mi_cols; ++c) {
active_map_8x8[r * mi_cols + c] =
new_map_16x16[(r >> 1) * cols + (c >> 1)]
? AM_SEGMENT_ID_ACTIVE
: AM_SEGMENT_ID_INACTIVE;
}
}
cpi->active_map.enabled = 1;
} else {
cpi->active_map.enabled = 0;
}
return 0;
} else {
return -1;
}
}
int vp9_get_active_map(VP9_COMP* cpi,
unsigned char* new_map_16x16,
int rows,
int cols) {
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols &&
new_map_16x16) {
unsigned char* const seg_map_8x8 = cpi->segmentation_map;
const int mi_rows = cpi->common.mi_rows;
const int mi_cols = cpi->common.mi_cols;
memset(new_map_16x16, !cpi->active_map.enabled, rows * cols);
if (cpi->active_map.enabled) {
int r, c;
for (r = 0; r < mi_rows; ++r) {
for (c = 0; c < mi_cols; ++c) {
// Cyclic refresh segments are considered active despite not having
// AM_SEGMENT_ID_ACTIVE
new_map_16x16[(r >> 1) * cols + (c >> 1)] |=
seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE;
}
}
}
return 0;
} else {
return -1;
}
}
void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) {
MACROBLOCK *const mb = &cpi->td.mb;
cpi->common.allow_high_precision_mv = allow_high_precision_mv;
if (cpi->common.allow_high_precision_mv) {
mb->mvcost = mb->nmvcost_hp;
mb->mvsadcost = mb->nmvsadcost_hp;
} else {
mb->mvcost = mb->nmvcost;
mb->mvsadcost = mb->nmvsadcost;
}
}
static void setup_frame(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
// Set up entropy context depending on frame type. The decoder mandates
// the use of the default context, index 0, for keyframes and inter
// frames where the error_resilient_mode or intra_only flag is set. For
// other inter-frames the encoder currently uses only two contexts;
// context 1 for ALTREF frames and context 0 for the others.
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
vp9_setup_past_independence(cm);
} else {
if (!cpi->use_svc)
cm->frame_context_idx = cpi->refresh_alt_ref_frame;
}
if (cm->frame_type == KEY_FRAME) {
if (!is_two_pass_svc(cpi))
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 1;
vp9_zero(cpi->interp_filter_selected);
} else {
*cm->fc = cm->frame_contexts[cm->frame_context_idx];
vp9_zero(cpi->interp_filter_selected[0]);
}
}
static void vp9_enc_setup_mi(VP9_COMMON *cm) {
int i;
cm->mi = cm->mip + cm->mi_stride + 1;
memset(cm->mip, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mip));
cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
// Clear top border row
memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride);
// Clear left border column
for (i = 1; i < cm->mi_rows + 1; ++i)
memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip));
cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
memset(cm->mi_grid_base, 0,
cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base));
}
static int vp9_enc_alloc_mi(VP9_COMMON *cm, int mi_size) {
cm->mip = vpx_calloc(mi_size, sizeof(*cm->mip));
if (!cm->mip)
return 1;
cm->prev_mip = vpx_calloc(mi_size, sizeof(*cm->prev_mip));
if (!cm->prev_mip)
return 1;
cm->mi_alloc_size = mi_size;
cm->mi_grid_base = (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO*));
if (!cm->mi_grid_base)
return 1;
cm->prev_mi_grid_base = (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO*));
if (!cm->prev_mi_grid_base)
return 1;
return 0;
}
static void vp9_enc_free_mi(VP9_COMMON *cm) {
vpx_free(cm->mip);
cm->mip = NULL;
vpx_free(cm->prev_mip);
cm->prev_mip = NULL;
vpx_free(cm->mi_grid_base);
cm->mi_grid_base = NULL;
vpx_free(cm->prev_mi_grid_base);
cm->prev_mi_grid_base = NULL;
}
static void vp9_swap_mi_and_prev_mi(VP9_COMMON *cm) {
// Current mip will be the prev_mip for the next frame.
MODE_INFO **temp_base = cm->prev_mi_grid_base;
MODE_INFO *temp = cm->prev_mip;
cm->prev_mip = cm->mip;
cm->mip = temp;
// Update the upper left visible macroblock ptrs.
cm->mi = cm->mip + cm->mi_stride + 1;
cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
cm->prev_mi_grid_base = cm->mi_grid_base;
cm->mi_grid_base = temp_base;
cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
}
void vp9_initialize_enc(void) {
static volatile int init_done = 0;
if (!init_done) {
vp9_rtcd();
vpx_dsp_rtcd();
vpx_scale_rtcd();
vp9_init_intra_predictors();
vp9_init_me_luts();
vp9_rc_init_minq_luts();
vp9_entropy_mv_init();
vp9_temporal_filter_init();
init_done = 1;
}
}
static void dealloc_compressor_data(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int i;
vpx_free(cpi->mbmi_ext_base);
cpi->mbmi_ext_base = NULL;
vpx_free(cpi->tile_data);
cpi->tile_data = NULL;
// Delete sementation map
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = NULL;
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
cpi->coding_context.last_frame_seg_map_copy = NULL;
vpx_free(cpi->nmvcosts[0]);
vpx_free(cpi->nmvcosts[1]);
cpi->nmvcosts[0] = NULL;
cpi->nmvcosts[1] = NULL;
vpx_free(cpi->nmvcosts_hp[0]);
vpx_free(cpi->nmvcosts_hp[1]);
cpi->nmvcosts_hp[0] = NULL;
cpi->nmvcosts_hp[1] = NULL;
vpx_free(cpi->nmvsadcosts[0]);
vpx_free(cpi->nmvsadcosts[1]);
cpi->nmvsadcosts[0] = NULL;
cpi->nmvsadcosts[1] = NULL;
vpx_free(cpi->nmvsadcosts_hp[0]);
vpx_free(cpi->nmvsadcosts_hp[1]);
cpi->nmvsadcosts_hp[0] = NULL;
cpi->nmvsadcosts_hp[1] = NULL;
vp9_cyclic_refresh_free(cpi->cyclic_refresh);
cpi->cyclic_refresh = NULL;
vpx_free(cpi->active_map.map);
cpi->active_map.map = NULL;
vp9_free_ref_frame_buffers(cm->buffer_pool);
#if CONFIG_VP9_POSTPROC
vp9_free_postproc_buffers(cm);
#endif
vp9_free_context_buffers(cm);
vpx_free_frame_buffer(&cpi->last_frame_uf);
vpx_free_frame_buffer(&cpi->scaled_source);
vpx_free_frame_buffer(&cpi->scaled_last_source);
vpx_free_frame_buffer(&cpi->alt_ref_buffer);
vp9_lookahead_destroy(cpi->lookahead);
vpx_free(cpi->tile_tok[0][0]);
cpi->tile_tok[0][0] = 0;
vp9_free_pc_tree(&cpi->td);
for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
LAYER_CONTEXT *const lc = &cpi->svc.layer_context[i];
vpx_free(lc->rc_twopass_stats_in.buf);
lc->rc_twopass_stats_in.buf = NULL;
lc->rc_twopass_stats_in.sz = 0;
}
if (cpi->source_diff_var != NULL) {
vpx_free(cpi->source_diff_var);
cpi->source_diff_var = NULL;
}
for (i = 0; i < MAX_LAG_BUFFERS; ++i) {
vpx_free_frame_buffer(&cpi->svc.scaled_frames[i]);
}
memset(&cpi->svc.scaled_frames[0], 0,
MAX_LAG_BUFFERS * sizeof(cpi->svc.scaled_frames[0]));
vpx_free_frame_buffer(&cpi->svc.scaled_temp);
memset(&cpi->svc.scaled_temp, 0, sizeof(cpi->svc.scaled_temp));
vpx_free_frame_buffer(&cpi->svc.empty_frame.img);
memset(&cpi->svc.empty_frame, 0, sizeof(cpi->svc.empty_frame));
vp9_free_svc_cyclic_refresh(cpi);
}
static void save_coding_context(VP9_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
VP9_COMMON *cm = &cpi->common;
// Stores a snapshot of key state variables which can subsequently be
// restored with a call to vp9_restore_coding_context. These functions are
// intended for use in a re-code loop in vp9_compress_frame where the
// quantizer value is adjusted between loop iterations.
vp9_copy(cc->nmvjointcost, cpi->td.mb.nmvjointcost);
memcpy(cc->nmvcosts[0], cpi->nmvcosts[0],
MV_VALS * sizeof(*cpi->nmvcosts[0]));
memcpy(cc->nmvcosts[1], cpi->nmvcosts[1],
MV_VALS * sizeof(*cpi->nmvcosts[1]));
memcpy(cc->nmvcosts_hp[0], cpi->nmvcosts_hp[0],
MV_VALS * sizeof(*cpi->nmvcosts_hp[0]));
memcpy(cc->nmvcosts_hp[1], cpi->nmvcosts_hp[1],
MV_VALS * sizeof(*cpi->nmvcosts_hp[1]));
vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs);
memcpy(cpi->coding_context.last_frame_seg_map_copy,
cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols));
vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
cc->fc = *cm->fc;
}
static void restore_coding_context(VP9_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
VP9_COMMON *cm = &cpi->common;
// Restore key state variables to the snapshot state stored in the
// previous call to vp9_save_coding_context.
vp9_copy(cpi->td.mb.nmvjointcost, cc->nmvjointcost);
memcpy(cpi->nmvcosts[0], cc->nmvcosts[0], MV_VALS * sizeof(*cc->nmvcosts[0]));
memcpy(cpi->nmvcosts[1], cc->nmvcosts[1], MV_VALS * sizeof(*cc->nmvcosts[1]));
memcpy(cpi->nmvcosts_hp[0], cc->nmvcosts_hp[0],
MV_VALS * sizeof(*cc->nmvcosts_hp[0]));
memcpy(cpi->nmvcosts_hp[1], cc->nmvcosts_hp[1],
MV_VALS * sizeof(*cc->nmvcosts_hp[1]));
vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs);
memcpy(cm->last_frame_seg_map,
cpi->coding_context.last_frame_seg_map_copy,
(cm->mi_rows * cm->mi_cols));
vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
*cm->fc = cc->fc;
}
static void configure_static_seg_features(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
struct segmentation *const seg = &cm->seg;
int high_q = (int)(rc->avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if (cm->frame_type == KEY_FRAME) {
// Clear down the global segmentation map
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation
vp9_disable_segmentation(seg);
// Clear down the segment features.
vp9_clearall_segfeatures(seg);
} else if (cpi->refresh_alt_ref_frame) {
// If this is an alt ref frame
// Clear down the global segmentation map
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation and individual segment features by default
vp9_disable_segmentation(seg);
vp9_clearall_segfeatures(seg);
// Scan frames from current to arf frame.
// This function re-enables segmentation if appropriate.
vp9_update_mbgraph_stats(cpi);
// If segmentation was enabled set those features needed for the
// arf itself.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
qi_delta = vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875,
cm->bit_depth);
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Where relevant assume segment data is delta data
seg->abs_delta = SEGMENT_DELTADATA;
}
} else if (seg->enabled) {
// All other frames if segmentation has been enabled
// First normal frame in a valid gf or alt ref group
if (rc->frames_since_golden == 0) {
// Set up segment features for normal frames in an arf group
if (rc->source_alt_ref_active) {
seg->update_map = 0;
seg->update_data = 1;
seg->abs_delta = SEGMENT_DELTADATA;
qi_delta = vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125,
cm->bit_depth);
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Segment coding disabled for compred testing
if (high_q || (cpi->static_mb_pct == 100)) {
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
} else {
// Disable segmentation and clear down features if alt ref
// is not active for this group
vp9_disable_segmentation(seg);
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
vp9_clearall_segfeatures(seg);
}
} else if (rc->is_src_frame_alt_ref) {
// Special case where we are coding over the top of a previous
// alt ref frame.
// Segment coding disabled for compred testing
// Enable ref frame features for segment 0 as well
vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
// All mbs should use ALTREF_FRAME
vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
// Skip all MBs if high Q (0,0 mv and skip coeffs)
if (high_q) {
vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP);
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
// Enable data update
seg->update_data = 1;
} else {
// All other frames.
// No updates.. leave things as they are.
seg->update_map = 0;
seg->update_data = 0;
}
}
}
static void update_reference_segmentation_map(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
uint8_t *cache_ptr = cm->last_frame_seg_map;
int row, col;
for (row = 0; row < cm->mi_rows; row++) {
MODE_INFO **mi_8x8 = mi_8x8_ptr;
uint8_t *cache = cache_ptr;
for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
cache[0] = mi_8x8[0]->segment_id;
mi_8x8_ptr += cm->mi_stride;
cache_ptr += cm->mi_cols;
}
}
static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
const VP9EncoderConfig *oxcf = &cpi->oxcf;
if (!cpi->lookahead)
cpi->lookahead = vp9_lookahead_init(oxcf->width, oxcf->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
oxcf->lag_in_frames);
if (!cpi->lookahead)
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
// TODO(agrange) Check if ARF is enabled and skip allocation if not.
if (vpx_realloc_frame_buffer(&cpi->alt_ref_buffer,
oxcf->width, oxcf->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
}
static void alloc_util_frame_buffers(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
if (vpx_realloc_frame_buffer(&cpi->last_frame_uf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (vpx_realloc_frame_buffer(&cpi->scaled_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
if (vpx_realloc_frame_buffer(&cpi->scaled_last_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled last source buffer");
}
static int alloc_context_buffers_ext(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int mi_size = cm->mi_cols * cm->mi_rows;
cpi->mbmi_ext_base = vpx_calloc(mi_size, sizeof(*cpi->mbmi_ext_base));
if (!cpi->mbmi_ext_base)
return 1;
return 0;
}
static void alloc_compressor_data(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
vp9_alloc_context_buffers(cm, cm->width, cm->height);
alloc_context_buffers_ext(cpi);
vpx_free(cpi->tile_tok[0][0]);
{
unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0],
vpx_calloc(tokens, sizeof(*cpi->tile_tok[0][0])));
}
vp9_setup_pc_tree(&cpi->common, &cpi->td);
}
void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
cpi->framerate = framerate < 0.1 ? 30 : framerate;
vp9_rc_update_framerate(cpi);
}
static void set_tile_limits(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int min_log2_tile_cols, max_log2_tile_cols;
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
if (is_two_pass_svc(cpi) &&
(cpi->svc.encode_empty_frame_state == ENCODING ||
cpi->svc.number_spatial_layers > 1)) {
cm->log2_tile_cols = 0;
cm->log2_tile_rows = 0;
} else {
cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
min_log2_tile_cols, max_log2_tile_cols);
cm->log2_tile_rows = cpi->oxcf.tile_rows;
}
}
static void update_frame_size(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
vp9_set_mb_mi(cm, cm->width, cm->height);
vp9_init_context_buffers(cm);
vp9_init_macroblockd(cm, xd, NULL);
cpi->td.mb.mbmi_ext_base = cpi->mbmi_ext_base;
memset(cpi->mbmi_ext_base, 0,
cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base));
set_tile_limits(cpi);
if (is_two_pass_svc(cpi)) {
if (vpx_realloc_frame_buffer(&cpi->alt_ref_buffer,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate alt_ref_buffer");
}
}
static void init_buffer_indices(VP9_COMP *cpi) {
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 1;
cpi->alt_fb_idx = 2;
}
static void init_config(struct VP9_COMP *cpi, VP9EncoderConfig *oxcf) {
VP9_COMMON *const cm = &cpi->common;
cpi->oxcf = *oxcf;
cpi->framerate = oxcf->init_framerate;
cm->profile = oxcf->profile;
cm->bit_depth = oxcf->bit_depth;
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth = oxcf->use_highbitdepth;
#endif
cm->color_space = oxcf->color_space;
cm->color_range = oxcf->color_range;
cm->width = oxcf->width;
cm->height = oxcf->height;
alloc_compressor_data(cpi);
cpi->svc.temporal_layering_mode = oxcf->temporal_layering_mode;
// Single thread case: use counts in common.
cpi->td.counts = &cm->counts;
// Spatial scalability.
cpi->svc.number_spatial_layers = oxcf->ss_number_layers;
// Temporal scalability.
