aom/av1/encoder/encodemb.c

1547 строки
56 KiB
C

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./av1_rtcd.h"
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/quantize.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/tokenize.h"
#if CONFIG_PVQ
#include "av1/encoder/encint.h"
#include "av1/common/partition.h"
#include "av1/encoder/pvq_encoder.h"
#endif
void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
#if CONFIG_AOM_HIGHBITDEPTH
if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
p->src.stride, pd->dst.buf, pd->dst.stride,
x->e_mbd.bd);
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
typedef struct av1_token_state {
int rate;
int64_t error;
int next;
int16_t token;
tran_low_t qc;
tran_low_t dqc;
} av1_token_state;
// These numbers are empirically obtained.
static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = {
{ 10, 6 }, { 8, 5 },
};
#define UPDATE_RD_COST() \
{ \
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \
}
int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int block,
TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref = is_inter_block(&xd->mi[0]->mbmi);
av1_token_state tokens[MAX_TX_SQUARE + 1][2];
unsigned best_index[MAX_TX_SQUARE + 1][2];
uint8_t token_cache[MAX_TX_SQUARE];
const tran_low_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int eob = p->eobs[block];
const PLANE_TYPE plane_type = pd->plane_type;
const int default_eob = tx_size_2d[tx_size];
const int16_t *const dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const SCAN_ORDER *const scan_order =
get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
const int16_t *const scan = scan_order->scan;
const int16_t *const nb = scan_order->neighbors;
int dqv;
#if CONFIG_AOM_QM
int seg_id = xd->mi[0]->mbmi.segment_id;
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size];
#endif
const int shift = get_tx_scale(tx_size);
#if CONFIG_NEW_QUANT
int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type);
const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq];
#else
const int dq_step[2] = { dequant_ptr[0] >> shift, dequant_ptr[1] >> shift };
#endif // CONFIG_NEW_QUANT
int next = eob, sz = 0;
const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1;
const int64_t rddiv = mb->rddiv;
int64_t rd_cost0, rd_cost1;
int rate0, rate1;
int64_t error0, error1;
int16_t t0, t1;
int best, band = (eob < default_eob) ? band_translate[eob]
: band_translate[eob - 1];
int pt, i, final_eob;
#if CONFIG_AOM_HIGHBITDEPTH
const int *cat6_high_cost = av1_get_high_cost_table(xd->bd);
#else
const int *cat6_high_cost = av1_get_high_cost_table(8);
#endif
unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref];
const uint16_t *band_counts = &band_count_table[tx_size][band];
uint16_t band_left = eob - band_cum_count_table[tx_size][band] + 1;
int shortcut = 0;
int next_shortcut = 0;
assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
token_costs += band;
assert((!plane_type && !plane) || (plane_type && plane));
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
tokens[eob][1] = tokens[eob][0];
for (i = 0; i < eob; i++) {
const int rc = scan[i];
tokens[i][0].rate = av1_get_token_cost(qcoeff[rc], &t0, cat6_high_cost);
tokens[i][0].token = t0;
token_cache[rc] = av1_pt_energy_class[t0];
}
for (i = eob; i-- > 0;) {
int base_bits, dx;
int64_t d2;
const int rc = scan[i];
int x = qcoeff[rc];
#if CONFIG_AOM_QM
int iwt = iqmatrix[rc];
dqv = dequant_ptr[rc != 0];
dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
#else
dqv = dequant_ptr[rc != 0];
#endif
next_shortcut = shortcut;
/* Only add a trellis state for non-zero coefficients. */
if (UNLIKELY(x)) {
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if (next_shortcut) {
/* Consider both possible successor states. */
if (next < default_eob) {
pt = get_coef_context(nb, token_cache, i + 1);
rate0 += (*token_costs)[0][pt][tokens[next][0].token];
rate1 += (*token_costs)[0][pt][tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
} else {
if (next < default_eob) {
pt = get_coef_context(nb, token_cache, i + 1);
rate0 += (*token_costs)[0][pt][tokens[next][0].token];
}
best = 0;
}
dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
d2 = (int64_t)dx * dx;
tokens[i][0].rate += (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].qc = x;
tokens[i][0].dqc = dqcoeff[rc];
best_index[i][0] = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
// The threshold of 3 is empirically obtained.