cpi->svc.number_temporal_layers = oxcf->ts_number_layers;
if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) ||
((cpi->svc.number_temporal_layers > 1 ||
cpi->svc.number_spatial_layers > 1) &&
cpi->oxcf.pass != 1)) {
vp9_init_layer_context(cpi);
}
// change includes all joint functionality
vp9_change_config(cpi, oxcf);
cpi->static_mb_pct = 0;
cpi->ref_frame_flags = 0;
init_buffer_indices(cpi);
vp9_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height);
}
static void set_rc_buffer_sizes(RATE_CONTROL *rc,
const VP9EncoderConfig *oxcf) {
const int64_t bandwidth = oxcf->target_bandwidth;
const int64_t starting = oxcf->starting_buffer_level_ms;
const int64_t optimal = oxcf->optimal_buffer_level_ms;
const int64_t maximum = oxcf->maximum_buffer_size_ms;
rc->starting_buffer_level = starting * bandwidth / 1000;
rc->optimal_buffer_level = (optimal == 0) ? bandwidth / 8
: optimal * bandwidth / 1000;
rc->maximum_buffer_size = (maximum == 0) ? bandwidth / 8
: maximum * bandwidth / 1000;
}
#if CONFIG_VP9_HIGHBITDEPTH
#define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF) \
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
#define MAKE_BFP_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride); \
} \
static unsigned int fnname##_bits10(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2; \
} \
static unsigned int fnname##_bits12(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4; \
}
#define MAKE_BFP_SADAVG_WRAPPER(fnname) static unsigned int \
fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred); \
} \
static unsigned int fnname##_bits10(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \
second_pred) >> 2; \
} \
static unsigned int fnname##_bits12(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \
second_pred) >> 4; \
}
#define MAKE_BFP_SAD3_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 3; i++) \
sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 3; i++) \
sad_array[i] >>= 4; \
}
#define MAKE_BFP_SAD8_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 8; i++) \
sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 8; i++) \
sad_array[i] >>= 4; \
}
#define MAKE_BFP_SAD4D_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t* const ref_ptr[], \
int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t* const ref_ptr[], \
int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 4; i++) \
sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t* const ref_ptr[], \
int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 4; i++) \
sad_array[i] >>= 4; \
}
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x16)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x16_avg)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x16x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x32)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x32_avg)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x32x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x32)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x32_avg)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x32x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x64)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x64_avg)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x64x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x32)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x32_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad32x32x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad32x32x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x32x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x64)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x64_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad64x64x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad64x64x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x64x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x16)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x16_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad16x16x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad16x16x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x16x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x8)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x8_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad16x8x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad16x8x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x8x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x16)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x16_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad8x16x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad8x16x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x16x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x8)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x8_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad8x8x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad8x8x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x8x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x4)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x4_avg)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad8x4x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x4x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x8)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x8_avg)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad4x8x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x8x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x4)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x4_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad4x4x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad4x4x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x4x4d)
static void highbd_set_var_fns(VP9_COMP *const cpi) {
VP9_COMMON *const cm = &cpi->common;
if (cm->use_highbitdepth) {
switch (cm->bit_depth) {
case VPX_BITS_8:
HIGHBD_BFP(BLOCK_32X16,
vpx_highbd_sad32x16_bits8,
vpx_highbd_sad32x16_avg_bits8,
vpx_highbd_8_variance32x16,
vpx_highbd_8_sub_pixel_variance32x16,
vpx_highbd_8_sub_pixel_avg_variance32x16,
NULL,
NULL,
vpx_highbd_sad32x16x4d_bits8)
HIGHBD_BFP(BLOCK_16X32,
vpx_highbd_sad16x32_bits8,
vpx_highbd_sad16x32_avg_bits8,
vpx_highbd_8_variance16x32,
vpx_highbd_8_sub_pixel_variance16x32,
vpx_highbd_8_sub_pixel_avg_variance16x32,
NULL,
NULL,
vpx_highbd_sad16x32x4d_bits8)
HIGHBD_BFP(BLOCK_64X32,
vpx_highbd_sad64x32_bits8,
vpx_highbd_sad64x32_avg_bits8,
vpx_highbd_8_variance64x32,
vpx_highbd_8_sub_pixel_variance64x32,
vpx_highbd_8_sub_pixel_avg_variance64x32,
NULL,
NULL,
vpx_highbd_sad64x32x4d_bits8)
HIGHBD_BFP(BLOCK_32X64,
vpx_highbd_sad32x64_bits8,
vpx_highbd_sad32x64_avg_bits8,
vpx_highbd_8_variance32x64,
vpx_highbd_8_sub_pixel_variance32x64,
vpx_highbd_8_sub_pixel_avg_variance32x64,
NULL,
NULL,
vpx_highbd_sad32x64x4d_bits8)
HIGHBD_BFP(BLOCK_32X32,
vpx_highbd_sad32x32_bits8,
vpx_highbd_sad32x32_avg_bits8,
vpx_highbd_8_variance32x32,
vpx_highbd_8_sub_pixel_variance32x32,
vpx_highbd_8_sub_pixel_avg_variance32x32,
vpx_highbd_sad32x32x3_bits8,
vpx_highbd_sad32x32x8_bits8,
vpx_highbd_sad32x32x4d_bits8)
HIGHBD_BFP(BLOCK_64X64,
vpx_highbd_sad64x64_bits8,
vpx_highbd_sad64x64_avg_bits8,
vpx_highbd_8_variance64x64,
vpx_highbd_8_sub_pixel_variance64x64,
vpx_highbd_8_sub_pixel_avg_variance64x64,
vpx_highbd_sad64x64x3_bits8,
vpx_highbd_sad64x64x8_bits8,
vpx_highbd_sad64x64x4d_bits8)
HIGHBD_BFP(BLOCK_16X16,
vpx_highbd_sad16x16_bits8,
vpx_highbd_sad16x16_avg_bits8,
vpx_highbd_8_variance16x16,
vpx_highbd_8_sub_pixel_variance16x16,
vpx_highbd_8_sub_pixel_avg_variance16x16,
vpx_highbd_sad16x16x3_bits8,
vpx_highbd_sad16x16x8_bits8,
vpx_highbd_sad16x16x4d_bits8)
HIGHBD_BFP(BLOCK_16X8,
vpx_highbd_sad16x8_bits8,
vpx_highbd_sad16x8_avg_bits8,
vpx_highbd_8_variance16x8,
vpx_highbd_8_sub_pixel_variance16x8,
vpx_highbd_8_sub_pixel_avg_variance16x8,
vpx_highbd_sad16x8x3_bits8,
vpx_highbd_sad16x8x8_bits8,
vpx_highbd_sad16x8x4d_bits8)
HIGHBD_BFP(BLOCK_8X16,
vpx_highbd_sad8x16_bits8,
vpx_highbd_sad8x16_avg_bits8,
vpx_highbd_8_variance8x16,
vpx_highbd_8_sub_pixel_variance8x16,
vpx_highbd_8_sub_pixel_avg_variance8x16,
vpx_highbd_sad8x16x3_bits8,
vpx_highbd_sad8x16x8_bits8,
vpx_highbd_sad8x16x4d_bits8)
HIGHBD_BFP(BLOCK_8X8,
vpx_highbd_sad8x8_bits8,
vpx_highbd_sad8x8_avg_bits8,
vpx_highbd_8_variance8x8,
vpx_highbd_8_sub_pixel_variance8x8,
vpx_highbd_8_sub_pixel_avg_variance8x8,
vpx_highbd_sad8x8x3_bits8,
vpx_highbd_sad8x8x8_bits8,
vpx_highbd_sad8x8x4d_bits8)
HIGHBD_BFP(BLOCK_8X4,
vpx_highbd_sad8x4_bits8,
vpx_highbd_sad8x4_avg_bits8,
vpx_highbd_8_variance8x4,
vpx_highbd_8_sub_pixel_variance8x4,
vpx_highbd_8_sub_pixel_avg_variance8x4,
NULL,
vpx_highbd_sad8x4x8_bits8,
vpx_highbd_sad8x4x4d_bits8)
HIGHBD_BFP(BLOCK_4X8,
vpx_highbd_sad4x8_bits8,
vpx_highbd_sad4x8_avg_bits8,
vpx_highbd_8_variance4x8,
vpx_highbd_8_sub_pixel_variance4x8,
vpx_highbd_8_sub_pixel_avg_variance4x8,
NULL,
vpx_highbd_sad4x8x8_bits8,
vpx_highbd_sad4x8x4d_bits8)
HIGHBD_BFP(BLOCK_4X4,
vpx_highbd_sad4x4_bits8,
vpx_highbd_sad4x4_avg_bits8,
vpx_highbd_8_variance4x4,
vpx_highbd_8_sub_pixel_variance4x4,
vpx_highbd_8_sub_pixel_avg_variance4x4,
vpx_highbd_sad4x4x3_bits8,
vpx_highbd_sad4x4x8_bits8,
vpx_highbd_sad4x4x4d_bits8)
break;
case VPX_BITS_10:
HIGHBD_BFP(BLOCK_32X16,
vpx_highbd_sad32x16_bits10,
vpx_highbd_sad32x16_avg_bits10,
vpx_highbd_10_variance32x16,
vpx_highbd_10_sub_pixel_variance32x16,
vpx_highbd_10_sub_pixel_avg_variance32x16,
NULL,
NULL,
vpx_highbd_sad32x16x4d_bits10)
HIGHBD_BFP(BLOCK_16X32,
vpx_highbd_sad16x32_bits10,
vpx_highbd_sad16x32_avg_bits10,
vpx_highbd_10_variance16x32,
vpx_highbd_10_sub_pixel_variance16x32,
vpx_highbd_10_sub_pixel_avg_variance16x32,
NULL,
NULL,
vpx_highbd_sad16x32x4d_bits10)
HIGHBD_BFP(BLOCK_64X32,
vpx_highbd_sad64x32_bits10,
vpx_highbd_sad64x32_avg_bits10,
vpx_highbd_10_variance64x32,
vpx_highbd_10_sub_pixel_variance64x32,
vpx_highbd_10_sub_pixel_avg_variance64x32,
NULL,
NULL,
vpx_highbd_sad64x32x4d_bits10)
HIGHBD_BFP(BLOCK_32X64,
vpx_highbd_sad32x64_bits10,
vpx_highbd_sad32x64_avg_bits10,
vpx_highbd_10_variance32x64,
vpx_highbd_10_sub_pixel_variance32x64,
vpx_highbd_10_sub_pixel_avg_variance32x64,
NULL,
NULL,
vpx_highbd_sad32x64x4d_bits10)
HIGHBD_BFP(BLOCK_32X32,
vpx_highbd_sad32x32_bits10,
vpx_highbd_sad32x32_avg_bits10,
vpx_highbd_10_variance32x32,
vpx_highbd_10_sub_pixel_variance32x32,
vpx_highbd_10_sub_pixel_avg_variance32x32,
vpx_highbd_sad32x32x3_bits10,
vpx_highbd_sad32x32x8_bits10,
vpx_highbd_sad32x32x4d_bits10)
HIGHBD_BFP(BLOCK_64X64,
vpx_highbd_sad64x64_bits10,
vpx_highbd_sad64x64_avg_bits10,
vpx_highbd_10_variance64x64,
vpx_highbd_10_sub_pixel_variance64x64,
vpx_highbd_10_sub_pixel_avg_variance64x64,
vpx_highbd_sad64x64x3_bits10,
vpx_highbd_sad64x64x8_bits10,
vpx_highbd_sad64x64x4d_bits10)
HIGHBD_BFP(BLOCK_16X16,
vpx_highbd_sad16x16_bits10,
vpx_highbd_sad16x16_avg_bits10,
vpx_highbd_10_variance16x16,
vpx_highbd_10_sub_pixel_variance16x16,
vpx_highbd_10_sub_pixel_avg_variance16x16,
vpx_highbd_sad16x16x3_bits10,
vpx_highbd_sad16x16x8_bits10,
vpx_highbd_sad16x16x4d_bits10)
HIGHBD_BFP(BLOCK_16X8,
vpx_highbd_sad16x8_bits10,
vpx_highbd_sad16x8_avg_bits10,
vpx_highbd_10_variance16x8,
vpx_highbd_10_sub_pixel_variance16x8,
vpx_highbd_10_sub_pixel_avg_variance16x8,
vpx_highbd_sad16x8x3_bits10,
vpx_highbd_sad16x8x8_bits10,
vpx_highbd_sad16x8x4d_bits10)
HIGHBD_BFP(BLOCK_8X16,
vpx_highbd_sad8x16_bits10,
vpx_highbd_sad8x16_avg_bits10,
vpx_highbd_10_variance8x16,
vpx_highbd_10_sub_pixel_variance8x16,
vpx_highbd_10_sub_pixel_avg_variance8x16,
vpx_highbd_sad8x16x3_bits10,
vpx_highbd_sad8x16x8_bits10,
vpx_highbd_sad8x16x4d_bits10)
HIGHBD_BFP(BLOCK_8X8,
vpx_highbd_sad8x8_bits10,
vpx_highbd_sad8x8_avg_bits10,
vpx_highbd_10_variance8x8,
vpx_highbd_10_sub_pixel_variance8x8,
vpx_highbd_10_sub_pixel_avg_variance8x8,
vpx_highbd_sad8x8x3_bits10,
vpx_highbd_sad8x8x8_bits10,
vpx_highbd_sad8x8x4d_bits10)
HIGHBD_BFP(BLOCK_8X4,
vpx_highbd_sad8x4_bits10,
vpx_highbd_sad8x4_avg_bits10,
vpx_highbd_10_variance8x4,
vpx_highbd_10_sub_pixel_variance8x4,
vpx_highbd_10_sub_pixel_avg_variance8x4,
NULL,
vpx_highbd_sad8x4x8_bits10,
vpx_highbd_sad8x4x4d_bits10)
HIGHBD_BFP(BLOCK_4X8,
vpx_highbd_sad4x8_bits10,
vpx_highbd_sad4x8_avg_bits10,
vpx_highbd_10_variance4x8,
vpx_highbd_10_sub_pixel_variance4x8,
vpx_highbd_10_sub_pixel_avg_variance4x8,
NULL,
vpx_highbd_sad4x8x8_bits10,
vpx_highbd_sad4x8x4d_bits10)
HIGHBD_BFP(BLOCK_4X4,
vpx_highbd_sad4x4_bits10,
vpx_highbd_sad4x4_avg_bits10,
vpx_highbd_10_variance4x4,
vpx_highbd_10_sub_pixel_variance4x4,
vpx_highbd_10_sub_pixel_avg_variance4x4,
vpx_highbd_sad4x4x3_bits10,
vpx_highbd_sad4x4x8_bits10,
vpx_highbd_sad4x4x4d_bits10)
break;
case VPX_BITS_12:
HIGHBD_BFP(BLOCK_32X16,
vpx_highbd_sad32x16_bits12,
vpx_highbd_sad32x16_avg_bits12,
vpx_highbd_12_variance32x16,
vpx_highbd_12_sub_pixel_variance32x16,
vpx_highbd_12_sub_pixel_avg_variance32x16,
NULL,
NULL,
vpx_highbd_sad32x16x4d_bits12)
HIGHBD_BFP(BLOCK_16X32,
vpx_highbd_sad16x32_bits12,
vpx_highbd_sad16x32_avg_bits12,
vpx_highbd_12_variance16x32,
vpx_highbd_12_sub_pixel_variance16x32,
vpx_highbd_12_sub_pixel_avg_variance16x32,
NULL,
NULL,
vpx_highbd_sad16x32x4d_bits12)
HIGHBD_BFP(BLOCK_64X32,
vpx_highbd_sad64x32_bits12,
vpx_highbd_sad64x32_avg_bits12,
vpx_highbd_12_variance64x32,
vpx_highbd_12_sub_pixel_variance64x32,
vpx_highbd_12_sub_pixel_avg_variance64x32,
NULL,
NULL,
vpx_highbd_sad64x32x4d_bits12)
HIGHBD_BFP(BLOCK_32X64,
vpx_highbd_sad32x64_bits12,
vpx_highbd_sad32x64_avg_bits12,
vpx_highbd_12_variance32x64,
vpx_highbd_12_sub_pixel_variance32x64,
vpx_highbd_12_sub_pixel_avg_variance32x64,
NULL,
NULL,
vpx_highbd_sad32x64x4d_bits12)
HIGHBD_BFP(BLOCK_32X32,
vpx_highbd_sad32x32_bits12,
vpx_highbd_sad32x32_avg_bits12,
vpx_highbd_12_variance32x32,
vpx_highbd_12_sub_pixel_variance32x32,
vpx_highbd_12_sub_pixel_avg_variance32x32,
vpx_highbd_sad32x32x3_bits12,
vpx_highbd_sad32x32x8_bits12,
vpx_highbd_sad32x32x4d_bits12)
HIGHBD_BFP(BLOCK_64X64,
vpx_highbd_sad64x64_bits12,
vpx_highbd_sad64x64_avg_bits12,
vpx_highbd_12_variance64x64,
vpx_highbd_12_sub_pixel_variance64x64,
vpx_highbd_12_sub_pixel_avg_variance64x64,
vpx_highbd_sad64x64x3_bits12,
vpx_highbd_sad64x64x8_bits12,
vpx_highbd_sad64x64x4d_bits12)
HIGHBD_BFP(BLOCK_16X16,
vpx_highbd_sad16x16_bits12,
vpx_highbd_sad16x16_avg_bits12,
vpx_highbd_12_variance16x16,
vpx_highbd_12_sub_pixel_variance16x16,
vpx_highbd_12_sub_pixel_avg_variance16x16,
vpx_highbd_sad16x16x3_bits12,
vpx_highbd_sad16x16x8_bits12,
vpx_highbd_sad16x16x4d_bits12)
HIGHBD_BFP(BLOCK_16X8,
vpx_highbd_sad16x8_bits12,
vpx_highbd_sad16x8_avg_bits12,
vpx_highbd_12_variance16x8,
vpx_highbd_12_sub_pixel_variance16x8,
vpx_highbd_12_sub_pixel_avg_variance16x8,
vpx_highbd_sad16x8x3_bits12,
vpx_highbd_sad16x8x8_bits12,
vpx_highbd_sad16x8x4d_bits12)
HIGHBD_BFP(BLOCK_8X16,
vpx_highbd_sad8x16_bits12,
vpx_highbd_sad8x16_avg_bits12,
vpx_highbd_12_variance8x16,
vpx_highbd_12_sub_pixel_variance8x16,
vpx_highbd_12_sub_pixel_avg_variance8x16,
vpx_highbd_sad8x16x3_bits12,
vpx_highbd_sad8x16x8_bits12,
vpx_highbd_sad8x16x4d_bits12)
HIGHBD_BFP(BLOCK_8X8,
vpx_highbd_sad8x8_bits12,
vpx_highbd_sad8x8_avg_bits12,
vpx_highbd_12_variance8x8,
vpx_highbd_12_sub_pixel_variance8x8,
vpx_highbd_12_sub_pixel_avg_variance8x8,
vpx_highbd_sad8x8x3_bits12,
vpx_highbd_sad8x8x8_bits12,
vpx_highbd_sad8x8x4d_bits12)
HIGHBD_BFP(BLOCK_8X4,
vpx_highbd_sad8x4_bits12,
vpx_highbd_sad8x4_avg_bits12,
vpx_highbd_12_variance8x4,
vpx_highbd_12_sub_pixel_variance8x4,
vpx_highbd_12_sub_pixel_avg_variance8x4,
NULL,
vpx_highbd_sad8x4x8_bits12,
vpx_highbd_sad8x4x4d_bits12)
HIGHBD_BFP(BLOCK_4X8,
vpx_highbd_sad4x8_bits12,
vpx_highbd_sad4x8_avg_bits12,
vpx_highbd_12_variance4x8,
vpx_highbd_12_sub_pixel_variance4x8,
vpx_highbd_12_sub_pixel_avg_variance4x8,
NULL,
vpx_highbd_sad4x8x8_bits12,
vpx_highbd_sad4x8x4d_bits12)
HIGHBD_BFP(BLOCK_4X4,
vpx_highbd_sad4x4_bits12,
vpx_highbd_sad4x4_avg_bits12,
vpx_highbd_12_variance4x4,
vpx_highbd_12_sub_pixel_variance4x4,
vpx_highbd_12_sub_pixel_avg_variance4x4,
vpx_highbd_sad4x4x3_bits12,
vpx_highbd_sad4x4x8_bits12,
vpx_highbd_sad4x4x4d_bits12)
break;
default:
assert(0 && "cm->bit_depth should be VPX_BITS_8, "
"VPX_BITS_10 or VPX_BITS_12");
}
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static void realloc_segmentation_maps(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
// Create the encoder segmentation map and set all entries to 0
vpx_free(cpi->segmentation_map);
CHECK_MEM_ERROR(cm, cpi->segmentation_map,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
// Create a map used for cyclic background refresh.
if (cpi->cyclic_refresh)
vp9_cyclic_refresh_free(cpi->cyclic_refresh);
CHECK_MEM_ERROR(cm, cpi->cyclic_refresh,
vp9_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols));
// Create a map used to mark inactive areas.
vpx_free(cpi->active_map.map);
CHECK_MEM_ERROR(cm, cpi->active_map.map,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
// And a place holder structure is the coding context
// for use if we want to save and restore it
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
}
void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int last_w = cpi->oxcf.width;
int last_h = cpi->oxcf.height;
if (cm->profile != oxcf->profile)
cm->profile = oxcf->profile;
cm->bit_depth = oxcf->bit_depth;
cm->color_space = oxcf->color_space;
cm->color_range = oxcf->color_range;
if (cm->profile <= PROFILE_1)
assert(cm->bit_depth == VPX_BITS_8);
else
assert(cm->bit_depth > VPX_BITS_8);
cpi->oxcf = *oxcf;
#if CONFIG_VP9_HIGHBITDEPTH
cpi->td.mb.e_mbd.bd = (int)cm->bit_depth;
#endif // CONFIG_VP9_HIGHBITDEPTH
if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
rc->baseline_gf_interval = FIXED_GF_INTERVAL;
} else {
rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2;
}
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 1;
cm->refresh_frame_context = 1;
cm->reset_frame_context = 0;
vp9_reset_segment_features(&cm->seg);
vp9_set_high_precision_mv(cpi, 0);
{
int i;
for (i = 0; i < MAX_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
cpi->encode_breakout = cpi->oxcf.encode_breakout;
set_rc_buffer_sizes(rc, &cpi->oxcf);
// Under a configuration change, where maximum_buffer_size may change,
// keep buffer level clipped to the maximum allowed buffer size.
rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
rc->buffer_level = VPXMIN(rc->buffer_level, rc->maximum_buffer_size);
// Set up frame rate and related parameters rate control values.
vp9_new_framerate(cpi, cpi->framerate);
// Set absolute upper and lower quality limits
rc->worst_quality = cpi->oxcf.worst_allowed_q;
rc->best_quality = cpi->oxcf.best_allowed_q;
cm->interp_filter = cpi->sf.default_interp_filter;
if (cpi->oxcf.render_width > 0 && cpi->oxcf.render_height > 0) {
cm->render_width = cpi->oxcf.render_width;
cm->render_height = cpi->oxcf.render_height;
} else {
cm->render_width = cpi->oxcf.width;
cm->render_height = cpi->oxcf.height;
}
if (last_w != cpi->oxcf.width || last_h != cpi->oxcf.height) {
cm->width = cpi->oxcf.width;
cm->height = cpi->oxcf.height;
cpi->external_resize = 1;
}
if (cpi->initial_width) {
int new_mi_size = 0;
vp9_set_mb_mi(cm, cm->width, cm->height);
new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows);
if (cm->mi_alloc_size < new_mi_size) {
vp9_free_context_buffers(cm);
alloc_compressor_data(cpi);
realloc_segmentation_maps(cpi);
cpi->initial_width = cpi->initial_height = 0;
cpi->external_resize = 0;
} else if (cm->mi_alloc_size == new_mi_size &&
(cpi->oxcf.width > last_w || cpi->oxcf.height > last_h)) {
vp9_alloc_loop_filter(cm);
}
}
update_frame_size(cpi);
if ((last_w != cpi->oxcf.width || last_h != cpi->oxcf.height) &&
cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_reset_resize(cpi);
if ((cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.rc_mode == VPX_CBR) ||
((cpi->svc.number_temporal_layers > 1 ||
cpi->svc.number_spatial_layers > 1) &&
cpi->oxcf.pass != 1)) {
vp9_update_layer_context_change_config(cpi,
(int)cpi->oxcf.target_bandwidth);
}
cpi->alt_ref_source = NULL;
rc->is_src_frame_alt_ref = 0;
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
set_tile_limits(cpi);
cpi->ext_refresh_frame_flags_pending = 0;
cpi->ext_refresh_frame_context_pending = 0;
#if CONFIG_VP9_HIGHBITDEPTH
highbd_set_var_fns(cpi);
#endif
}
#ifndef M_LOG2_E
#define M_LOG2_E 0.693147180559945309417
#endif
#define log2f(x) (log (x) / (float) M_LOG2_E)
/***********************************************************************
* Read before modifying 'cal_nmvjointsadcost' or 'cal_nmvsadcosts' *
***********************************************************************
* The following 2 functions ('cal_nmvjointsadcost' and *
* 'cal_nmvsadcosts') are used to calculate cost lookup tables *
* used by 'vp9_diamond_search_sad'. The C implementation of the *
* function is generic, but the AVX intrinsics optimised version *
* relies on the following properties of the computed tables: *
* For cal_nmvjointsadcost: *
* - mvjointsadcost[1] == mvjointsadcost[2] == mvjointsadcost[3] *
* For cal_nmvsadcosts: *
* - For all i: mvsadcost[0][i] == mvsadcost[1][i] *
* (Equal costs for both components) *
* - For all i: mvsadcost[0][i] == mvsadcost[0][-i] *
* (Cost function is even) *
* If these do not hold, then the AVX optimised version of the *
* 'vp9_diamond_search_sad' function cannot be used as it is, in which *
* case you can revert to using the C function instead. *
***********************************************************************/
static void cal_nmvjointsadcost(int *mvjointsadcost) {
/*********************************************************************
* Warning: Read the comments above before modifying this function *
*********************************************************************/
mvjointsadcost[0] = 600;
mvjointsadcost[1] = 300;
mvjointsadcost[2] = 300;
mvjointsadcost[3] = 300;
}
static void cal_nmvsadcosts(int *mvsadcost[2]) {
/*********************************************************************
* Warning: Read the comments above before modifying this function *
*********************************************************************/
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf,
BufferPool *const pool) {
unsigned int i;
VP9_COMP *volatile const cpi = vpx_memalign(32, sizeof(VP9_COMP));
VP9_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL;
if (!cm)
return NULL;
vp9_zero(*cpi);
if (setjmp(cm->error.jmp)) {
cm->error.setjmp = 0;
vp9_remove_compressor(cpi);
return 0;
}
cm->error.setjmp = 1;
cm->alloc_mi = vp9_enc_alloc_mi;
cm->free_mi = vp9_enc_free_mi;
cm->setup_mi = vp9_enc_setup_mi;
CHECK_MEM_ERROR(cm, cm->fc,
(FRAME_CONTEXT *)vpx_calloc(1, sizeof(*cm->fc)));
CHECK_MEM_ERROR(cm, cm->frame_contexts,
(FRAME_CONTEXT *)vpx_calloc(FRAME_CONTEXTS,
sizeof(*cm->frame_contexts)));
cpi->use_svc = 0;
cpi->resize_state = 0;
cpi->external_resize = 0;
cpi->resize_avg_qp = 0;
cpi->resize_buffer_underflow = 0;
cpi->use_skin_detection = 0;
cpi->common.buffer_pool = pool;
cpi->rc.high_source_sad = 0;
init_config(cpi, oxcf);
vp9_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc);
cm->current_video_frame = 0;
cpi->partition_search_skippable_frame = 0;
cpi->tile_data = NULL;
realloc_segmentation_maps(cpi);
CHECK_MEM_ERROR(cm, cpi->nmvcosts[0],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[0])));
CHECK_MEM_ERROR(cm, cpi->nmvcosts[1],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[1])));
CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[0],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[0])));
CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[1],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[1])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[0],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[0])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[1],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[1])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[0],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[0])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[1],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[1])));
for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0])); i++) {
CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats,
vpx_calloc(cm->MBs *
sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
}
#if CONFIG_FP_MB_STATS
cpi->use_fp_mb_stats = 0;
if (cpi->use_fp_mb_stats) {
// a place holder used to store the first pass mb stats in the first pass
CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf,
vpx_calloc(cm->MBs * sizeof(uint8_t), 1));
} else {
cpi->twopass.frame_mb_stats_buf = NULL;
}
#endif
cpi->refresh_alt_ref_frame = 0;
cpi->multi_arf_last_grp_enabled = 0;
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_ssimg = 0;
cpi->b_calculate_blockiness = 1;
cpi->b_calculate_consistency = 1;
cpi->total_inconsistency = 0;
cpi->psnr.worst = 100.0;
cpi->worst_ssim = 100.0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr) {
cpi->total_sq_error = 0;
cpi->total_samples = 0;
cpi->totalp_sq_error = 0;
cpi->totalp_samples = 0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
cpi->summedp_quality = 0;
cpi->summedp_weights = 0;
}
if (cpi->b_calculate_ssimg) {
cpi->ssimg.worst= 100.0;
}
cpi->fastssim.worst = 100.0;
cpi->psnrhvs.worst = 100.0;
if (cpi->b_calculate_blockiness) {
cpi->total_blockiness = 0;
cpi->worst_blockiness = 0.0;
}
if (cpi->b_calculate_consistency) {
CHECK_MEM_ERROR(cm, cpi->ssim_vars,
vpx_malloc(sizeof(*cpi->ssim_vars) * 4 *
cpi->common.mi_rows * cpi->common.mi_cols));
cpi->worst_consistency = 100.0;
}
#endif
cpi->first_time_stamp_ever = INT64_MAX;
/*********************************************************************
* Warning: Read the comments around 'cal_nmvjointsadcost' and *
* 'cal_nmvsadcosts' before modifying how these tables are computed. *
*********************************************************************/
cal_nmvjointsadcost(cpi->td.mb.nmvjointsadcost);
cpi->td.mb.nmvcost[0] = &cpi->nmvcosts[0][MV_MAX];
cpi->td.mb.nmvcost[1] = &cpi->nmvcosts[1][MV_MAX];
cpi->td.mb.nmvsadcost[0] = &cpi->nmvsadcosts[0][MV_MAX];
cpi->td.mb.nmvsadcost[1] = &cpi->nmvsadcosts[1][MV_MAX];
cal_nmvsadcosts(cpi->td.mb.nmvsadcost);
cpi->td.mb.nmvcost_hp[0] = &cpi->nmvcosts_hp[0][MV_MAX];
cpi->td.mb.nmvcost_hp[1] = &cpi->nmvcosts_hp[1][MV_MAX];
cpi->td.mb.nmvsadcost_hp[0] = &cpi->nmvsadcosts_hp[0][MV_MAX];
cpi->td.mb.nmvsadcost_hp[1] = &cpi->nmvsadcosts_hp[1][MV_MAX];
cal_nmvsadcosts_hp(cpi->td.mb.nmvsadcost_hp);
#if CONFIG_VP9_TEMPORAL_DENOISING
#ifdef OUTPUT_YUV_DENOISED
yuv_denoised_file = fopen("denoised.yuv", "ab");
#endif
#endif
#ifdef OUTPUT_YUV_SKINMAP
yuv_skinmap_file = fopen("skinmap.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_REC
yuv_rec_file = fopen("rec.yuv", "wb");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
if (oxcf->pass == 1) {
vp9_init_first_pass(cpi);
} else if (oxcf->pass == 2) {
const size_t packet_sz = sizeof(FIRSTPASS_STATS);
const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
if (cpi->svc.number_spatial_layers > 1
|| cpi->svc.number_temporal_layers > 1) {
FIRSTPASS_STATS *const stats = oxcf->two_pass_stats_in.buf;
FIRSTPASS_STATS *stats_copy[VPX_SS_MAX_LAYERS] = {0};
int i;
for (i = 0; i < oxcf->ss_number_layers; ++i) {
FIRSTPASS_STATS *const last_packet_for_layer =
&stats[packets - oxcf->ss_number_layers + i];
const int layer_id = (int)last_packet_for_layer->spatial_layer_id;
const int packets_in_layer = (int)last_packet_for_layer->count + 1;
if (layer_id >= 0 && layer_id < oxcf->ss_number_layers) {
LAYER_CONTEXT *const lc = &cpi->svc.layer_context[layer_id];
vpx_free(lc->rc_twopass_stats_in.buf);
lc->rc_twopass_stats_in.sz = packets_in_layer * packet_sz;
CHECK_MEM_ERROR(cm, lc->rc_twopass_stats_in.buf,
vpx_malloc(lc->rc_twopass_stats_in.sz));
lc->twopass.stats_in_start = lc->rc_twopass_stats_in.buf;
lc->twopass.stats_in = lc->twopass.stats_in_start;
lc->twopass.stats_in_end = lc->twopass.stats_in_start
+ packets_in_layer - 1;
stats_copy[layer_id] = lc->rc_twopass_stats_in.buf;
}
}
for (i = 0; i < packets; ++i) {
const int layer_id = (int)stats[i].spatial_layer_id;
if (layer_id >= 0 && layer_id < oxcf->ss_number_layers
&& stats_copy[layer_id] != NULL) {
*stats_copy[layer_id] = stats[i];
++stats_copy[layer_id];
}
}
vp9_init_second_pass_spatial_svc(cpi);
} else {
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
const size_t psz = cpi->common.MBs * sizeof(uint8_t);
const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz);
cpi->twopass.firstpass_mb_stats.mb_stats_start =
oxcf->firstpass_mb_stats_in.buf;
cpi->twopass.firstpass_mb_stats.mb_stats_end =
cpi->twopass.firstpass_mb_stats.mb_stats_start +
(ps - 1) * cpi->common.MBs * sizeof(uint8_t);
}
#endif
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
vp9_init_second_pass(cpi);
}
}
vp9_set_speed_features_framesize_independent(cpi);
vp9_set_speed_features_framesize_dependent(cpi);
// Allocate memory to store variances for a frame.
CHECK_MEM_ERROR(cm, cpi->source_diff_var,
vpx_calloc(cm->MBs, sizeof(diff)));
cpi->source_var_thresh = 0;
cpi->frames_till_next_var_check = 0;
#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF)\
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
BFP(BLOCK_32X16, vpx_sad32x16, vpx_sad32x16_avg,
vpx_variance32x16, vpx_sub_pixel_variance32x16,
vpx_sub_pixel_avg_variance32x16, NULL, NULL, vpx_sad32x16x4d)
BFP(BLOCK_16X32, vpx_sad16x32, vpx_sad16x32_avg,
vpx_variance16x32, vpx_sub_pixel_variance16x32,
vpx_sub_pixel_avg_variance16x32, NULL, NULL, vpx_sad16x32x4d)
BFP(BLOCK_64X32, vpx_sad64x32, vpx_sad64x32_avg,
vpx_variance64x32, vpx_sub_pixel_variance64x32,
vpx_sub_pixel_avg_variance64x32, NULL, NULL, vpx_sad64x32x4d)
BFP(BLOCK_32X64, vpx_sad32x64, vpx_sad32x64_avg,
vpx_variance32x64, vpx_sub_pixel_variance32x64,
vpx_sub_pixel_avg_variance32x64, NULL, NULL, vpx_sad32x64x4d)
BFP(BLOCK_32X32, vpx_sad32x32, vpx_sad32x32_avg,
vpx_variance32x32, vpx_sub_pixel_variance32x32,
vpx_sub_pixel_avg_variance32x32, vpx_sad32x32x3, vpx_sad32x32x8,
vpx_sad32x32x4d)
BFP(BLOCK_64X64, vpx_sad64x64, vpx_sad64x64_avg,
vpx_variance64x64, vpx_sub_pixel_variance64x64,
vpx_sub_pixel_avg_variance64x64, vpx_sad64x64x3, vpx_sad64x64x8,
vpx_sad64x64x4d)
BFP(BLOCK_16X16, vpx_sad16x16, vpx_sad16x16_avg,
vpx_variance16x16, vpx_sub_pixel_variance16x16,
vpx_sub_pixel_avg_variance16x16, vpx_sad16x16x3, vpx_sad16x16x8,
vpx_sad16x16x4d)
BFP(BLOCK_16X8, vpx_sad16x8, vpx_sad16x8_avg,
vpx_variance16x8, vpx_sub_pixel_variance16x8,
vpx_sub_pixel_avg_variance16x8,
vpx_sad16x8x3, vpx_sad16x8x8, vpx_sad16x8x4d)
BFP(BLOCK_8X16, vpx_sad8x16, vpx_sad8x16_avg,
vpx_variance8x16, vpx_sub_pixel_variance8x16,
vpx_sub_pixel_avg_variance8x16,
vpx_sad8x16x3, vpx_sad8x16x8, vpx_sad8x16x4d)
BFP(BLOCK_8X8, vpx_sad8x8, vpx_sad8x8_avg,
vpx_variance8x8, vpx_sub_pixel_variance8x8,
vpx_sub_pixel_avg_variance8x8,
vpx_sad8x8x3, vpx_sad8x8x8, vpx_sad8x8x4d)
BFP(BLOCK_8X4, vpx_sad8x4, vpx_sad8x4_avg,
vpx_variance8x4, vpx_sub_pixel_variance8x4,
vpx_sub_pixel_avg_variance8x4, NULL, vpx_sad8x4x8, vpx_sad8x4x4d)
BFP(BLOCK_4X8, vpx_sad4x8, vpx_sad4x8_avg,
vpx_variance4x8, vpx_sub_pixel_variance4x8,
vpx_sub_pixel_avg_variance4x8, NULL, vpx_sad4x8x8, vpx_sad4x8x4d)
BFP(BLOCK_4X4, vpx_sad4x4, vpx_sad4x4_avg,
vpx_variance4x4, vpx_sub_pixel_variance4x4,
vpx_sub_pixel_avg_variance4x4,
vpx_sad4x4x3, vpx_sad4x4x8, vpx_sad4x4x4d)
#if CONFIG_VP9_HIGHBITDEPTH
highbd_set_var_fns(cpi);
#endif
/* vp9_init_quantizer() is first called here. Add check in
* vp9_frame_init_quantizer() so that vp9_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* vp9_init_quantizer() for every frame.