if (UNLIKELY(abs(x) > 3)) {
shortcut = 0;
} else {
#if CONFIG_NEW_QUANT
shortcut = ((av1_dequant_abscoeff_nuq(abs(x), dqv,
dequant_val[band_translate[i]]) >
(abs(coeff[rc]) << shift)) &&
(av1_dequant_abscoeff_nuq(abs(x) - 1, dqv,
dequant_val[band_translate[i]]) <
(abs(coeff[rc]) << shift)));
#else // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
if ((abs(x) * dequant_ptr[rc != 0] * iwt >
((abs(coeff[rc]) << shift) << AOM_QM_BITS)) &&
(abs(x) * dequant_ptr[rc != 0] * iwt <
(((abs(coeff[rc]) << shift) + dequant_ptr[rc != 0])
<< AOM_QM_BITS)))
#else
if ((abs(x) * dequant_ptr[rc != 0] > (abs(coeff[rc]) << shift)) &&
(abs(x) * dequant_ptr[rc != 0] <
(abs(coeff[rc]) << shift) + dequant_ptr[rc != 0]))
#endif // CONFIG_AOM_QM
shortcut = 1;
else
shortcut = 0;
#endif // CONFIG_NEW_QUANT
}
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
} else {
tokens[i][1] = tokens[i][0];
best_index[i][1] = best_index[i][0];
next = i;
if (UNLIKELY(!(--band_left))) {
--band_counts;
band_left = *band_counts;
--token_costs;
}
continue;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
base_bits = 0;
} else {
base_bits = av1_get_token_cost(x, &t0, cat6_high_cost);
t1 = t0;
}
if (next_shortcut) {
if (LIKELY(next < default_eob)) {
if (t0 != EOB_TOKEN) {
token_cache[rc] = av1_pt_energy_class[t0];
pt = get_coef_context(nb, token_cache, i + 1);
rate0 += (*token_costs)[!x][pt][tokens[next][0].token];
}
if (t1 != EOB_TOKEN) {
token_cache[rc] = av1_pt_energy_class[t1];
pt = get_coef_context(nb, token_cache, i + 1);
rate1 += (*token_costs)[!x][pt][tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
} else {
// The two states in next stage are identical.
if (next < default_eob && t0 != EOB_TOKEN) {
token_cache[rc] = av1_pt_energy_class[t0];
pt = get_coef_context(nb, token_cache, i + 1);
rate0 += (*token_costs)[!x][pt][tokens[next][0].token];
}
best = 0;
}
#if CONFIG_NEW_QUANT
dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) -
(coeff[rc] << shift);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#else // CONFIG_NEW_QUANT
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz;
} else {
dx -= (dqv + sz) ^ sz;
}
#else
dx -= (dqv + sz) ^ sz;
#endif // CONFIG_AOM_HIGHBITDEPTH
#endif // CONFIG_NEW_QUANT
d2 = (int64_t)dx * dx;
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
if (x) {
#if CONFIG_NEW_QUANT
tokens[i][1].dqc = av1_dequant_abscoeff_nuq(
abs(x), dqv, dequant_val[band_translate[i]]);
tokens[i][1].dqc = shift ? ROUND_POWER_OF_TWO(tokens[i][1].dqc, shift)
: tokens[i][1].dqc;
if (sz) tokens[i][1].dqc = -tokens[i][1].dqc;
#else
// The 32x32 transform coefficient uses half quantization step size.
// Account for the rounding difference in the dequantized coefficeint
// value when the quantization index is dropped from an even number
// to an odd number.