*/
vp9_init_quantizer(cpi);
vp9_loop_filter_init(cm);
cm->error.setjmp = 0;
return cpi;
}
#if CONFIG_INTERNAL_STATS
#define SNPRINT(H, T) \
snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T))
#define SNPRINT2(H, T, V) \
snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V))
#endif // CONFIG_INTERNAL_STATS
void vp9_remove_compressor(VP9_COMP *cpi) {
VP9_COMMON *cm;
unsigned int i;
int t;
if (!cpi)
return;
cm = &cpi->common;
if (cm->current_video_frame > 0) {
#if CONFIG_INTERNAL_STATS
vpx_clear_system_state();
if (cpi->oxcf.pass != 1) {
char headings[512] = {0};
char results[512] = {0};
FILE *f = fopen("opsnr.stt", "a");
double time_encoded = (cpi->last_end_time_stamp_seen
- cpi->first_time_stamp_ever) / 10000000.000;
double total_encode_time = (cpi->time_receive_data +
cpi->time_compress_data) / 1000.000;
const double dr =
(double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
if (cpi->b_calculate_psnr) {
const double total_psnr =
vpx_sse_to_psnr((double)cpi->total_samples, peak,
(double)cpi->total_sq_error);
const double totalp_psnr =
vpx_sse_to_psnr((double)cpi->totalp_samples, peak,
(double)cpi->totalp_sq_error);
const double total_ssim = 100 * pow(cpi->summed_quality /
cpi->summed_weights, 8.0);
const double totalp_ssim = 100 * pow(cpi->summedp_quality /
cpi->summedp_weights, 8.0);
snprintf(headings, sizeof(headings),
"Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
"VPXSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t"
"WstPsnr\tWstSsim\tWstFast\tWstHVS");
snprintf(results, sizeof(results),
"%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\t%7.3f\t%7.3f",
dr, cpi->psnr.stat[ALL] / cpi->count, total_psnr,
cpi->psnrp.stat[ALL] / cpi->count, totalp_psnr,
total_ssim, totalp_ssim,
cpi->fastssim.stat[ALL] / cpi->count,
cpi->psnrhvs.stat[ALL] / cpi->count,
cpi->psnr.worst, cpi->worst_ssim, cpi->fastssim.worst,
cpi->psnrhvs.worst);
if (cpi->b_calculate_blockiness) {
SNPRINT(headings, "\t Block\tWstBlck");
SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count);
SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness);
}
if (cpi->b_calculate_consistency) {
double consistency =
vpx_sse_to_psnr((double)cpi->totalp_samples, peak,
(double)cpi->total_inconsistency);
SNPRINT(headings, "\tConsist\tWstCons");
SNPRINT2(results, "\t%7.3f", consistency);
SNPRINT2(results, "\t%7.3f", cpi->worst_consistency);
}
if (cpi->b_calculate_ssimg) {
SNPRINT(headings, "\t SSIMG\tWtSSIMG");
SNPRINT2(results, "\t%7.3f", cpi->ssimg.stat[ALL] / cpi->count);
SNPRINT2(results, "\t%7.3f", cpi->ssimg.worst);
}
fprintf(f, "%s\t Time\n", headings);
fprintf(f, "%s\t%8.0f\n", results, total_encode_time);
}
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
cpi->time_compress_data / 1000,
(cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
#if CONFIG_VP9_TEMPORAL_DENOISING
vp9_denoiser_free(&(cpi->denoiser));
#endif
for (t = 0; t < cpi->num_workers; ++t) {
VPxWorker *const worker = &cpi->workers[t];
EncWorkerData *const thread_data = &cpi->tile_thr_data[t];
// Deallocate allocated threads.
vpx_get_worker_interface()->end(worker);
// Deallocate allocated thread data.
if (t < cpi->num_workers - 1) {
vpx_free(thread_data->td->counts);
vp9_free_pc_tree(thread_data->td);
vpx_free(thread_data->td);
}
}
vpx_free(cpi->tile_thr_data);
vpx_free(cpi->workers);
if (cpi->num_workers > 1)
vp9_loop_filter_dealloc(&cpi->lf_row_sync);
dealloc_compressor_data(cpi);
for (i = 0; i < sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0]); ++i) {
vpx_free(cpi->mbgraph_stats[i].mb_stats);
}
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
vpx_free(cpi->twopass.frame_mb_stats_buf);
cpi->twopass.frame_mb_stats_buf = NULL;
}
#endif
vp9_remove_common(cm);
vp9_free_ref_frame_buffers(cm->buffer_pool);
#if CONFIG_VP9_POSTPROC
vp9_free_postproc_buffers(cm);
#endif
vpx_free(cpi);
#if CONFIG_VP9_TEMPORAL_DENOISING
#ifdef OUTPUT_YUV_DENOISED
fclose(yuv_denoised_file);
#endif
#endif
#ifdef OUTPUT_YUV_SKINMAP
fclose(yuv_skinmap_file);
#endif
#ifdef OUTPUT_YUV_REC
fclose(yuv_rec_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
/* TODO(yaowu): The block_variance calls the unoptimized versions of variance()
* and highbd_8_variance(). It should not.
*/
static void encoder_variance(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
int w, int h, unsigned int *sse, int *sum) {
int i, j;
*sum = 0;
*sse = 0;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
const int diff = a[j] - b[j];
*sum += diff;
*sse += diff * diff;
}
a += a_stride;
b += b_stride;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static void encoder_highbd_variance64(const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride,
int w, int h, uint64_t *sse,
uint64_t *sum) {
int i, j;
uint16_t *a = CONVERT_TO_SHORTPTR(a8);
uint16_t *b = CONVERT_TO_SHORTPTR(b8);
*sum = 0;
*sse = 0;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
const int diff = a[j] - b[j];
*sum += diff;
*sse += diff * diff;
}
a += a_stride;
b += b_stride;
}
}
static void encoder_highbd_8_variance(const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride,
int w, int h,
unsigned int *sse, int *sum) {
uint64_t sse_long = 0;
uint64_t sum_long = 0;
encoder_highbd_variance64(a8, a_stride, b8, b_stride, w, h,
&sse_long, &sum_long);
*sse = (unsigned int)sse_long;
*sum = (int)sum_long;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static int64_t get_sse(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
int width, int height) {
const int dw = width % 16;
const int dh = height % 16;
int64_t total_sse = 0;
unsigned int sse = 0;
int sum = 0;
int x, y;
if (dw > 0) {
encoder_variance(&a[width - dw], a_stride, &b[width - dw], b_stride,
dw, height, &sse, &sum);
total_sse += sse;
}
if (dh > 0) {
encoder_variance(&a[(height - dh) * a_stride], a_stride,
&b[(height - dh) * b_stride], b_stride,
width - dw, dh, &sse, &sum);
total_sse += sse;
}
for (y = 0; y < height / 16; ++y) {
const uint8_t *pa = a;
const uint8_t *pb = b;
for (x = 0; x < width / 16; ++x) {
vpx_mse16x16(pa, a_stride, pb, b_stride, &sse);
total_sse += sse;
pa += 16;
pb += 16;
}
a += 16 * a_stride;
b += 16 * b_stride;
}
return total_sse;
}
#if CONFIG_VP9_HIGHBITDEPTH
static int64_t highbd_get_sse_shift(const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride,
int width, int height,
unsigned int input_shift) {
const uint16_t *a = CONVERT_TO_SHORTPTR(a8);
const uint16_t *b = CONVERT_TO_SHORTPTR(b8);
int64_t total_sse = 0;
int x, y;
for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {
int64_t diff;
diff = (a[x] >> input_shift) - (b[x] >> input_shift);
total_sse += diff * diff;
}
a += a_stride;
b += b_stride;
}
return total_sse;
}
static int64_t highbd_get_sse(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
int width, int height) {
int64_t total_sse = 0;
int x, y;
const int dw = width % 16;
const int dh = height % 16;
unsigned int sse = 0;
int sum = 0;
if (dw > 0) {
encoder_highbd_8_variance(&a[width - dw], a_stride,
&b[width - dw], b_stride,
dw, height, &sse, &sum);
total_sse += sse;
}
if (dh > 0) {
encoder_highbd_8_variance(&a[(height - dh) * a_stride], a_stride,
&b[(height - dh) * b_stride], b_stride,
width - dw, dh, &sse, &sum);
total_sse += sse;
}
for (y = 0; y < height / 16; ++y) {
const uint8_t *pa = a;
const uint8_t *pb = b;
for (x = 0; x < width / 16; ++x) {
vpx_highbd_8_mse16x16(pa, a_stride, pb, b_stride, &sse);
total_sse += sse;
pa += 16;
pb += 16;
}
a += 16 * a_stride;
b += 16 * b_stride;
}
return total_sse;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
typedef struct {
double psnr[4]; // total/y/u/v
uint64_t sse[4]; // total/y/u/v
uint32_t samples[4]; // total/y/u/v
} PSNR_STATS;
#if CONFIG_VP9_HIGHBITDEPTH
static void calc_highbd_psnr(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b,
PSNR_STATS *psnr,
unsigned int bit_depth,
unsigned int in_bit_depth) {
const int widths[3] =
{a->y_crop_width, a->uv_crop_width, a->uv_crop_width };
const int heights[3] =
{a->y_crop_height, a->uv_crop_height, a->uv_crop_height};
const uint8_t *a_planes[3] = {a->y_buffer, a->u_buffer, a->v_buffer };
const int a_strides[3] = {a->y_stride, a->uv_stride, a->uv_stride};
const uint8_t *b_planes[3] = {b->y_buffer, b->u_buffer, b->v_buffer };
const int b_strides[3] = {b->y_stride, b->uv_stride, b->uv_stride};
int i;
uint64_t total_sse = 0;
uint32_t total_samples = 0;
const double peak = (double)((1 << in_bit_depth) - 1);
const unsigned int input_shift = bit_depth - in_bit_depth;
for (i = 0; i < 3; ++i) {
const int w = widths[i];
const int h = heights[i];
const uint32_t samples = w * h;
uint64_t sse;
if (a->flags & YV12_FLAG_HIGHBITDEPTH) {
if (input_shift) {
sse = highbd_get_sse_shift(a_planes[i], a_strides[i],
b_planes[i], b_strides[i], w, h,
input_shift);
} else {
sse = highbd_get_sse(a_planes[i], a_strides[i],
b_planes[i], b_strides[i], w, h);
}
} else {
sse = get_sse(a_planes[i], a_strides[i],
b_planes[i], b_strides[i],
w, h);
}
psnr->sse[1 + i] = sse;
psnr->samples[1 + i] = samples;
psnr->psnr[1 + i] = vpx_sse_to_psnr(samples, peak, (double)sse);
total_sse += sse;
total_samples += samples;
}
psnr->sse[0] = total_sse;
psnr->samples[0] = total_samples;
psnr->psnr[0] = vpx_sse_to_psnr((double)total_samples, peak,
(double)total_sse);
}
#else // !CONFIG_VP9_HIGHBITDEPTH
static void calc_psnr(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b,
PSNR_STATS *psnr) {
static const double peak = 255.0;
const int widths[3] = {
a->y_crop_width, a->uv_crop_width, a->uv_crop_width};
const int heights[3] = {
a->y_crop_height, a->uv_crop_height, a->uv_crop_height};
const uint8_t *a_planes[3] = {a->y_buffer, a->u_buffer, a->v_buffer};
const int a_strides[3] = {a->y_stride, a->uv_stride, a->uv_stride};
const uint8_t *b_planes[3] = {b->y_buffer, b->u_buffer, b->v_buffer};
const int b_strides[3] = {b->y_stride, b->uv_stride, b->uv_stride};
int i;
uint64_t total_sse = 0;
uint32_t total_samples = 0;
for (i = 0; i < 3; ++i) {
const int w = widths[i];
const int h = heights[i];
const uint32_t samples = w * h;
const uint64_t sse = get_sse(a_planes[i], a_strides[i],
b_planes[i], b_strides[i],
w, h);
psnr->sse[1 + i] = sse;
psnr->samples[1 + i] = samples;
psnr->psnr[1 + i] = vpx_sse_to_psnr(samples, peak, (double)sse);
total_sse += sse;
total_samples += samples;
}
psnr->sse[0] = total_sse;
psnr->samples[0] = total_samples;
psnr->psnr[0] = vpx_sse_to_psnr((double)total_samples, peak,
(double)total_sse);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static void generate_psnr_packet(VP9_COMP *cpi) {
struct vpx_codec_cx_pkt pkt;
int i;
PSNR_STATS psnr;
#if CONFIG_VP9_HIGHBITDEPTH
calc_highbd_psnr(cpi->Source, cpi->common.frame_to_show, &psnr,
cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth);
#else
calc_psnr(cpi->Source, cpi->common.frame_to_show, &psnr);
#endif
for (i = 0; i < 4; ++i) {
pkt.data.psnr.samples[i] = psnr.samples[i];
pkt.data.psnr.sse[i] = psnr.sse[i];
pkt.data.psnr.psnr[i] = psnr.psnr[i];
}
pkt.kind = VPX_CODEC_PSNR_PKT;
if (cpi->use_svc)
cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers].psnr_pkt = pkt.data.psnr;
else
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags) {
if (ref_frame_flags > 7)
return -1;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags) {
cpi->ext_refresh_golden_frame = (ref_frame_flags & VP9_GOLD_FLAG) != 0;
cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & VP9_ALT_FLAG) != 0;
cpi->ext_refresh_last_frame = (ref_frame_flags & VP9_LAST_FLAG) != 0;
cpi->ext_refresh_frame_flags_pending = 1;
}
static YV12_BUFFER_CONFIG *get_vp9_ref_frame_buffer(VP9_COMP *cpi,
VP9_REFFRAME ref_frame_flag) {
MV_REFERENCE_FRAME ref_frame = NONE;
if (ref_frame_flag == VP9_LAST_FLAG)
ref_frame = LAST_FRAME;
else if (ref_frame_flag == VP9_GOLD_FLAG)
ref_frame = GOLDEN_FRAME;
else if (ref_frame_flag == VP9_ALT_FLAG)
ref_frame = ALTREF_FRAME;
return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame);
}
int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
if (cfg) {
vp8_yv12_copy_frame(cfg, sd);
return 0;
} else {
return -1;
}
}
int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
if (cfg) {
vp8_yv12_copy_frame(sd, cfg);
return 0;
} else {
return -1;
}
}
int vp9_update_entropy(VP9_COMP * cpi, int update) {
cpi->ext_refresh_frame_context = update;
cpi->ext_refresh_frame_context_pending = 1;
return 0;
}
#if defined(OUTPUT_YUV_DENOISED) || defined(OUTPUT_YUV_SKINMAP)
// The denoiser buffer is allocated as a YUV 440 buffer. This function writes it
// as YUV 420. We simply use the top-left pixels of the UV buffers, since we do
// not denoise the UV channels at this time. If ever we implement UV channel
// denoising we will have to modify this.
void vp9_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) {
uint8_t *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, f);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
}
#endif
#ifdef OUTPUT_YUV_REC
void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
YV12_BUFFER_CONFIG *s = cm->frame_to_show;
uint8_t *src = s->y_buffer;
int h = cm->height;
#if CONFIG_VP9_HIGHBITDEPTH
if (s->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer);
do {
fwrite(src16, s->y_width, 2, yuv_rec_file);
src16 += s->y_stride;
} while (--h);
src16 = CONVERT_TO_SHORTPTR(s->u_buffer);
h = s->uv_height;
do {
fwrite(src16, s->uv_width, 2, yuv_rec_file);
src16 += s->uv_stride;
} while (--h);
src16 = CONVERT_TO_SHORTPTR(s->v_buffer);
h = s->uv_height;
do {
fwrite(src16, s->uv_width, 2, yuv_rec_file);
src16 += s->uv_stride;
} while (--h);
fflush(yuv_rec_file);
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
do {
fwrite(src, s->y_width, 1, yuv_rec_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
fflush(yuv_rec_file);
}
#endif
#if CONFIG_VP9_HIGHBITDEPTH
static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst,
int bd) {
#else
static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst) {
#endif // CONFIG_VP9_HIGHBITDEPTH
// TODO(dkovalev): replace YV12_BUFFER_CONFIG with vpx_image_t
int i;
const uint8_t *const srcs[3] = {src->y_buffer, src->u_buffer, src->v_buffer};
const int src_strides[3] = {src->y_stride, src->uv_stride, src->uv_stride};
const int src_widths[3] = {src->y_crop_width, src->uv_crop_width,
src->uv_crop_width };
const int src_heights[3] = {src->y_crop_height, src->uv_crop_height,
src->uv_crop_height};
uint8_t *const dsts[3] = {dst->y_buffer, dst->u_buffer, dst->v_buffer};
const int dst_strides[3] = {dst->y_stride, dst->uv_stride, dst->uv_stride};
const int dst_widths[3] = {dst->y_crop_width, dst->uv_crop_width,
dst->uv_crop_width};
const int dst_heights[3] = {dst->y_crop_height, dst->uv_crop_height,
dst->uv_crop_height};
for (i = 0; i < MAX_MB_PLANE; ++i) {
#if CONFIG_VP9_HIGHBITDEPTH
if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_highbd_resize_plane(srcs[i], src_heights[i], src_widths[i],
src_strides[i], dsts[i], dst_heights[i],
dst_widths[i], dst_strides[i], bd);
} else {
vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
}
#else
vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
vpx_extend_frame_borders(dst);
}
#if CONFIG_VP9_HIGHBITDEPTH
static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst, int bd) {
const int src_w = src->y_crop_width;
const int src_h = src->y_crop_height;
const int dst_w = dst->y_crop_width;
const int dst_h = dst->y_crop_height;
const uint8_t *const srcs[3] = {src->y_buffer, src->u_buffer, src->v_buffer};
const int src_strides[3] = {src->y_stride, src->uv_stride, src->uv_stride};
uint8_t *const dsts[3] = {dst->y_buffer, dst->u_buffer, dst->v_buffer};
const int dst_strides[3] = {dst->y_stride, dst->uv_stride, dst->uv_stride};
const InterpKernel *const kernel = vp9_filter_kernels[EIGHTTAP];
int x, y, i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
const int factor = (i == 0 || i == 3 ? 1 : 2);
const int src_stride = src_strides[i];
const int dst_stride = dst_strides[i];
for (y = 0; y < dst_h; y += 16) {
const int y_q4 = y * (16 / factor) * src_h / dst_h;
for (x = 0; x < dst_w; x += 16) {
const int x_q4 = x * (16 / factor) * src_w / dst_w;
const uint8_t *src_ptr = srcs[i] + (y / factor) * src_h / dst_h *
src_stride + (x / factor) * src_w / dst_w;
uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor);
if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
vpx_highbd_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
kernel[x_q4 & 0xf], 16 * src_w / dst_w,
kernel[y_q4 & 0xf], 16 * src_h / dst_h,
16 / factor, 16 / factor, bd);
} else {
vpx_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride,
kernel[x_q4 & 0xf], 16 * src_w / dst_w,
kernel[y_q4 & 0xf], 16 * src_h / dst_h,
16 / factor, 16 / factor);
}
}
}
}
vpx_extend_frame_borders(dst);
}
#else
void vp9_scale_and_extend_frame_c(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst) {
const int src_w = src->y_crop_width;
const int src_h = src->y_crop_height;
const int dst_w = dst->y_crop_width;
const int dst_h = dst->y_crop_height;
const uint8_t *const srcs[3] = {src->y_buffer, src->u_buffer, src->v_buffer};
const int src_strides[3] = {src->y_stride, src->uv_stride, src->uv_stride};
uint8_t *const dsts[3] = {dst->y_buffer, dst->u_buffer, dst->v_buffer};
const int dst_strides[3] = {dst->y_stride, dst->uv_stride, dst->uv_stride};
const InterpKernel *const kernel = vp9_filter_kernels[EIGHTTAP];
int x, y, i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
const int factor = (i == 0 || i == 3 ? 1 : 2);
const int src_stride = src_strides[i];
const int dst_stride = dst_strides[i];
for (y = 0; y < dst_h; y += 16) {
const int y_q4 = y * (16 / factor) * src_h / dst_h;
for (x = 0; x < dst_w; x += 16) {
const int x_q4 = x * (16 / factor) * src_w / dst_w;
const uint8_t *src_ptr = srcs[i] + (y / factor) * src_h / dst_h *
src_stride + (x / factor) * src_w / dst_w;
uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor);
vpx_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride,
kernel[x_q4 & 0xf], 16 * src_w / dst_w,
kernel[y_q4 & 0xf], 16 * src_h / dst_h,
16 / factor, 16 / factor);
}
}
}
vpx_extend_frame_borders(dst);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static int scale_down(VP9_COMP *cpi, int q) {
RATE_CONTROL *const rc = &cpi->rc;
GF_GROUP *const gf_group = &cpi->twopass.gf_group;
int scale = 0;
assert(frame_is_kf_gf_arf(cpi));
if (rc->frame_size_selector == UNSCALED &&
q >= rc->rf_level_maxq[gf_group->rf_level[gf_group->index]]) {
const int max_size_thresh = (int)(rate_thresh_mult[SCALE_STEP1]
* VPXMAX(rc->this_frame_target, rc->avg_frame_bandwidth));
scale = rc->projected_frame_size > max_size_thresh ? 1 : 0;
}
return scale;
}
static int big_rate_miss(VP9_COMP *cpi, int high_limit, int low_limit) {
const RATE_CONTROL *const rc = &cpi->rc;
return (rc->projected_frame_size > ((high_limit * 3) / 2)) ||
(rc->projected_frame_size < (low_limit / 2));
}
// Function to test for conditions that indicate we should loop
// back and recode a frame.
static int recode_loop_test(VP9_COMP *cpi,
int high_limit, int low_limit,
int q, int maxq, int minq) {
const RATE_CONTROL *const rc = &cpi->rc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi);
int force_recode = 0;
if ((rc->projected_frame_size >= rc->max_frame_bandwidth) ||
big_rate_miss(cpi, high_limit, low_limit) ||
(cpi->sf.recode_loop == ALLOW_RECODE) ||
(frame_is_kfgfarf &&
(cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF))) {
if (frame_is_kfgfarf &&
(oxcf->resize_mode == RESIZE_DYNAMIC) &&
scale_down(cpi, q)) {
// Code this group at a lower resolution.
cpi->resize_pending = 1;
return 1;
}
// TODO(agrange) high_limit could be greater than the scale-down threshold.
if ((rc->projected_frame_size > high_limit && q < maxq) ||
(rc->projected_frame_size < low_limit && q > minq)) {
force_recode = 1;
} else if (cpi->oxcf.rc_mode == VPX_CQ) {
// Deal with frame undershoot and whether or not we are
// below the automatically set cq level.
if (q > oxcf->cq_level &&
rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
force_recode = 1;
}
}
}
return force_recode;
}
void vp9_update_reference_frames(VP9_COMP *cpi) {
VP9_COMMON * const cm = &cpi->common;
BufferPool *const pool = cm->buffer_pool;
// At this point the new frame has been encoded.
// If any buffer copy / swapping is signaled it should be done here.
if (cm->frame_type == KEY_FRAME) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
} else if (vp9_preserve_existing_gf(cpi)) {
// We have decided to preserve the previously existing golden frame as our
// new ARF frame. However, in the short term in function
// vp9_bitstream.c::get_refresh_mask() we left it in the GF slot and, if
// we're updating the GF with the current decoded frame, we save it to the
// ARF slot instead.
// We now have to update the ARF with the current frame and swap gld_fb_idx
// and alt_fb_idx so that, overall, we've stored the old GF in the new ARF
// slot and, if we're updating the GF, the current frame becomes the new GF.
int tmp;
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
tmp = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->gld_fb_idx;
cpi->gld_fb_idx = tmp;
if (is_two_pass_svc(cpi)) {
cpi->svc.layer_context[0].gold_ref_idx = cpi->gld_fb_idx;
cpi->svc.layer_context[0].alt_ref_idx = cpi->alt_fb_idx;
}
} else { /* For non key/golden frames */
if (cpi->refresh_alt_ref_frame) {
int arf_idx = cpi->alt_fb_idx;
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[arf_idx], cm->new_fb_idx);
memcpy(cpi->interp_filter_selected[ALTREF_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
if (cpi->refresh_golden_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
if (!cpi->rc.is_src_frame_alt_ref)
memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
else
memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
cpi->interp_filter_selected[ALTREF_FRAME],
sizeof(cpi->interp_filter_selected[ALTREF_FRAME]));
}
}
if (cpi->refresh_last_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx);
if (!cpi->rc.is_src_frame_alt_ref)
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
#if CONFIG_VP9_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0 &&
cpi->denoiser.denoising_level > kDenLowLow) {
vp9_denoiser_update_frame_info(&cpi->denoiser,
*cpi->Source,
cpi->common.frame_type,
cpi->refresh_alt_ref_frame,
cpi->refresh_golden_frame,
cpi->refresh_last_frame,
cpi->resize_pending);
}
#endif
if (is_one_pass_cbr_svc(cpi)) {
// Keep track of frame index for each reference frame.
SVC *const svc = &cpi->svc;
if (cm->frame_type == KEY_FRAME) {
svc->ref_frame_index[cpi->lst_fb_idx] = svc->current_superframe;
svc->ref_frame_index[cpi->gld_fb_idx] = svc->current_superframe;
svc->ref_frame_index[cpi->alt_fb_idx] = svc->current_superframe;
} else {
if (cpi->refresh_last_frame)
svc->ref_frame_index[cpi->lst_fb_idx] = svc->current_superframe;
if (cpi->refresh_golden_frame)
svc->ref_frame_index[cpi->gld_fb_idx] = svc->current_superframe;
if (cpi->refresh_alt_ref_frame)
svc->ref_frame_index[cpi->alt_fb_idx] = svc->current_superframe;
}
}
}
static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
struct loopfilter *lf = &cm->lf;
if (xd->lossless) {
lf->filter_level = 0;
lf->last_filt_level = 0;
} else {
struct vpx_usec_timer timer;
vpx_clear_system_state();
vpx_usec_timer_start(&timer);
if (!cpi->rc.is_src_frame_alt_ref) {
if ((cpi->common.frame_type == KEY_FRAME) &&
(!cpi->rc.this_key_frame_forced)) {
lf->last_filt_level = 0;
}
vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick);
lf->last_filt_level = lf->filter_level;
} else {
lf->filter_level = 0;
}
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
if (lf->filter_level > 0) {
vp9_build_mask_frame(cm, lf->filter_level, 0);
if (cpi->num_workers > 1)
vp9_loop_filter_frame_mt(cm->frame_to_show, cm, xd->plane,
lf->filter_level, 0, 0,
cpi->workers, cpi->num_workers,
&cpi->lf_row_sync);
else
vp9_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
}
vpx_extend_frame_inner_borders(cm->frame_to_show);
}
static INLINE void alloc_frame_mvs(VP9_COMMON *const cm,
int buffer_idx) {
RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx];
if (new_fb_ptr->mvs == NULL ||
new_fb_ptr->mi_rows < cm->mi_rows ||
new_fb_ptr->mi_cols < cm->mi_cols) {
vpx_free(new_fb_ptr->mvs);
CHECK_MEM_ERROR(cm, new_fb_ptr->mvs,
(MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
sizeof(*new_fb_ptr->mvs)));
new_fb_ptr->mi_rows = cm->mi_rows;
new_fb_ptr->mi_cols = cm->mi_cols;
}
}
void vp9_scale_references(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
const VP9_REFFRAME ref_mask[3] = {VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG};
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
// Need to convert from VP9_REFFRAME to index into ref_mask (subtract 1).
if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) {
BufferPool *const pool = cm->buffer_pool;
const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi,
ref_frame);
if (ref == NULL) {
cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
continue;
}
#if CONFIG_VP9_HIGHBITDEPTH
if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
RefCntBuffer *new_fb_ptr = NULL;
int force_scaling = 0;
int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
if (new_fb == INVALID_IDX) {
new_fb = get_free_fb(cm);
force_scaling = 1;
}
if (new_fb == INVALID_IDX)
return;
new_fb_ptr = &pool->frame_bufs[new_fb];
if (force_scaling ||
new_fb_ptr->buf.y_crop_width != cm->width ||
new_fb_ptr->buf.y_crop_height != cm->height) {
if (vpx_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
cm->use_highbitdepth,
VP9_ENC_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
scale_and_extend_frame(ref, &new_fb_ptr->buf, (int)cm->bit_depth);
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
alloc_frame_mvs(cm, new_fb);
}
#else
if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
RefCntBuffer *new_fb_ptr = NULL;
int force_scaling = 0;
int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
if (new_fb == INVALID_IDX) {
new_fb = get_free_fb(cm);
force_scaling = 1;
}
if (new_fb == INVALID_IDX)
return;
new_fb_ptr = &pool->frame_bufs[new_fb];
if (force_scaling ||
new_fb_ptr->buf.y_crop_width != cm->width ||
new_fb_ptr->buf.y_crop_height != cm->height) {
if (vpx_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
vp9_scale_and_extend_frame(ref, &new_fb_ptr->buf);
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
alloc_frame_mvs(cm, new_fb);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
} else {
int buf_idx;
RefCntBuffer *buf = NULL;
if (cpi->oxcf.pass == 0 && !cpi->use_svc) {
// Check for release of scaled reference.
buf_idx = cpi->scaled_ref_idx[ref_frame - 1];
buf = (buf_idx != INVALID_IDX) ? &pool->frame_bufs[buf_idx] : NULL;
if (buf != NULL) {
--buf->ref_count;
cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
}
}
buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
buf = &pool->frame_bufs[buf_idx];
buf->buf.y_crop_width = ref->y_crop_width;
buf->buf.y_crop_height = ref->y_crop_height;
cpi->scaled_ref_idx[ref_frame - 1] = buf_idx;
++buf->ref_count;
}
} else {
if (cpi->oxcf.pass != 0 || cpi->use_svc)
cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
}
}
}
static void release_scaled_references(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int i;
if (cpi->oxcf.pass == 0 && !cpi->use_svc) {
// Only release scaled references under certain conditions:
// if reference will be updated, or if scaled reference has same resolution.
int refresh[3];
refresh[0] = (cpi->refresh_last_frame) ? 1 : 0;
refresh[1] = (cpi->refresh_golden_frame) ? 1 : 0;
refresh[2] = (cpi->refresh_alt_ref_frame) ? 1 : 0;
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
const int idx = cpi->scaled_ref_idx[i - 1];
RefCntBuffer *const buf = idx != INVALID_IDX ?
&cm->buffer_pool->frame_bufs[idx] : NULL;
const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, i);
if (buf != NULL &&
(refresh[i - 1] ||
(buf->buf.y_crop_width == ref->y_crop_width &&
buf->buf.y_crop_height == ref->y_crop_height))) {
--buf->ref_count;
cpi->scaled_ref_idx[i -1] = INVALID_IDX;
}
}
} else {
for (i = 0; i < MAX_REF_FRAMES; ++i) {
const int idx = cpi->scaled_ref_idx[i];
RefCntBuffer *const buf = idx != INVALID_IDX ?
&cm->buffer_pool->frame_bufs[idx] : NULL;
if (buf != NULL) {
--buf->ref_count;
cpi->scaled_ref_idx[i] = INVALID_IDX;
}
}
}
}
static void full_to_model_count(unsigned int *model_count,
unsigned int *full_count) {
int n;
model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
for (n = THREE_TOKEN; n < EOB_TOKEN; ++n)
model_count[TWO_TOKEN] += full_count[n];
model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN];
}
static void full_to_model_counts(vp9_coeff_count_model *model_count,
vp9_coeff_count *full_count) {
int i, j, k, l;
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
}
#if 0 && CONFIG_INTERNAL_STATS
static void output_frame_level_debug_stats(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
int64_t recon_err;
vpx_clear_system_state();
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
recon_err = vp9_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
} else {
recon_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
}
#else
recon_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
#endif // CONFIG_VP9_HIGHBITDEPTH
if (cpi->twopass.total_left_stats.coded_error != 0.0) {
double dc_quant_devisor;
#if CONFIG_VP9_HIGHBITDEPTH
switch (cm->bit_depth) {
case VPX_BITS_8:
dc_quant_devisor = 4.0;
break;
case VPX_BITS_10:
dc_quant_devisor = 16.0;
break;
case VPX_BITS_12:
dc_quant_devisor = 64.0;
break;
default:
assert(0 && "bit_depth must be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
break;
}
#else
dc_quant_devisor = 4.0;
#endif
fprintf(f, "%10u %dx%d %10d %10d %d %d %10d %10d %10d %10d"
"%10"PRId64" %10"PRId64" %5d %5d %10"PRId64" "
"%10"PRId64" %10"PRId64" %10d "
"%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf"
"%6d %6d %5d %5d %5d "
"%10"PRId64" %10.3lf"
"%10lf %8u %10"PRId64" %10d %10d %10d %10d\n",
cpi->common.current_video_frame,
cm->width, cm->height,
cpi->td.rd_counts.m_search_count,
cpi->td.rd_counts.ex_search_count,
cpi->rc.source_alt_ref_pending,
cpi->rc.source_alt_ref_active,
cpi->rc.this_frame_target,
cpi->rc.projected_frame_size,
cpi->rc.projected_frame_size / cpi->common.MBs,
(cpi->rc.projected_frame_size - cpi->rc.this_frame_target),
cpi->rc.vbr_bits_off_target,
cpi->rc.vbr_bits_off_target_fast,
cpi->twopass.extend_minq,
cpi->twopass.extend_minq_fast,
cpi->rc.total_target_vs_actual,
(cpi->rc.starting_buffer_level - cpi->rc.bits_off_target),
cpi->rc.total_actual_bits, cm->base_qindex,
vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth),
(double)vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) /
dc_quant_devisor,
vp9_convert_qindex_to_q(cpi->twopass.active_worst_quality,
cm->bit_depth),
cpi->rc.avg_q,
vp9_convert_qindex_to_q(cpi->oxcf.cq_level, cm->bit_depth),
cpi->refresh_last_frame, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost,
cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
cpi->twopass.bits_left /
(1 + cpi->twopass.total_left_stats.coded_error),
cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost,
cpi->twopass.kf_zeromotion_pct,
cpi->twopass.fr_content_type,
cm->lf.filter_level);
}
fclose(f);
if (0) {
FILE *const fmodes = fopen("Modes.stt", "a");
int i;
fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame,
cm->frame_type, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame);
for (i = 0; i < MAX_MODES; ++i)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
static void set_mv_search_params(VP9_COMP *cpi) {
const VP9_COMMON *const cm = &cpi->common;
const unsigned int max_mv_def = VPXMIN(cm->width, cm->height);
// Default based on max resolution.
cpi->mv_step_param = vp9_init_search_range(max_mv_def);
if (cpi->sf.mv.auto_mv_step_size) {
if (frame_is_intra_only(cm)) {
// Initialize max_mv_magnitude for use in the first INTER frame
// after a key/intra-only frame.
cpi->max_mv_magnitude = max_mv_def;
} else {
if (cm->show_frame) {
// Allow mv_steps to correspond to twice the max mv magnitude found
// in the previous frame, capped by the default max_mv_magnitude based
// on resolution.
cpi->mv_step_param = vp9_init_search_range(
VPXMIN(max_mv_def, 2 * cpi->max_mv_magnitude));
}
cpi->max_mv_magnitude = 0;
}
}
}
static void set_size_independent_vars(VP9_COMP *cpi) {
vp9_set_speed_features_framesize_independent(cpi);
vp9_set_rd_speed_thresholds(cpi);
vp9_set_rd_speed_thresholds_sub8x8(cpi);
cpi->common.interp_filter = cpi->sf.default_interp_filter;
}
static void set_size_dependent_vars(VP9_COMP *cpi, int *q,
int *bottom_index, int *top_index) {
VP9_COMMON *const cm = &cpi->common;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
// Setup variables that depend on the dimensions of the frame.
vp9_set_speed_features_framesize_dependent(cpi);
// Decide q and q bounds.