#if CONFIG_AOM_QM
tran_low_t offset = dqv >> shift;
#else
tran_low_t offset = dq_step[rc != 0];
#endif
if (shift & x) offset += (dqv & 0x01);
if (sz == 0)
tokens[i][1].dqc = dqcoeff[rc] - offset;
else
tokens[i][1].dqc = dqcoeff[rc] + offset;
#endif // CONFIG_NEW_QUANT
} else {
tokens[i][1].dqc = 0;
}
best_index[i][1] = best;
/* Finally, make this the new head of the trellis. */
next = i;
} else {
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
pt = get_coef_context(nb, token_cache, i + 1);
/* Update the cost of each path if we're past the EOB token. */
if (t0 != EOB_TOKEN) {
tokens[next][0].rate += (*token_costs)[1][pt][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != EOB_TOKEN) {
tokens[next][1].rate += (*token_costs)[1][pt][t1];
tokens[next][1].token = ZERO_TOKEN;
}
best_index[i][0] = best_index[i][1] = 0;
shortcut = (tokens[next][0].rate != tokens[next][1].rate);
/* Don't update next, because we didn't add a new node. */
}
if (UNLIKELY(!(--band_left))) {
--band_counts;
band_left = *band_counts;
--token_costs;
}
}
/* Now pick the best path through the whole trellis. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += (*token_costs)[0][ctx][t0];
rate1 += (*token_costs)[0][ctx][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = -1;
for (i = next; i < eob; i = next) {
const int x = tokens[i][best].qc;
const int rc = scan[i];
if (x) final_eob = i;
qcoeff[rc] = x;
dqcoeff[rc] = tokens[i][best].dqc;
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
mb->plane[plane].eobs[block] = final_eob;
assert(final_eob <= default_eob);
return final_eob;
}
#if CONFIG_AOM_HIGHBITDEPTH
typedef enum QUANT_FUNC {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_HIGHBD = 1,
QUANT_FUNC_LAST = 2
} QUANT_FUNC;
static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_LAST][QUANT_FUNC_LAST] =
{ { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
{ av1_quantize_b_facade, av1_highbd_quantize_b_facade },
{ av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
{ NULL, NULL } };
#elif !CONFIG_PVQ
typedef enum QUANT_FUNC {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_LAST = 1
} QUANT_FUNC;
static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_LAST]
[QUANT_FUNC_LAST] = {
{ av1_quantize_fp_facade },
{ av1_quantize_b_facade },
{ av1_quantize_dc_facade },
{ NULL }
};
#endif
static FWD_TXFM_OPT fwd_txfm_opt_list[AV1_XFORM_QUANT_LAST] = {
FWD_TXFM_OPT_NORMAL, FWD_TXFM_OPT_NORMAL, FWD_TXFM_OPT_DC, FWD_TXFM_OPT_NORMAL
};
void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block,
int blk_row, int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, AV1_XFORM_QUANT xform_quant_idx) {
MACROBLOCKD *const xd = &x->e_mbd;
#if !CONFIG_PVQ
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
#else
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
#endif
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const int is_inter = is_inter_block(&xd->mi[0]->mbmi);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
#if CONFIG_AOM_QM
int seg_id = xd->mi[0]->mbmi.segment_id;
const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][!is_inter][tx_size];
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!is_inter][tx_size];
#endif
FWD_TXFM_PARAM fwd_txfm_param;
#if !CONFIG_PVQ
const int tx2d_size = tx_size_2d[tx_size];
QUANT_PARAM qparam;
const int16_t *src_diff;
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
qparam.log_scale = get_tx_scale(tx_size);
#else
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block);
uint8_t *src, *dst;
int16_t *src_int16, *pred;
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
int tx_blk_size;
int i, j;
int skip = 1;
PVQ_INFO *pvq_info = NULL;
(void)scan_order;
(void)qcoeff;
if (x->pvq_coded) {
assert(block < MAX_PVQ_BLOCKS_IN_SB);
pvq_info = &x->pvq[block][plane];
}
dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)];
src = &p->src.buf[4 * (blk_row * src_stride + blk_col)];
src_int16 = &p->src_int16[4 * (blk_row * diff_stride + blk_col)];
pred = &pd->pred[4 * (blk_row * diff_stride + blk_col)];
// transform block size in pixels
tx_blk_size = tx_size_wide[tx_size];
// copy uint8 orig and predicted block to int16 buffer
// in order to use existing VP10 transform functions
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) {
src_int16[diff_stride * j + i] = src[src_stride * j + i];
pred[diff_stride * j + i] = dst[dst_stride * j + i];
}
#endif
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[xform_quant_idx];
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
#if CONFIG_AOM_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
if (LIKELY(!x->skip_block)) {
quant_func_list[xform_quant_idx][QUANT_FUNC_HIGHBD](
coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam
#if CONFIG_AOM_QM
,
qmatrix, iqmatrix
#endif // CONFIG_AOM_QM
);
} else {
av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
}
}
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#if !CONFIG_PVQ
fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