*q = vp9_rc_pick_q_and_bounds(cpi, bottom_index, top_index);
if (!frame_is_intra_only(cm)) {
vp9_set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH);
}
// Configure experimental use of segmentation for enhanced coding of
// static regions if indicated.
// Only allowed in the second pass of a two pass encode, as it requires
// lagged coding, and if the relevant speed feature flag is set.
if (oxcf->pass == 2 && cpi->sf.static_segmentation)
configure_static_seg_features(cpi);
#if CONFIG_VP9_POSTPROC && !(CONFIG_VP9_TEMPORAL_DENOISING)
if (oxcf->noise_sensitivity > 0) {
int l = 0;
switch (oxcf->noise_sensitivity) {
case 1:
l = 20;
break;
case 2:
l = 40;
break;
case 3:
l = 60;
break;
case 4:
case 5:
l = 100;
break;
case 6:
l = 150;
break;
}
vp9_denoise(cpi->Source, cpi->Source, l);
}
#endif // CONFIG_VP9_POSTPROC
}
#if CONFIG_VP9_TEMPORAL_DENOISING
static void setup_denoiser_buffer(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
if (cpi->oxcf.noise_sensitivity > 0 &&
!cpi->denoiser.frame_buffer_initialized) {
if (vp9_denoiser_alloc(&cpi->denoiser, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate denoiser");
}
}
#endif
static void init_motion_estimation(VP9_COMP *cpi) {
int y_stride = cpi->scaled_source.y_stride;
if (cpi->sf.mv.search_method == NSTEP) {
vp9_init3smotion_compensation(&cpi->ss_cfg, y_stride);
} else if (cpi->sf.mv.search_method == DIAMOND) {
vp9_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
}
}
static void set_frame_size(VP9_COMP *cpi) {
int ref_frame;
VP9_COMMON *const cm = &cpi->common;
VP9EncoderConfig *const oxcf = &cpi->oxcf;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
if (oxcf->pass == 2 &&
oxcf->rc_mode == VPX_VBR &&
((oxcf->resize_mode == RESIZE_FIXED && cm->current_video_frame == 0) ||
(oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending))) {
calculate_coded_size(
cpi, &oxcf->scaled_frame_width, &oxcf->scaled_frame_height);
// There has been a change in frame size.
vp9_set_size_literal(cpi, oxcf->scaled_frame_width,
oxcf->scaled_frame_height);
}
if (oxcf->pass == 0 &&
oxcf->rc_mode == VPX_CBR &&
!cpi->use_svc &&
oxcf->resize_mode == RESIZE_DYNAMIC &&
cpi->resize_pending != 0) {
oxcf->scaled_frame_width =
(oxcf->width * cpi->resize_scale_num) / cpi->resize_scale_den;
oxcf->scaled_frame_height =
(oxcf->height * cpi->resize_scale_num) /cpi->resize_scale_den;
// There has been a change in frame size.
vp9_set_size_literal(cpi,
oxcf->scaled_frame_width,
oxcf->scaled_frame_height);
// TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
set_mv_search_params(cpi);
vp9_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height);
#if CONFIG_VP9_TEMPORAL_DENOISING
// Reset the denoiser on the resized frame.
if (cpi->oxcf.noise_sensitivity > 0) {
vp9_denoiser_free(&(cpi->denoiser));
setup_denoiser_buffer(cpi);
// Dynamic resize is only triggered for non-SVC, so we can force
// golden frame update here as temporary fix to denoiser.
cpi->refresh_golden_frame = 1;
}
#endif
}
if ((oxcf->pass == 2) &&
(!cpi->use_svc ||
(is_two_pass_svc(cpi) &&
cpi->svc.encode_empty_frame_state != ENCODING))) {
vp9_set_target_rate(cpi);
}
alloc_frame_mvs(cm, cm->new_fb_idx);
// Reset the frame pointers to the current frame size.
if (vpx_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - 1];
const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
ref_buf->idx = buf_idx;
if (buf_idx != INVALID_IDX) {
YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf;
ref_buf->buf = buf;
#if CONFIG_VP9_HIGHBITDEPTH
vp9_setup_scale_factors_for_frame(&ref_buf->sf,
buf->y_crop_width, buf->y_crop_height,
cm->width, cm->height,
(buf->flags & YV12_FLAG_HIGHBITDEPTH) ?
1 : 0);
#else
vp9_setup_scale_factors_for_frame(&ref_buf->sf,
buf->y_crop_width, buf->y_crop_height,
cm->width, cm->height);
#endif // CONFIG_VP9_HIGHBITDEPTH
if (vp9_is_scaled(&ref_buf->sf))
vpx_extend_frame_borders(buf);
} else {
ref_buf->buf = NULL;
}
}
set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
}
static void encode_without_recode_loop(VP9_COMP *cpi,
size_t *size,
uint8_t *dest) {
VP9_COMMON *const cm = &cpi->common;
int q = 0, bottom_index = 0, top_index = 0; // Dummy variables.
vpx_clear_system_state();
set_frame_size(cpi);
if (is_one_pass_cbr_svc(cpi) &&
cpi->un_scaled_source->y_width == cm->width << 2 &&
cpi->un_scaled_source->y_height == cm->height << 2 &&
cpi->svc.scaled_temp.y_width == cm->width << 1 &&
cpi->svc.scaled_temp.y_height == cm->height << 1) {
cpi->Source = vp9_svc_twostage_scale(cm,
cpi->un_scaled_source,
&cpi->scaled_source,
&cpi->svc.scaled_temp);
} else {
cpi->Source = vp9_scale_if_required(cm,
cpi->un_scaled_source,
&cpi->scaled_source,
(cpi->oxcf.pass == 0));
}
// Avoid scaling last_source unless its needed.
// Last source is needed if vp9_avg_source_sad() is used, or if
// partition_search_type == SOURCE_VAR_BASED_PARTITION, or if noise
// estimation is enabled.
if (cpi->unscaled_last_source != NULL &&
(cpi->oxcf.content == VP9E_CONTENT_SCREEN ||
(cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_VBR &&
cpi->oxcf.mode == REALTIME && cpi->oxcf.speed >= 5) ||
cpi->sf.partition_search_type == SOURCE_VAR_BASED_PARTITION ||
cpi->noise_estimate.enabled))
cpi->Last_Source = vp9_scale_if_required(cm,
cpi->unscaled_last_source,
&cpi->scaled_last_source,
(cpi->oxcf.pass == 0));
vp9_update_noise_estimate(cpi);
if (cpi->oxcf.pass == 0 &&
cpi->oxcf.mode == REALTIME &&
cpi->oxcf.speed >= 5 &&
cpi->resize_state == 0 &&
cm->frame_type != KEY_FRAME &&
(cpi->oxcf.content == VP9E_CONTENT_SCREEN ||
cpi->oxcf.rc_mode == VPX_VBR))
vp9_avg_source_sad(cpi);
// For 1 pass SVC, since only ZEROMV is allowed for upsampled reference
// frame (i.e, svc->force_zero_mode_spatial_ref = 0), we can avoid this
// frame-level upsampling.
if (frame_is_intra_only(cm) == 0 && !is_one_pass_cbr_svc(cpi)) {
vp9_scale_references(cpi);
}
set_size_independent_vars(cpi);
set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
if (cpi->oxcf.speed >= 5 &&
cpi->oxcf.pass == 0 &&
cpi->oxcf.rc_mode == VPX_CBR &&
cpi->oxcf.content != VP9E_CONTENT_SCREEN &&
cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
cpi->use_skin_detection = 1;
}
vp9_set_quantizer(cm, q);
vp9_set_variance_partition_thresholds(cpi, q);
setup_frame(cpi);
suppress_active_map(cpi);
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == EQUATOR360_AQ) {
vp9_360aq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
vp9_setup_in_frame_q_adj(cpi);
} else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
vp9_cyclic_refresh_setup(cpi);
}
apply_active_map(cpi);
// transform / motion compensation build reconstruction frame
vp9_encode_frame(cpi);
// Check if we should drop this frame because of high overshoot.
// Only for frames where high temporal-source sad is detected.
if (cpi->oxcf.pass == 0 &&
cpi->oxcf.rc_mode == VPX_CBR &&
cpi->resize_state == 0 &&
cm->frame_type != KEY_FRAME &&
cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
cpi->rc.high_source_sad == 1) {
int frame_size = 0;
// Get an estimate of the encoded frame size.
save_coding_context(cpi);
vp9_pack_bitstream(cpi, dest, size);
restore_coding_context(cpi);
frame_size = (int)(*size) << 3;
// Check if encoded frame will overshoot too much, and if so, set the q and
// adjust some rate control parameters, and return to re-encode the frame.
if (vp9_encodedframe_overshoot(cpi, frame_size, &q)) {
vpx_clear_system_state();
vp9_set_quantizer(cm, q);
vp9_set_variance_partition_thresholds(cpi, q);
suppress_active_map(cpi);
// Turn-off cyclic refresh for re-encoded frame.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
unsigned char *const seg_map = cpi->segmentation_map;
memset(seg_map, 0, cm->mi_rows * cm->mi_cols);
vp9_disable_segmentation(&cm->seg);
}
apply_active_map(cpi);
vp9_encode_frame(cpi);
}
}
// Update some stats from cyclic refresh, and check if we should not update
// golden reference, for non-SVC 1 pass CBR.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
cm->frame_type != KEY_FRAME &&
!cpi->use_svc &&
cpi->ext_refresh_frame_flags_pending == 0 &&
(cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR))
vp9_cyclic_refresh_check_golden_update(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
vpx_clear_system_state();
}
static void encode_with_recode_loop(VP9_COMP *cpi,
size_t *size,
uint8_t *dest) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int bottom_index, top_index;
int loop_count = 0;
int loop_at_this_size = 0;
int loop = 0;
int overshoot_seen = 0;
int undershoot_seen = 0;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int q = 0, q_low = 0, q_high = 0;
set_size_independent_vars(cpi);
do {
vpx_clear_system_state();
set_frame_size(cpi);
if (loop_count == 0 || cpi->resize_pending != 0) {
set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
// TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
set_mv_search_params(cpi);
// Reset the loop state for new frame size.
overshoot_seen = 0;
undershoot_seen = 0;
// Reconfiguration for change in frame size has concluded.
cpi->resize_pending = 0;
q_low = bottom_index;
q_high = top_index;
loop_at_this_size = 0;
}
// Decide frame size bounds first time through.
if (loop_count == 0) {
vp9_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
&frame_under_shoot_limit,
&frame_over_shoot_limit);
}
cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
&cpi->scaled_source,
(cpi->oxcf.pass == 0));
if (cpi->unscaled_last_source != NULL)
cpi->Last_Source = vp9_scale_if_required(cm, cpi->unscaled_last_source,
&cpi->scaled_last_source,
(cpi->oxcf.pass == 0));
if (frame_is_intra_only(cm) == 0) {
if (loop_count > 0) {
release_scaled_references(cpi);
}
vp9_scale_references(cpi);
}
vp9_set_quantizer(cm, q);
if (loop_count == 0)
setup_frame(cpi);
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == EQUATOR360_AQ) {
vp9_360aq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
vp9_setup_in_frame_q_adj(cpi);
}
// transform / motion compensation build reconstruction frame
vp9_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
vpx_clear_system_state();
// Dummy pack of the bitstream using up to date stats to get an
// accurate estimate of output frame size to determine if we need
// to recode.
if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
save_coding_context(cpi);
if (!cpi->sf.use_nonrd_pick_mode)
vp9_pack_bitstream(cpi, dest, size);
rc->projected_frame_size = (int)(*size) << 3;
restore_coding_context(cpi);
if (frame_over_shoot_limit == 0)
frame_over_shoot_limit = 1;
}
if (cpi->oxcf.rc_mode == VPX_Q) {
loop = 0;
} else {
if ((cm->frame_type == KEY_FRAME) &&
rc->this_key_frame_forced &&
(rc->projected_frame_size < rc->max_frame_bandwidth)) {
int last_q = q;
int64_t kf_err;
int64_t high_err_target = cpi->ambient_err;
int64_t low_err_target = cpi->ambient_err >> 1;
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
kf_err = vp9_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
} else {
kf_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
}
#else
kf_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
#endif // CONFIG_VP9_HIGHBITDEPTH
// Prevent possible divide by zero error below for perfect KF
kf_err += !kf_err;
// The key frame is not good enough or we can afford
// to make it better without undue risk of popping.
if ((kf_err > high_err_target &&
rc->projected_frame_size <= frame_over_shoot_limit) ||
(kf_err > low_err_target &&
rc->projected_frame_size <= frame_under_shoot_limit)) {
// Lower q_high
q_high = q > q_low ? q - 1 : q_low;
// Adjust Q
q = (int)((q * high_err_target) / kf_err);
q = VPXMIN(q, (q_high + q_low) >> 1);
} else if (kf_err < low_err_target &&
rc->projected_frame_size >= frame_under_shoot_limit) {
// The key frame is much better than the previous frame
// Raise q_low
q_low = q < q_high ? q + 1 : q_high;
// Adjust Q
q = (int)((q * low_err_target) / kf_err);
q = VPXMIN(q, (q_high + q_low + 1) >> 1);
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = q != last_q;
} else if (recode_loop_test(
cpi, frame_over_shoot_limit, frame_under_shoot_limit,
q, VPXMAX(q_high, top_index), bottom_index)) {
// Is the projected frame size out of range and are we allowed
// to attempt to recode.
int last_q = q;
int retries = 0;
if (cpi->resize_pending == 1) {
// Change in frame size so go back around the recode loop.
cpi->rc.frame_size_selector =
SCALE_STEP1 - cpi->rc.frame_size_selector;
cpi->rc.next_frame_size_selector = cpi->rc.frame_size_selector;
#if CONFIG_INTERNAL_STATS
++cpi->tot_recode_hits;
#endif
++loop_count;
loop = 1;
continue;
}
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (rc->projected_frame_size > rc->this_frame_target) {
// Special case if the projected size is > the max allowed.
if (rc->projected_frame_size >= rc->max_frame_bandwidth)
q_high = rc->worst_quality;
// Raise Qlow as to at least the current value
q_low = q < q_high ? q + 1 : q_high;
if (undershoot_seen || loop_at_this_size > 1) {
// Update rate_correction_factor unless
vp9_rc_update_rate_correction_factors(cpi);
q = (q_high + q_low + 1) / 2;
} else {
// Update rate_correction_factor unless
vp9_rc_update_rate_correction_factors(cpi);
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
bottom_index, VPXMAX(q_high, top_index));
while (q < q_low && retries < 10) {
vp9_rc_update_rate_correction_factors(cpi);
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
bottom_index, VPXMAX(q_high, top_index));
retries++;
}
}
overshoot_seen = 1;
} else {
// Frame is too small
q_high = q > q_low ? q - 1 : q_low;
if (overshoot_seen || loop_at_this_size > 1) {
vp9_rc_update_rate_correction_factors(cpi);
q = (q_high + q_low) / 2;
} else {
vp9_rc_update_rate_correction_factors(cpi);
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
bottom_index, top_index);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if (cpi->oxcf.rc_mode == VPX_CQ &&
q < q_low) {
q_low = q;
}
while (q > q_high && retries < 10) {
vp9_rc_update_rate_correction_factors(cpi);
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
bottom_index, top_index);
retries++;
}
}
undershoot_seen = 1;
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = (q != last_q);
} else {
loop = 0;
}
}
// Special case for overlay frame.
if (rc->is_src_frame_alt_ref &&
rc->projected_frame_size < rc->max_frame_bandwidth)
loop = 0;
if (loop) {
++loop_count;
++loop_at_this_size;
#if CONFIG_INTERNAL_STATS
++cpi->tot_recode_hits;
#endif
}
} while (loop);
}
static int get_ref_frame_flags(const VP9_COMP *cpi) {
const int *const map = cpi->common.ref_frame_map;
const int gold_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idx];
const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idx];
const int gold_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx];
int flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
if (gold_is_last)
flags &= ~VP9_GOLD_FLAG;
if (cpi->rc.frames_till_gf_update_due == INT_MAX &&
(cpi->svc.number_temporal_layers == 1 &&
cpi->svc.number_spatial_layers == 1))
flags &= ~VP9_GOLD_FLAG;
if (alt_is_last)
flags &= ~VP9_ALT_FLAG;
if (gold_is_alt)
flags &= ~VP9_ALT_FLAG;
return flags;
}
static void set_ext_overrides(VP9_COMP *cpi) {
// Overrides the defaults with the externally supplied values with
// vp9_update_reference() and vp9_update_entropy() calls
// Note: The overrides are valid only for the next frame passed
// to encode_frame_to_data_rate() function
if (cpi->ext_refresh_frame_context_pending) {
cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
cpi->ext_refresh_frame_context_pending = 0;
}
if (cpi->ext_refresh_frame_flags_pending) {
cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
}
}
YV12_BUFFER_CONFIG *vp9_svc_twostage_scale(VP9_COMMON *cm,
YV12_BUFFER_CONFIG *unscaled,
YV12_BUFFER_CONFIG *scaled,
YV12_BUFFER_CONFIG *scaled_temp) {
if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
cm->mi_rows * MI_SIZE != unscaled->y_height) {
#if CONFIG_VP9_HIGHBITDEPTH
scale_and_extend_frame(unscaled, scaled_temp, (int)cm->bit_depth);
scale_and_extend_frame(scaled_temp, scaled, (int)cm->bit_depth);
#else
vp9_scale_and_extend_frame(unscaled, scaled_temp);
vp9_scale_and_extend_frame(scaled_temp, scaled);
#endif // CONFIG_VP9_HIGHBITDEPTH
return scaled;
} else {
return unscaled;
}
}
YV12_BUFFER_CONFIG *vp9_scale_if_required(VP9_COMMON *cm,
YV12_BUFFER_CONFIG *unscaled,
YV12_BUFFER_CONFIG *scaled,
int use_normative_scaler) {
if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
cm->mi_rows * MI_SIZE != unscaled->y_height) {
#if CONFIG_VP9_HIGHBITDEPTH
if (use_normative_scaler &&
unscaled->y_width <= (scaled->y_width << 1) &&
unscaled->y_height <= (scaled->y_height << 1))
scale_and_extend_frame(unscaled, scaled, (int)cm->bit_depth);
else
scale_and_extend_frame_nonnormative(unscaled, scaled, (int)cm->bit_depth);
#else
if (use_normative_scaler &&
unscaled->y_width <= (scaled->y_width << 1) &&
unscaled->y_height <= (scaled->y_height << 1))
vp9_scale_and_extend_frame(unscaled, scaled);
else
scale_and_extend_frame_nonnormative(unscaled, scaled);
#endif // CONFIG_VP9_HIGHBITDEPTH
return scaled;
} else {
return unscaled;
}
}
static void set_arf_sign_bias(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int arf_sign_bias;
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_sign_bias = cpi->rc.source_alt_ref_active &&
(!cpi->refresh_alt_ref_frame ||
(gf_group->rf_level[gf_group->index] == GF_ARF_LOW));
} else {
arf_sign_bias =
(cpi->rc.source_alt_ref_active && !cpi->refresh_alt_ref_frame);
}
cm->ref_frame_sign_bias[ALTREF_FRAME] = arf_sign_bias;
}
static int setup_interp_filter_search_mask(VP9_COMP *cpi) {
INTERP_FILTER ifilter;
int ref_total[MAX_REF_FRAMES] = {0};
MV_REFERENCE_FRAME ref;
int mask = 0;
if (cpi->common.last_frame_type == KEY_FRAME ||
cpi->refresh_alt_ref_frame)
return mask;
for (ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref)
for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter)
ref_total[ref] += cpi->interp_filter_selected[ref][ifilter];
for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter) {
if ((ref_total[LAST_FRAME] &&
cpi->interp_filter_selected[LAST_FRAME][ifilter] == 0) &&
(ref_total[GOLDEN_FRAME] == 0 ||
cpi->interp_filter_selected[GOLDEN_FRAME][ifilter] * 50
< ref_total[GOLDEN_FRAME]) &&
(ref_total[ALTREF_FRAME] == 0 ||
cpi->interp_filter_selected[ALTREF_FRAME][ifilter] * 50
< ref_total[ALTREF_FRAME]))
mask |= 1 << ifilter;
}
return mask;
}
static void encode_frame_to_data_rate(VP9_COMP *cpi,
size_t *size,
uint8_t *dest,
unsigned int *frame_flags) {
VP9_COMMON *const cm = &cpi->common;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
struct segmentation *const seg = &cm->seg;
TX_SIZE t;
set_ext_overrides(cpi);
vpx_clear_system_state();
// Set the arf sign bias for this frame.
set_arf_sign_bias(cpi);
// Set default state for segment based loop filter update flags.
cm->lf.mode_ref_delta_update = 0;
if (cpi->oxcf.pass == 2 &&
cpi->sf.adaptive_interp_filter_search)
cpi->sf.interp_filter_search_mask =
setup_interp_filter_search_mask(cpi);
// Set various flags etc to special state if it is a key frame.
if (frame_is_intra_only(cm)) {
// Reset the loop filter deltas and segmentation map.
vp9_reset_segment_features(&cm->seg);
// If segmentation is enabled force a map update for key frames.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
}
// The alternate reference frame cannot be active for a key frame.
cpi->rc.source_alt_ref_active = 0;
cm->error_resilient_mode = oxcf->error_resilient_mode;
cm->frame_parallel_decoding_mode = oxcf->frame_parallel_decoding_mode;
// By default, encoder assumes decoder can use prev_mi.
if (cm->error_resilient_mode) {
cm->frame_parallel_decoding_mode = 1;
cm->reset_frame_context = 0;
cm->refresh_frame_context = 0;
} else if (cm->intra_only) {
// Only reset the current context.
cm->reset_frame_context = 2;
}
}
if (is_two_pass_svc(cpi) && cm->error_resilient_mode == 0) {
// Use context 0 for intra only empty frame, but the last frame context
// for other empty frames.
if (cpi->svc.encode_empty_frame_state == ENCODING) {
if (cpi->svc.encode_intra_empty_frame != 0)
cm->frame_context_idx = 0;
else
cm->frame_context_idx = FRAME_CONTEXTS - 1;
} else {
cm->frame_context_idx =
cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers +
cpi->svc.temporal_layer_id;
}
cm->frame_parallel_decoding_mode = oxcf->frame_parallel_decoding_mode;
// The probs will be updated based on the frame type of its previous
// frame if frame_parallel_decoding_mode is 0. The type may vary for
// the frame after a key frame in base layer since we may drop enhancement
// layers. So set frame_parallel_decoding_mode to 1 in this case.
if (cm->frame_parallel_decoding_mode == 0) {
if (cpi->svc.number_temporal_layers == 1) {
if (cpi->svc.spatial_layer_id == 0 &&
cpi->svc.layer_context[0].last_frame_type == KEY_FRAME)
cm->frame_parallel_decoding_mode = 1;
} else if (cpi->svc.spatial_layer_id == 0) {
// Find the 2nd frame in temporal base layer and 1st frame in temporal
// enhancement layers from the key frame.
int i;
for (i = 0; i < cpi->svc.number_temporal_layers; ++i) {
if (cpi->svc.layer_context[0].frames_from_key_frame == 1 << i) {
cm->frame_parallel_decoding_mode = 1;
break;
}
}
}
}
}
// For 1 pass CBR, check if we are dropping this frame.
// For spatial layers, for now only check for frame-dropping on first spatial
// layer, and if decision is to drop, we drop whole super-frame.
if (oxcf->pass == 0 &&
oxcf->rc_mode == VPX_CBR &&
cm->frame_type != KEY_FRAME) {
if (vp9_rc_drop_frame(cpi) ||
(is_one_pass_cbr_svc(cpi) && cpi->svc.rc_drop_superframe == 1)) {
vp9_rc_postencode_update_drop_frame(cpi);
++cm->current_video_frame;
cpi->ext_refresh_frame_flags_pending = 0;
cpi->svc.rc_drop_superframe = 1;
// TODO(marpan): Advancing the svc counters on dropped frames can break
// the referencing scheme for the fixed svc patterns defined in
// vp9_one_pass_cbr_svc_start_layer(). Look into fixing this issue, but
// for now, don't advance the svc frame counters on dropped frame.
// if (cpi->use_svc)
// vp9_inc_frame_in_layer(cpi);
return;
}
}
vpx_clear_system_state();
#if CONFIG_INTERNAL_STATS
memset(cpi->mode_chosen_counts, 0,
MAX_MODES * sizeof(*cpi->mode_chosen_counts));
#endif
if (cpi->sf.recode_loop == DISALLOW_RECODE) {
encode_without_recode_loop(cpi, size, dest);
} else {
encode_with_recode_loop(cpi, size, dest);
}
#if CONFIG_VP9_TEMPORAL_DENOISING
#ifdef OUTPUT_YUV_DENOISED
if (oxcf->noise_sensitivity > 0) {
vp9_write_yuv_frame_420(&cpi->denoiser.running_avg_y[INTRA_FRAME],
yuv_denoised_file);
}
#endif
#endif
#ifdef OUTPUT_YUV_SKINMAP
if (cpi->common.current_video_frame > 1) {
vp9_compute_skin_map(cpi, yuv_skinmap_file);
}
#endif
// Special case code to reduce pulsing when key frames are forced at a
// fixed interval. Note the reconstruction error if it is the frame before
// the force key frame
if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
cpi->ambient_err = vp9_highbd_get_y_sse(cpi->Source,
get_frame_new_buffer(cm));
} else {
cpi->ambient_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
}
#else
cpi->ambient_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
#endif // CONFIG_VP9_HIGHBITDEPTH
}
// If the encoder forced a KEY_FRAME decision
if (cm->frame_type == KEY_FRAME)
cpi->refresh_last_frame = 1;
cm->frame_to_show = get_frame_new_buffer(cm);
cm->frame_to_show->color_space = cm->color_space;
cm->frame_to_show->color_range = cm->color_range;
cm->frame_to_show->render_width = cm->render_width;
cm->frame_to_show->render_height = cm->render_height;
// Pick the loop filter level for the frame.
loopfilter_frame(cpi, cm);
// build the bitstream
vp9_pack_bitstream(cpi, dest, size);
if (cm->seg.update_map)
update_reference_segmentation_map(cpi);
if (frame_is_intra_only(cm) == 0) {
release_scaled_references(cpi);
}
vp9_update_reference_frames(cpi);
for (t = TX_4X4; t <= TX_32X32; t++)
full_to_model_counts(cpi->td.counts->coef[t],
cpi->td.rd_counts.coef_counts[t]);
if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode)
vp9_adapt_coef_probs(cm);
if (!frame_is_intra_only(cm)) {
if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
vp9_adapt_mode_probs(cm);
vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
}
}
cpi->ext_refresh_frame_flags_pending = 0;
if (cpi->refresh_golden_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_GOLDEN;
else
cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
if (cpi->refresh_alt_ref_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_ALTREF;
else
cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
cpi->ref_frame_flags = get_ref_frame_flags(cpi);
cm->last_frame_type = cm->frame_type;
if (!(is_two_pass_svc(cpi) && cpi->svc.encode_empty_frame_state == ENCODING))
vp9_rc_postencode_update(cpi, *size);
#if 0
output_frame_level_debug_stats(cpi);
#endif
if (cm->frame_type == KEY_FRAME) {
// Tell the caller that the frame was coded as a key frame
*frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
} else {
*frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
}
// Clear the one shot update flags for segmentation map and mode/ref loop
// filter deltas.
cm->seg.update_map = 0;
cm->seg.update_data = 0;
cm->lf.mode_ref_delta_update = 0;
// keep track of the last coded dimensions
cm->last_width = cm->width;
cm->last_height = cm->height;
// reset to normal state now that we are done.
if (!cm->show_existing_frame)
cm->last_show_frame = cm->show_frame;
if (cm->show_frame) {
vp9_swap_mi_and_prev_mi(cm);
// Don't increment frame counters if this was an altref buffer
// update not a real frame
++cm->current_video_frame;
if (cpi->use_svc)
vp9_inc_frame_in_layer(cpi);
}
cm->prev_frame = cm->cur_frame;
if (cpi->use_svc)
cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers +
cpi->svc.temporal_layer_id].last_frame_type =
cm->frame_type;
}
static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
vp9_rc_get_svc_params(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
if (cpi->oxcf.rc_mode == VPX_CBR) {
vp9_rc_get_one_pass_cbr_params(cpi);
} else {
vp9_rc_get_one_pass_vbr_params(cpi);
}
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
static void Pass2Encode(VP9_COMP *cpi, size_t *size,
uint8_t *dest, unsigned int *frame_flags) {
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
if (!(is_two_pass_svc(cpi) && cpi->svc.encode_empty_frame_state == ENCODING))
vp9_twopass_postencode_update(cpi);
}
static void init_ref_frame_bufs(VP9_COMMON *cm) {
int i;
BufferPool *const pool = cm->buffer_pool;
cm->new_fb_idx = INVALID_IDX;
for (i = 0; i < REF_FRAMES; ++i) {
cm->ref_frame_map[i] = INVALID_IDX;
pool->frame_bufs[i].ref_count = 0;
}
}
static void check_initial_width(VP9_COMP *cpi,
#if CONFIG_VP9_HIGHBITDEPTH
int use_highbitdepth,
#endif
int subsampling_x, int subsampling_y) {
VP9_COMMON *const cm = &cpi->common;
if (!cpi->initial_width ||
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth != use_highbitdepth ||
#endif
cm->subsampling_x != subsampling_x ||
cm->subsampling_y != subsampling_y) {
cm->subsampling_x = subsampling_x;
cm->subsampling_y = subsampling_y;
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth = use_highbitdepth;
#endif
alloc_raw_frame_buffers(cpi);
init_ref_frame_bufs(cm);
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi); // TODO(agrange) This can be removed.
cpi->initial_width = cm->width;
cpi->initial_height = cm->height;
cpi->initial_mbs = cm->MBs;
}
}
int vp9_receive_raw_frame(VP9_COMP *cpi, unsigned int frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
VP9_COMMON *const cm = &cpi->common;
struct vpx_usec_timer timer;
int res = 0;
const int subsampling_x = sd->subsampling_x;
const int subsampling_y = sd->subsampling_y;
#if CONFIG_VP9_HIGHBITDEPTH
const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
#endif
#if CONFIG_VP9_HIGHBITDEPTH
check_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y);
#else
check_initial_width(cpi, subsampling_x, subsampling_y);
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_TEMPORAL_DENOISING
setup_denoiser_buffer(cpi);
#endif
vpx_usec_timer_start(&timer);
if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth,
#endif // CONFIG_VP9_HIGHBITDEPTH
frame_flags))
res = -1;
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
if ((cm->profile == PROFILE_0 || cm->profile == PROFILE_2) &&
(subsampling_x != 1 || subsampling_y != 1)) {
vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
"Non-4:2:0 color format requires profile 1 or 3");
res = -1;
}
if ((cm->profile == PROFILE_1 || cm->profile == PROFILE_3) &&
(subsampling_x == 1 && subsampling_y == 1)) {
vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
"4:2:0 color format requires profile 0 or 2");
res = -1;
}
return res;
}
static int frame_is_reference(const VP9_COMP *cpi) {
const VP9_COMMON *cm = &cpi->common;
return cm->frame_type == KEY_FRAME ||
cpi->refresh_last_frame ||
cpi->refresh_golden_frame ||
cpi->refresh_alt_ref_frame ||
cm->refresh_frame_context ||
cm->lf.mode_ref_delta_update ||
cm->seg.update_map ||
cm->seg.update_data;
}
static void adjust_frame_rate(VP9_COMP *cpi,
const struct lookahead_entry *source) {
int64_t this_duration;
int step = 0;
if (source->ts_start == cpi->first_time_stamp_ever) {
this_duration = source->ts_end - source->ts_start;
step = 1;
} else {
int64_t last_duration = cpi->last_end_time_stamp_seen
- cpi->last_time_stamp_seen;
this_duration = source->ts_end - cpi->last_end_time_stamp_seen;
// do a step update if the duration changes by 10%
if (last_duration)
step = (int)((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration) {
if (step) {
vp9_new_framerate(cpi, 10000000.0 / this_duration);
} else {
// Average this frame's rate into the last second's average
// frame rate. If we haven't seen 1 second yet, then average
// over the whole interval seen.
const double interval = VPXMIN(
(double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0);
double avg_duration = 10000000.0 / cpi->framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
vp9_new_framerate(cpi, 10000000.0 / avg_duration);
}
}
cpi->last_time_stamp_seen = source->ts_start;
cpi->last_end_time_stamp_seen = source->ts_end;
}
// Returns 0 if this is not an alt ref else the offset of the source frame
// used as the arf midpoint.
static int get_arf_src_index(VP9_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
int arf_src_index = 0;
if (is_altref_enabled(cpi)) {
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
arf_src_index = gf_group->arf_src_offset[gf_group->index];
}
} else if (rc->source_alt_ref_pending) {
arf_src_index = rc->frames_till_gf_update_due;
}
}
return arf_src_index;
}
static void check_src_altref(VP9_COMP *cpi,
const struct lookahead_entry *source) {
RATE_CONTROL *const rc = &cpi->rc;
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
rc->is_src_frame_alt_ref =
(gf_group->update_type[gf_group->index] == OVERLAY_UPDATE);
} else {
rc->is_src_frame_alt_ref = cpi->alt_ref_source &&
(source == cpi->alt_ref_source);
}
if (rc->is_src_frame_alt_ref) {
// Current frame is an ARF overlay frame.
cpi->alt_ref_source = NULL;
// Don't refresh the last buffer for an ARF overlay frame. It will
// become the GF so preserve last as an alternative prediction option.
cpi->refresh_last_frame = 0;
}
}
#if CONFIG_INTERNAL_STATS
extern double vp9_get_blockiness(const uint8_t *img1, int img1_pitch,
const uint8_t *img2, int img2_pitch,
int width, int height);
static void adjust_image_stat(double y, double u, double v, double all,
ImageStat *s) {
s->stat[Y] += y;
s->stat[U] += u;
s->stat[V] += v;
s->stat[ALL] += all;
s->worst = VPXMIN(s->worst, all);
}
#endif // CONFIG_INTERNAL_STATS
int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
size_t *size, uint8_t *dest,
int64_t *time_stamp, int64_t *time_end, int flush) {
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
VP9_COMMON *const cm = &cpi->common;
BufferPool *const pool = cm->buffer_pool;
RATE_CONTROL *const rc = &cpi->rc;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
struct lookahead_entry *last_source = NULL;
struct lookahead_entry *source = NULL;
int arf_src_index;
int i;
if (is_two_pass_svc(cpi)) {
#if CONFIG_SPATIAL_SVC
vp9_svc_start_frame(cpi);
// Use a small empty frame instead of a real frame
if (cpi->svc.encode_empty_frame_state == ENCODING)
source = &cpi->svc.empty_frame;
#endif
if (oxcf->pass == 2)
vp9_restore_layer_context(cpi);
} else if (is_one_pass_cbr_svc(cpi)) {
vp9_one_pass_cbr_svc_start_layer(cpi);
}
vpx_usec_timer_start(&cmptimer);
vp9_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
// Is multi-arf enabled.