if (LIKELY(!x->skip_block)) {
quant_func_list[xform_quant_idx][QUANT_FUNC_LOWBD](
coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam
#if CONFIG_AOM_QM
,
qmatrix, iqmatrix
#endif // CONFIG_AOM_QM
);
} else {
av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
}
}
#else // #if !CONFIG_PVQ
fwd_txfm_param.rd_transform = 0;
fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
// PVQ for inter mode block
if (!x->skip_block)
skip = av1_pvq_encode_helper(&x->daala_enc,
coeff, // target original vector
ref_coeff, // reference vector
dqcoeff, // de-quantized vector
eob, // End of Block marker
pd->dequant, // aom's quantizers
plane, // image plane
tx_size, // block size in log_2 - 2
tx_type,
&x->rate, // rate measured
x->pvq_speed,
pvq_info); // PVQ info for a block
x->pvq_skip[plane] = skip;
if (!skip) mbmi->skip = 0;
#endif // #if !CONFIG_PVQ
}
#if CONFIG_NEW_QUANT
// TODO(debargha, sarah): Unify these functions with the ones above
void av1_xform_quant_nuq(const AV1_COMMON *cm, MACROBLOCK *x, int plane,
int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const int is_inter = is_inter_block(&xd->mi[0]->mbmi);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
int dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
const uint8_t *band = get_band_translate(tx_size);
FWD_TXFM_PARAM fwd_txfm_param;
assert((x->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[AV1_XFORM_QUANT_FP];
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
// TODO(sarahparker) add all of these new quant quantize functions
// to quant_func_list, just trying to get this expr to work for now
#if CONFIG_AOM_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
switch (get_tx_scale(tx_size)) {
#if CONFIG_TX64X64
case 2:
highbd_quantize_64x64_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant, p->quant_shift,
pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff,
dqcoeff, eob, scan_order->scan, band);
break;
#endif // CONFIG_TX64X64
case 1:
highbd_quantize_32x32_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant, p->quant_shift,
pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff,
dqcoeff, eob, scan_order->scan, band);
break;
default:
highbd_quantize_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant, p->quant_shift,
pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff,
dqcoeff, eob, scan_order->scan, band);
break;
}
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
switch (get_tx_scale(tx_size)) {
#if CONFIG_TX64X64
case 2:
quantize_64x64_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant,
p->quant_shift, pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq],
qcoeff, dqcoeff, eob, scan_order->scan, band);
break;
#endif // CONFIG_TX64X64
case 1:
quantize_32x32_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant,
p->quant_shift, pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq],
qcoeff, dqcoeff, eob, scan_order->scan, band);
break;
default:
quantize_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant,
p->quant_shift, pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq],
qcoeff, dqcoeff, eob, scan_order->scan, band);
break;
}
}
void av1_xform_quant_fp_nuq(const AV1_COMMON *cm, MACROBLOCK *x, int plane,
int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int is_inter = is_inter_block(&xd->mi[0]->mbmi);
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter);
int dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
const uint8_t *band = get_band_translate(tx_size);
FWD_TXFM_PARAM fwd_txfm_param;
assert((x->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[AV1_XFORM_QUANT_FP];
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
// TODO(sarahparker) add all of these new quant quantize functions
// to quant_func_list, just trying to get this expr to work for now
#if CONFIG_AOM_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
switch (get_tx_scale(tx_size)) {
#if CONFIG_TX64X64
case 2:
highbd_quantize_64x64_fp_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp, pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff,
dqcoeff, eob, scan_order->scan, band);
break;
#endif // CONFIG_TX64X64
case 1:
highbd_quantize_32x32_fp_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp, pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff,
dqcoeff, eob, scan_order->scan, band);
break;
default:
highbd_quantize_fp_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp, pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff,
dqcoeff, eob, scan_order->scan, band);
}
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
switch (get_tx_scale(tx_size)) {
#if CONFIG_TX64X64
case 2:
quantize_64x64_fp_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp, pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff,
dqcoeff, eob, scan_order->scan, band);
break;
#endif // CONFIG_TX64X64
case 1:
quantize_32x32_fp_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp, pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff,
dqcoeff, eob, scan_order->scan, band);
break;
default:
quantize_fp_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp,
pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq],
qcoeff, dqcoeff, eob, scan_order->scan, band);
break;
}
}
void av1_xform_quant_dc_nuq(MACROBLOCK *x, int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
const int is_inter = is_inter_block(&xd->mi[0]->mbmi);
int dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type);
FWD_TXFM_PARAM fwd_txfm_param;
assert((x->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[AV1_XFORM_QUANT_DC];
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
// TODO(sarahparker) add all of these new quant quantize functions
// to quant_func_list, just trying to get this expr to work for now
#if CONFIG_AOM_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
switch (get_tx_scale(tx_size)) {
#if CONFIG_TX64X64
case 2:
highbd_quantize_dc_64x64_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant[0],
p->quant_shift[0], pd->dequant[0], p->cuml_bins_nuq[dq][0],
pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob);
break;
#endif // CONFIG_TX64X64
case 1:
highbd_quantize_dc_32x32_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant[0],
p->quant_shift[0], pd->dequant[0], p->cuml_bins_nuq[dq][0],
pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob);
break;
default:
highbd_quantize_dc_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant[0],
p->quant_shift[0], pd->dequant[0], p->cuml_bins_nuq[dq][0],
pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob);
break;
}
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
switch (get_tx_scale(tx_size)) {
#if CONFIG_TX64X64
case 2:
quantize_dc_64x64_nuq(coeff, tx_size_2d[tx_size], x->skip_block,
p->quant[0], p->quant_shift[0], pd->dequant[0],
p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0],
qcoeff, dqcoeff, eob);
break;
#endif // CONFIG_TX64X64
case 1:
quantize_dc_32x32_nuq(coeff, tx_size_2d[tx_size], x->skip_block,
p->quant[0], p->quant_shift[0], pd->dequant[0],
p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0],
qcoeff, dqcoeff, eob);
break;
default:
quantize_dc_nuq(coeff, tx_size_2d[tx_size], x->skip_block, p->quant[0],
p->quant_shift[0], pd->dequant[0],
p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0],
qcoeff, dqcoeff, eob);
break;
}
}
void av1_xform_quant_dc_fp_nuq(MACROBLOCK *x, int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
const int is_inter = is_inter_block(&xd->mi[0]->mbmi);
int dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type);
FWD_TXFM_PARAM fwd_txfm_param;
assert((x->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[AV1_XFORM_QUANT_DC];
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
// TODO(sarahparker) add all of these new quant quantize functions
// to quant_func_list, just trying to get this expr to work for now
#if CONFIG_AOM_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
switch (get_tx_scale(tx_size)) {
#if CONFIG_TX64X64
case 2:
highbd_quantize_dc_64x64_fp_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp[0],
pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0],
qcoeff, dqcoeff, eob);
break;
#endif // CONFIG_TX64X64
case 1:
highbd_quantize_dc_32x32_fp_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp[0],
pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0],
qcoeff, dqcoeff, eob);
break;
default:
highbd_quantize_dc_fp_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp[0],
pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0],
qcoeff, dqcoeff, eob);
break;
}
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
switch (get_tx_scale(tx_size)) {
#if CONFIG_TX64X64
case 2:
quantize_dc_64x64_fp_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp[0],
pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0],
qcoeff, dqcoeff, eob);
break;
#endif // CONFIG_TX64X64
case 1:
quantize_dc_32x32_fp_nuq(
coeff, tx_size_2d[tx_size], x->skip_block, p->quant_fp[0],
pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0],
qcoeff, dqcoeff, eob);
break;
default:
quantize_dc_fp_nuq(coeff, tx_size_2d[tx_size], x->skip_block,
p->quant_fp[0], pd->dequant[0],
p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0],
qcoeff, dqcoeff, eob);
break;
}
}
#endif // CONFIG_NEW_QUANT
static void encode_block(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
struct encode_b_args *const args = arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
int ctx;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
ENTROPY_CONTEXT *a, *l;
INV_TXFM_PARAM inv_txfm_param;
#if CONFIG_PVQ
int tx_blk_size;
int i, j;
#endif
#if CONFIG_VAR_TX
int i;
const int bwl = b_width_log2_lookup[plane_bsize];
#endif
dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col];
a = &args->ta[blk_col];
l = &args->tl[blk_row];
#if CONFIG_VAR_TX
ctx = get_entropy_context(tx_size, a, l);
#else
ctx = combine_entropy_contexts(*a, *l);
#endif
#if CONFIG_VAR_TX
// Assert not magic number (uninitialized).