// Note that at the moment multi_arf is only configured for 2 pass VBR and
// will not work properly with svc.
if ((oxcf->pass == 2) && !cpi->use_svc &&
(cpi->oxcf.enable_auto_arf > 1))
cpi->multi_arf_allowed = 1;
else
cpi->multi_arf_allowed = 0;
// Normal defaults
cm->reset_frame_context = 0;
cm->refresh_frame_context = 1;
if (!is_one_pass_cbr_svc(cpi)) {
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
}
// Should we encode an arf frame.
arf_src_index = get_arf_src_index(cpi);
// Skip alt frame if we encode the empty frame
if (is_two_pass_svc(cpi) && source != NULL)
arf_src_index = 0;
if (arf_src_index) {
for (i = 0; i <= arf_src_index; ++i) {
struct lookahead_entry *e = vp9_lookahead_peek(cpi->lookahead, i);
// Avoid creating an alt-ref if there's a forced keyframe pending.
if (e == NULL) {
break;
} else if (e->flags == VPX_EFLAG_FORCE_KF) {
arf_src_index = 0;
flush = 1;
break;
}
}
}
if (arf_src_index) {
assert(arf_src_index <= rc->frames_to_key);
if ((source = vp9_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
cpi->alt_ref_source = source;
#if CONFIG_SPATIAL_SVC
if (is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id > 0) {
int i;
// Reference a hidden frame from a lower layer
for (i = cpi->svc.spatial_layer_id - 1; i >= 0; --i) {
if (oxcf->ss_enable_auto_arf[i]) {
cpi->gld_fb_idx = cpi->svc.layer_context[i].alt_ref_idx;
break;
}
}
}
cpi->svc.layer_context[cpi->svc.spatial_layer_id].has_alt_frame = 1;
#endif
if ((oxcf->arnr_max_frames > 0) && (oxcf->arnr_strength > 0)) {
// Produce the filtered ARF frame.
vp9_temporal_filter(cpi, arf_src_index);
vpx_extend_frame_borders(&cpi->alt_ref_buffer);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->show_frame = 0;
cm->intra_only = 0;
cpi->refresh_alt_ref_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 0;
rc->is_src_frame_alt_ref = 0;
rc->source_alt_ref_pending = 0;
} else {
rc->source_alt_ref_pending = 0;
}
}
if (!source) {
// Get last frame source.
if (cm->current_video_frame > 0) {
if ((last_source = vp9_lookahead_peek(cpi->lookahead, -1)) == NULL)
return -1;
}
// Read in the source frame.
if (cpi->use_svc)
source = vp9_svc_lookahead_pop(cpi, cpi->lookahead, flush);
else
source = vp9_lookahead_pop(cpi->lookahead, flush);
if (source != NULL) {
cm->show_frame = 1;
cm->intra_only = 0;
// if the flags indicate intra frame, but if the current picture is for
// non-zero spatial layer, it should not be an intra picture.
// TODO(Won Kap): this needs to change if per-layer intra frame is
// allowed.
if ((source->flags & VPX_EFLAG_FORCE_KF) &&
cpi->svc.spatial_layer_id > cpi->svc.first_spatial_layer_to_encode) {
source->flags &= ~(unsigned int)(VPX_EFLAG_FORCE_KF);
}
// Check to see if the frame should be encoded as an arf overlay.
check_src_altref(cpi, source);
}
}
if (source) {
cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer
: &source->img;
cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL;
*time_stamp = source->ts_start;
*time_end = source->ts_end;
*frame_flags = (source->flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
} else {
*size = 0;
if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) {
vp9_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
return -1;
}
if (source->ts_start < cpi->first_time_stamp_ever) {
cpi->first_time_stamp_ever = source->ts_start;
cpi->last_end_time_stamp_seen = source->ts_start;
}
// Clear down mmx registers
vpx_clear_system_state();
// adjust frame rates based on timestamps given
if (cm->show_frame) {
adjust_frame_rate(cpi, source);
}
if (is_one_pass_cbr_svc(cpi)) {
vp9_update_temporal_layer_framerate(cpi);
vp9_restore_layer_context(cpi);
}
// Find a free buffer for the new frame, releasing the reference previously
// held.
if (cm->new_fb_idx != INVALID_IDX) {
--pool->frame_bufs[cm->new_fb_idx].ref_count;
}
cm->new_fb_idx = get_free_fb(cm);
if (cm->new_fb_idx == INVALID_IDX)
return -1;
cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx];
if (!cpi->use_svc && cpi->multi_arf_allowed) {
if (cm->frame_type == KEY_FRAME) {
init_buffer_indices(cpi);
} else if (oxcf->pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index];
}
}
// Start with a 0 size frame.
*size = 0;
cpi->frame_flags = *frame_flags;
if ((oxcf->pass == 2) &&
(!cpi->use_svc ||
(is_two_pass_svc(cpi) &&
cpi->svc.encode_empty_frame_state != ENCODING))) {
vp9_rc_get_second_pass_params(cpi);
} else if (oxcf->pass == 1) {
set_frame_size(cpi);
}
if (cpi->oxcf.pass != 0 ||
cpi->use_svc ||
frame_is_intra_only(cm) == 1) {
for (i = 0; i < MAX_REF_FRAMES; ++i)
cpi->scaled_ref_idx[i] = INVALID_IDX;
}
if (oxcf->pass == 1 &&
(!cpi->use_svc || is_two_pass_svc(cpi))) {
const int lossless = is_lossless_requested(oxcf);
#if CONFIG_VP9_HIGHBITDEPTH
if (cpi->oxcf.use_highbitdepth)
cpi->td.mb.fwd_txm4x4 = lossless ?
vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4;
else
cpi->td.mb.fwd_txm4x4 = lossless ? vp9_fwht4x4 : vpx_fdct4x4;
cpi->td.mb.highbd_itxm_add = lossless ? vp9_highbd_iwht4x4_add :
vp9_highbd_idct4x4_add;
#else
cpi->td.mb.fwd_txm4x4 = lossless ? vp9_fwht4x4 : vpx_fdct4x4;
#endif // CONFIG_VP9_HIGHBITDEPTH
cpi->td.mb.itxm_add = lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
vp9_first_pass(cpi, source);
} else if (oxcf->pass == 2 &&
(!cpi->use_svc || is_two_pass_svc(cpi))) {
Pass2Encode(cpi, size, dest, frame_flags);
} else if (cpi->use_svc) {
SvcEncode(cpi, size, dest, frame_flags);
} else {
// One pass encode
Pass0Encode(cpi, size, dest, frame_flags);
}
if (cm->refresh_frame_context)
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
// No frame encoded, or frame was dropped, release scaled references.
if ((*size == 0) && (frame_is_intra_only(cm) == 0)) {
release_scaled_references(cpi);
}
if (*size > 0) {
cpi->droppable = !frame_is_reference(cpi);
}
// Save layer specific state.
if (is_one_pass_cbr_svc(cpi) ||
((cpi->svc.number_temporal_layers > 1 ||
cpi->svc.number_spatial_layers > 1) &&
oxcf->pass == 2)) {
vp9_save_layer_context(cpi);
}
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && oxcf->pass != 1 && cm->show_frame)
generate_psnr_packet(cpi);
#if CONFIG_INTERNAL_STATS
if (oxcf->pass != 1) {
double samples = 0.0;
cpi->bytes += (int)(*size);
if (cm->show_frame) {
cpi->count++;
if (cpi->b_calculate_psnr) {
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
PSNR_STATS psnr;
#if CONFIG_VP9_HIGHBITDEPTH
calc_highbd_psnr(orig, recon, &psnr, cpi->td.mb.e_mbd.bd,
cpi->oxcf.input_bit_depth);
#else
calc_psnr(orig, recon, &psnr);
#endif // CONFIG_VP9_HIGHBITDEPTH
adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3],
psnr.psnr[0], &cpi->psnr);
cpi->total_sq_error += psnr.sse[0];
cpi->total_samples += psnr.samples[0];
samples = psnr.samples[0];
{
PSNR_STATS psnr2;
double frame_ssim2 = 0, weight = 0;
#if CONFIG_VP9_POSTPROC
if (vpx_alloc_frame_buffer(&cm->post_proc_buffer,
recon->y_crop_width, recon->y_crop_height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS,
cm->byte_alignment) < 0) {
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate post processing buffer");
}
vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer,
cm->lf.filter_level * 10 / 6);
#endif
vpx_clear_system_state();
#if CONFIG_VP9_HIGHBITDEPTH
calc_highbd_psnr(orig, pp, &psnr2, cpi->td.mb.e_mbd.bd,
cpi->oxcf.input_bit_depth);
#else
calc_psnr(orig, pp, &psnr2);
#endif // CONFIG_VP9_HIGHBITDEPTH
cpi->totalp_sq_error += psnr2.sse[0];
cpi->totalp_samples += psnr2.samples[0];
adjust_image_stat(psnr2.psnr[1], psnr2.psnr[2], psnr2.psnr[3],
psnr2.psnr[0], &cpi->psnrp);
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
frame_ssim2 = vpx_highbd_calc_ssim(orig, recon, &weight,
(int)cm->bit_depth);
} else {
frame_ssim2 = vpx_calc_ssim(orig, recon, &weight);
}
#else
frame_ssim2 = vpx_calc_ssim(orig, recon, &weight);
#endif // CONFIG_VP9_HIGHBITDEPTH
cpi->worst_ssim = VPXMIN(cpi->worst_ssim, frame_ssim2);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
frame_ssim2 = vpx_highbd_calc_ssim(
orig, &cm->post_proc_buffer, &weight, (int)cm->bit_depth);
} else {
frame_ssim2 = vpx_calc_ssim(orig, &cm->post_proc_buffer, &weight);
}
#else
frame_ssim2 = vpx_calc_ssim(orig, &cm->post_proc_buffer, &weight);
#endif // CONFIG_VP9_HIGHBITDEPTH
cpi->summedp_quality += frame_ssim2 * weight;
cpi->summedp_weights += weight;
#if 0
{
FILE *f = fopen("q_used.stt", "a");
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
cpi->common.current_video_frame, y2, u2, v2,
frame_psnr2, frame_ssim2);
fclose(f);
}
#endif
}
}
if (cpi->b_calculate_blockiness) {
#if CONFIG_VP9_HIGHBITDEPTH
if (!cm->use_highbitdepth)
#endif
{
double frame_blockiness = vp9_get_blockiness(
cpi->Source->y_buffer, cpi->Source->y_stride,
cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
cpi->Source->y_width, cpi->Source->y_height);
cpi->worst_blockiness =
VPXMAX(cpi->worst_blockiness, frame_blockiness);
cpi->total_blockiness += frame_blockiness;
}
}
if (cpi->b_calculate_consistency) {
#if CONFIG_VP9_HIGHBITDEPTH
if (!cm->use_highbitdepth)
#endif
{
double this_inconsistency = vpx_get_ssim_metrics(
cpi->Source->y_buffer, cpi->Source->y_stride,
cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
cpi->Source->y_width, cpi->Source->y_height, cpi->ssim_vars,
&cpi->metrics, 1);
const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
double consistency = vpx_sse_to_psnr(samples, peak,
(double)cpi->total_inconsistency);
if (consistency > 0.0)
cpi->worst_consistency =
VPXMIN(cpi->worst_consistency, consistency);
cpi->total_inconsistency += this_inconsistency;
}
}
if (cpi->b_calculate_ssimg) {
double y, u, v, frame_all;
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
frame_all = vpx_highbd_calc_ssimg(cpi->Source, cm->frame_to_show, &y,
&u, &v, (int)cm->bit_depth);
} else {
frame_all = vpx_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u,
&v);
}
#else
frame_all = vpx_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v);
#endif // CONFIG_VP9_HIGHBITDEPTH
adjust_image_stat(y, u, v, frame_all, &cpi->ssimg);
}
#if CONFIG_VP9_HIGHBITDEPTH
if (!cm->use_highbitdepth)
#endif
{
double y, u, v, frame_all;
frame_all = vpx_calc_fastssim(cpi->Source, cm->frame_to_show, &y, &u,
&v);
adjust_image_stat(y, u, v, frame_all, &cpi->fastssim);
/* TODO(JBB): add 10/12 bit support */
}
#if CONFIG_VP9_HIGHBITDEPTH
if (!cm->use_highbitdepth)
#endif
{
double y, u, v, frame_all;
frame_all = vpx_psnrhvs(cpi->Source, cm->frame_to_show, &y, &u, &v);
adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs);
}
}
}
#endif
if (is_two_pass_svc(cpi)) {
if (cpi->svc.encode_empty_frame_state == ENCODING) {
cpi->svc.encode_empty_frame_state = ENCODED;
cpi->svc.encode_intra_empty_frame = 0;
}
if (cm->show_frame) {
++cpi->svc.spatial_layer_to_encode;
if (cpi->svc.spatial_layer_to_encode >= cpi->svc.number_spatial_layers)
cpi->svc.spatial_layer_to_encode = 0;
// May need the empty frame after an visible frame.
cpi->svc.encode_empty_frame_state = NEED_TO_ENCODE;
}
} else if (is_one_pass_cbr_svc(cpi)) {
if (cm->show_frame) {
++cpi->svc.spatial_layer_to_encode;
if (cpi->svc.spatial_layer_to_encode >= cpi->svc.number_spatial_layers)
cpi->svc.spatial_layer_to_encode = 0;
}
}
vpx_clear_system_state();
return 0;
}
int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest,
vp9_ppflags_t *flags) {
VP9_COMMON *cm = &cpi->common;
#if !CONFIG_VP9_POSTPROC
(void)flags;
#endif
if (!cm->show_frame) {
return -1;
} else {
int ret;
#if CONFIG_VP9_POSTPROC
ret = vp9_post_proc_frame(cm, dest, flags);
#else
if (cm->frame_to_show) {
*dest = *cm->frame_to_show;
dest->y_width = cm->width;
dest->y_height = cm->height;
dest->uv_width = cm->width >> cm->subsampling_x;
dest->uv_height = cm->height >> cm->subsampling_y;
ret = 0;
} else {
ret = -1;
}
#endif // !CONFIG_VP9_POSTPROC
vpx_clear_system_state();
return ret;
}
}
int vp9_set_internal_size(VP9_COMP *cpi,
VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
VP9_COMMON *cm = &cpi->common;
int hr = 0, hs = 0, vr = 0, vs = 0;
if (horiz_mode > ONETWO || vert_mode > ONETWO)
return -1;
Scale2Ratio(horiz_mode, &hr, &hs);
Scale2Ratio(vert_mode, &vr, &vs);
// always go to the next whole number
cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
if (cm->current_video_frame) {
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
}
update_frame_size(cpi);
return 0;
}
int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width,
unsigned int height) {
VP9_COMMON *cm = &cpi->common;
#if CONFIG_VP9_HIGHBITDEPTH
check_initial_width(cpi, cm->use_highbitdepth, 1, 1);
#else
check_initial_width(cpi, 1, 1);
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_TEMPORAL_DENOISING
setup_denoiser_buffer(cpi);
#endif
if (width) {
cm->width = width;
if (cm->width > cpi->initial_width) {
cm->width = cpi->initial_width;
printf("Warning: Desired width too large, changed to %d\n", cm->width);
}
}
if (height) {
cm->height = height;
if (cm->height > cpi->initial_height) {
cm->height = cpi->initial_height;
printf("Warning: Desired height too large, changed to %d\n", cm->height);
}
}
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
void vp9_set_svc(VP9_COMP *cpi, int use_svc) {
cpi->use_svc = use_svc;
return;
}
int64_t vp9_get_y_sse(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b) {
assert(a->y_crop_width == b->y_crop_width);
assert(a->y_crop_height == b->y_crop_height);
return get_sse(a->y_buffer, a->y_stride, b->y_buffer, b->y_stride,
a->y_crop_width, a->y_crop_height);
}
#if CONFIG_VP9_HIGHBITDEPTH
int64_t vp9_highbd_get_y_sse(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b) {
assert(a->y_crop_width == b->y_crop_width);
assert(a->y_crop_height == b->y_crop_height);
assert((a->flags & YV12_FLAG_HIGHBITDEPTH) != 0);
assert((b->flags & YV12_FLAG_HIGHBITDEPTH) != 0);
return highbd_get_sse(a->y_buffer, a->y_stride, b->y_buffer, b->y_stride,
a->y_crop_width, a->y_crop_height);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
int vp9_get_quantizer(VP9_COMP *cpi) {
return cpi->common.base_qindex;
}
void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags) {
if (flags & (VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF)) {
int ref = 7;
if (flags & VP8_EFLAG_NO_REF_LAST)
ref ^= VP9_LAST_FLAG;
if (flags & VP8_EFLAG_NO_REF_GF)
ref ^= VP9_GOLD_FLAG;
if (flags & VP8_EFLAG_NO_REF_ARF)
ref ^= VP9_ALT_FLAG;
vp9_use_as_reference(cpi, ref);
}
if (flags & (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_FORCE_GF |
VP8_EFLAG_FORCE_ARF)) {
int upd = 7;
if (flags & VP8_EFLAG_NO_UPD_LAST)
upd ^= VP9_LAST_FLAG;
if (flags & VP8_EFLAG_NO_UPD_GF)
upd ^= VP9_GOLD_FLAG;
if (flags & VP8_EFLAG_NO_UPD_ARF)
upd ^= VP9_ALT_FLAG;
vp9_update_reference(cpi, upd);
}
if (flags & VP8_EFLAG_NO_UPD_ENTROPY) {
vp9_update_entropy(cpi, 0);
}
}