assert(x->blk_skip[plane][(blk_row << bwl) + blk_col] != 234);
if (x->blk_skip[plane][(blk_row << bwl) + blk_col] == 0) {
#else
{
#endif
#if CONFIG_NEW_QUANT
av1_xform_quant_fp_nuq(cm, x, plane, block, blk_row, blk_col, plane_bsize,
tx_size, ctx);
#else
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
AV1_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
}
#if CONFIG_VAR_TX
else {
p->eobs[block] = 0;
}
#endif
#if !CONFIG_PVQ
if (p->eobs[block]) {
*a = *l = av1_optimize_b(cm, x, plane, block, tx_size, ctx) > 0;
} else {
*a = *l = p->eobs[block] > 0;
}
#if CONFIG_VAR_TX
for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0];
for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0];
#endif
if (p->eobs[block]) *(args->skip) = 0;
if (p->eobs[block] == 0) return;
#else
(void)ctx;
*a = *l = !x->pvq_skip[plane];
if (!x->pvq_skip[plane]) *(args->skip) = 0;
if (x->pvq_skip[plane]) return;
// transform block size in pixels
tx_blk_size = tx_size_wide[tx_size];
// Since av1 does not have separate function which does inverse transform
// but av1_inv_txfm_add_*x*() also does addition of predicted image to
// inverse transformed image,
// pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0;
#endif
// inverse transform parameters
inv_txfm_param.tx_type = get_tx_type(pd->plane_type, xd, block, tx_size);
inv_txfm_param.tx_size = tx_size;
inv_txfm_param.eob = p->eobs[block];
inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
inv_txfm_param.bd = xd->bd;
highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &inv_txfm_param);
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
inv_txfm_add(dqcoeff, dst, pd->dst.stride, &inv_txfm_param);
}
#if CONFIG_VAR_TX
static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
TX_SIZE plane_tx_size;
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
plane_tx_size =
plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
: mbmi->inter_tx_size[tx_row][tx_col];
if (tx_size == plane_tx_size) {
encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
// This is the square transform block partition entry point.
int bsl = tx_size_wide_unit[sub_txs];
int i;
assert(bsl > 0);
assert(tx_size < TX_SIZES_ALL);
for (i = 0; i < 4; ++i) {
const int offsetr = blk_row + ((i >> 1) * bsl);
const int offsetc = blk_col + ((i & 0x01) * bsl);
int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
arg);
block += step;
}
}
}
#endif
typedef struct encode_block_pass1_args {
AV1_COMMON *cm;
MACROBLOCK *x;
} encode_block_pass1_args;
static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
#if CONFIG_NEW_QUANT
int ctx;
#endif // CONFIG_NEW_QUANT
dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col];
#if CONFIG_NEW_QUANT
ctx = 0;
av1_xform_quant_fp_nuq(cm, x, plane, block, blk_row, blk_col, plane_bsize,
tx_size, ctx);
#else
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
AV1_XFORM_QUANT_B);
#endif // CONFIG_NEW_QUANT
#if !CONFIG_PVQ
if (p->eobs[block] > 0) {
#else
if (!x->pvq_skip[plane]) {
{
int tx_blk_size;
int i, j;
// transform block size in pixels
tx_blk_size = tx_size_wide[tx_size];
// Since av1 does not have separate function which does inverse transform
// but av1_inv_txfm_add_*x*() also does addition of predicted image to
// inverse transformed image,
// pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0;
}
#endif // !CONFIG_PVQ
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
av1_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
xd->bd);
} else {
av1_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
xd->bd);
}
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
} else {
av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
}
}
}
void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
encode_block_pass1_args args = { cm, x };
av1_subtract_plane(x, bsize, 0);
av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, &args);
}
void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
int plane;
mbmi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
#if CONFIG_VAR_TX
// TODO(jingning): Clean this up.
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0];
const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize];
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0];
const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0];
int idx, idy;
int block = 0;
int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
av1_get_entropy_contexts(bsize, TX_4X4, pd, ctx.ta[plane], ctx.tl[plane]);
#else
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
#endif
#if !CONFIG_PVQ
av1_subtract_plane(x, bsize, plane);
#endif
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
#if CONFIG_VAR_TX
for (idy = 0; idy < mi_height; idy += bh) {
for (idx = 0; idx < mi_width; idx += bw) {
encode_block_inter(plane, block, idy, idx, plane_bsize, max_tx_size,
&arg);
block += step;
}
}
#else
av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
#endif
}
}
#if CONFIG_SUPERTX
void av1_encode_sb_supertx(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
int plane;
mbmi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_VAR_TX
const TX_SIZE tx_size = TX_4X4;
#else
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
#endif
av1_subtract_plane(x, bsize, plane);
av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
}
}
#endif // CONFIG_SUPERTX
void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
PREDICTION_MODE mode;
const int diff_stride = block_size_wide[plane_bsize];
uint8_t *src, *dst;
int16_t *src_diff;
uint16_t *eob = &p->eobs[block];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
ENTROPY_CONTEXT *a = NULL, *l = NULL;
int ctx;
INV_TXFM_PARAM inv_txfm_param;
#if CONFIG_PVQ
int tx_blk_size;
int i, j;
#endif
assert(tx1d_width == tx1d_height);
dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)];
src = &p->src.buf[4 * (blk_row * src_stride + blk_col)];
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode;
av1_predict_intra_block(xd, pd->width, pd->height, tx_size, mode, dst,
dst_stride, dst, dst_stride, blk_col, blk_row, plane);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block(tx1d_height, tx1d_width, src_diff, diff_stride,
src, src_stride, dst, dst_stride, xd->bd);
} else {
aom_subtract_block(tx1d_height, tx1d_width, src_diff, diff_stride, src,
src_stride, dst, dst_stride);
}
#else
aom_subtract_block(tx1d_height, tx1d_width, src_diff, diff_stride, src,
src_stride, dst, dst_stride);
#endif // CONFIG_AOM_HIGHBITDEPTH
a = &args->ta[blk_col];
l = &args->tl[blk_row];
#if !CONFIG_PVQ
ctx = combine_entropy_contexts(*a, *l);
if (args->enable_optimize_b) {
#if CONFIG_NEW_QUANT
av1_xform_quant_fp_nuq(cm, x, plane, block, blk_row, blk_col, plane_bsize,
tx_size, ctx);
#else // CONFIG_NEW_QUANT
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
AV1_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
if (p->eobs[block]) {
*a = *l = av1_optimize_b(cm, x, plane, block, tx_size, ctx) > 0;
} else {
*a = *l = 0;
}
} else {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
AV1_XFORM_QUANT_B);
*a = *l = p->eobs[block] > 0;
}
if (*eob) {
// inverse transform
inv_txfm_param.tx_type = tx_type;
inv_txfm_param.tx_size = tx_size;
inv_txfm_param.eob = *eob;
inv_txfm_param.lossless = xd->lossless[mbmi->segment_id];
#if CONFIG_AOM_HIGHBITDEPTH
inv_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param);
} else {
inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param);
}
#else
inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param);
#endif // CONFIG_AOM_HIGHBITDEPTH
*(args->skip) = 0;
}
#else // #if !CONFIG_PVQ
(void)ctx;
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
AV1_XFORM_QUANT_FP);
*a = *l = !x->pvq_skip[plane];
// *(args->skip) == mbmi->skip
if (!x->pvq_skip[plane]) *(args->skip) = 0;
if (x->pvq_skip[plane]) return;
// transform block size in pixels
tx_blk_size = tx_size_wide[tx_size];
// Since av1 does not have separate function which does inverse transform
// but av1_inv_txfm_add_*x*() also does addition of predicted image to
// inverse transformed image,
// pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) dst[j * dst_stride + i] = 0;
inv_txfm_param.tx_type = tx_type;
inv_txfm_param.tx_size = tx_size;
inv_txfm_param.eob = *eob;
inv_txfm_param.lossless = xd->lossless[mbmi->segment_id];
#if CONFIG_AOM_HIGHBITDEPTH
#error
#else
inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param);
#endif
#endif // #if !CONFIG_PVQ
#if !CONFIG_PVQ
if (*eob) *(args->skip) = 0;
#else
// Note : *(args->skip) == mbmi->skip
#endif
}
void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x,
BLOCK_SIZE bsize, int plane,
int enable_optimize_b) {
const MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE];
ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE];
struct encode_b_args arg = {
cm, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b
};
if (enable_optimize_b) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size =
plane ? get_uv_tx_size(&xd->mi[0]->mbmi, pd) : xd->mi[0]->mbmi.tx_size;
av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl);
}
av1_foreach_transformed_block_in_plane(xd, bsize, plane,
av1_encode_block_intra, &arg);
}
#if CONFIG_PVQ
int av1_pvq_encode_helper(daala_enc_ctx *daala_enc, tran_low_t *const coeff,
tran_low_t *ref_coeff, tran_low_t *const dqcoeff,
uint16_t *eob, const int16_t *quant, int plane,
int tx_size, TX_TYPE tx_type, int *rate, int speed,
PVQ_INFO *pvq_info) {
const int tx_blk_size = tx_size_wide[tx_size];
int skip;
// TODO(yushin): Enable this later, when pvq_qm_q4 is available in AOM.
// int pvq_dc_quant = OD_MAXI(1,
// quant * daala_enc->state.pvq_qm_q4[plane][od_qm_get_index(tx_size, 0)] >>
// 4);
int quant_shift = get_tx_scale(tx_size);
// DC quantizer for PVQ
int pvq_dc_quant = OD_MAXI(1, quant[0] >> quant_shift);
int tell;
int has_dc_skip = 1;
int i;
int off = od_qm_offset(tx_size, plane ? 1 : 0);
#if PVQ_CHROMA_RD
double save_pvq_lambda;
#endif
DECLARE_ALIGNED(16, int16_t, coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int16_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int16_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, in_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
*eob = 0;
tell = od_ec_enc_tell_frac(&daala_enc->ec);
// Change coefficient ordering for pvq encoding.
od_raster_to_coding_order(coeff_pvq, tx_blk_size, tx_type, coeff,
tx_blk_size);
od_raster_to_coding_order(ref_coeff_pvq, tx_blk_size, tx_type, ref_coeff,
tx_blk_size);
// copy int16 inputs to int32
for (i = 0; i < tx_blk_size * tx_blk_size; i++) {
ref_int32[i] = ref_coeff_pvq[i];
in_int32[i] = coeff_pvq[i];
}
#if PVQ_CHROMA_RD
if (plane != 0) {
save_pvq_lambda = daala_enc->pvq_norm_lambda;
daala_enc->pvq_norm_lambda *= 0.8;
}
#endif
if (abs(in_int32[0] - ref_int32[0]) < pvq_dc_quant * 141 / 256) { /* 0.55 */
out_int32[0] = 0;
} else {
out_int32[0] = OD_DIV_R0(in_int32[0] - ref_int32[0], pvq_dc_quant);
}
skip = od_pvq_encode(
daala_enc, ref_int32, in_int32, out_int32,
(int)quant[0] >> quant_shift, // scale/quantizer
(int)quant[1] >> quant_shift, // scale/quantizer
// TODO(yushin): Instead of 0,
// use daala_enc->use_activity_masking for activity masking.
plane, tx_size, OD_PVQ_BETA[0][plane][tx_size], OD_ROBUST_STREAM,
0, // is_keyframe,
0, 0, 0, // q_scaling, bx, by,
daala_enc->state.qm + off, daala_enc->state.qm_inv + off,
speed, // speed
pvq_info);
if (skip && pvq_info) assert(pvq_info->ac_dc_coded == 0);
if (!skip && pvq_info) assert(pvq_info->ac_dc_coded > 0);
// Encode residue of DC coeff, if required.
if (!has_dc_skip || out_int32[0]) {
generic_encode(&daala_enc->ec, &daala_enc->state.adapt.model_dc[plane],
abs(out_int32[0]) - has_dc_skip, -1,
&daala_enc->state.adapt.ex_dc[plane][tx_size][0], 2);
}
if (out_int32[0]) {
od_ec_enc_bits(&daala_enc->ec, out_int32[0] < 0, 1);
skip = 0;
}
// need to save quantized residue of DC coeff
// so that final pvq bitstream writing can know whether DC is coded.
if (pvq_info) pvq_info->dq_dc_residue = out_int32[0];
out_int32[0] = out_int32[0] * pvq_dc_quant;
out_int32[0] += ref_int32[0];
// copy int32 result back to int16
for (i = 0; i < tx_blk_size * tx_blk_size; i++) dqcoeff_pvq[i] = out_int32[i];
// Back to original coefficient order
od_coding_order_to_raster(dqcoeff, tx_blk_size, tx_type, dqcoeff_pvq,
tx_blk_size);
*eob = tx_blk_size * tx_blk_size;
*rate = (od_ec_enc_tell_frac(&daala_enc->ec) - tell)
<< (AV1_PROB_COST_SHIFT - OD_BITRES);
assert(*rate >= 0);
#if PVQ_CHROMA_RD
if (plane != 0) daala_enc->pvq_norm_lambda = save_pvq_lambda;
#endif
return skip;
}
void av1_store_pvq_enc_info(PVQ_INFO *pvq_info, int *qg, int *theta,
int *max_theta, int *k, od_coeff *y, int nb_bands,
const int *off, int *size, int skip_rest,
int skip_dir,
int bs) { // block size in log_2 -2
int i;
const int tx_blk_size = tx_size_wide[bs];
for (i = 0; i < nb_bands; i++) {
pvq_info->qg[i] = qg[i];
pvq_info->theta[i] = theta[i];
pvq_info->max_theta[i] = max_theta[i];
pvq_info->k[i] = k[i];
pvq_info->off[i] = off[i];
pvq_info->size[i] = size[i];
}
memcpy(pvq_info->y, y, tx_blk_size * tx_blk_size * sizeof(od_coeff));
pvq_info->nb_bands = nb_bands;
pvq_info->skip_rest = skip_rest;
pvq_info->skip_dir = skip_dir;
pvq_info->bs = bs;
}
#endif