aom/vp9/common/vp9_blockd.h

903 строки
28 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP9_COMMON_VP9_BLOCKD_H_
#define VP9_COMMON_VP9_BLOCKD_H_
#include "./vpx_config.h"
#include "vpx_scale/yv12config.h"
#include "vp9/common/vp9_convolve.h"
#include "vp9/common/vp9_mv.h"
#include "vp9/common/vp9_treecoder.h"
#include "vpx_ports/mem.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_enums.h"
#define MAX_MB_SEGMENTS 8
#define MB_SEG_TREE_PROBS (MAX_MB_SEGMENTS-1)
#define PREDICTION_PROBS 3
#define DEFAULT_PRED_PROB_0 120
#define DEFAULT_PRED_PROB_1 80
#define DEFAULT_PRED_PROB_2 40
#define MBSKIP_CONTEXTS 3
#define MAX_REF_LF_DELTAS 4
#define MAX_MODE_LF_DELTAS 4
/* Segment Feature Masks */
#define SEGMENT_DELTADATA 0
#define SEGMENT_ABSDATA 1
#define MAX_MV_REF_CANDIDATES 2
typedef enum {
PLANE_TYPE_Y_WITH_DC,
PLANE_TYPE_UV,
} PLANE_TYPE;
typedef char ENTROPY_CONTEXT;
typedef char PARTITION_CONTEXT;
static INLINE int combine_entropy_contexts(ENTROPY_CONTEXT a,
ENTROPY_CONTEXT b) {
return (a != 0) + (b != 0);
}
typedef enum {
KEY_FRAME = 0,
INTER_FRAME = 1
} FRAME_TYPE;
typedef enum {
EIGHTTAP_SMOOTH,
EIGHTTAP,
EIGHTTAP_SHARP,
BILINEAR,
SWITCHABLE /* should be the last one */
} INTERPOLATIONFILTERTYPE;
typedef enum {
DC_PRED, // Average of above and left pixels
V_PRED, // Vertical
H_PRED, // Horizontal
D45_PRED, // Directional 45 deg = round(arctan(1/1) * 180/pi)
D135_PRED, // Directional 135 deg = 180 - 45
D117_PRED, // Directional 117 deg = 180 - 63
D153_PRED, // Directional 153 deg = 180 - 27
D27_PRED, // Directional 27 deg = round(arctan(1/2) * 180/pi)
D63_PRED, // Directional 63 deg = round(arctan(2/1) * 180/pi)
TM_PRED, // True-motion
NEARESTMV,
NEARMV,
ZEROMV,
NEWMV,
MB_MODE_COUNT
} MB_PREDICTION_MODE;
static INLINE int is_inter_mode(MB_PREDICTION_MODE mode) {
return mode >= NEARESTMV && mode <= NEWMV;
}
// Segment level features.
typedef enum {
SEG_LVL_ALT_Q = 0, // Use alternate Quantizer ....
SEG_LVL_ALT_LF = 1, // Use alternate loop filter value...
SEG_LVL_REF_FRAME = 2, // Optional Segment reference frame
SEG_LVL_SKIP = 3, // Optional Segment (0,0) + skip mode
SEG_LVL_MAX = 4 // Number of MB level features supported
} SEG_LVL_FEATURES;
// Segment level features.
typedef enum {
TX_4X4 = 0, // 4x4 dct transform
TX_8X8 = 1, // 8x8 dct transform
TX_16X16 = 2, // 16x16 dct transform
TX_32X32 = 3, // 32x32 dct transform
TX_SIZE_MAX_SB, // Number of transforms available to SBs
} TX_SIZE;
typedef enum {
DCT_DCT = 0, // DCT in both horizontal and vertical
ADST_DCT = 1, // ADST in vertical, DCT in horizontal
DCT_ADST = 2, // DCT in vertical, ADST in horizontal
ADST_ADST = 3 // ADST in both directions
} TX_TYPE;
#define VP9_INTRA_MODES (TM_PRED + 1)
#define VP9_INTER_MODES (1 + NEWMV - NEARESTMV)
#define WHT_UPSCALE_FACTOR 2
/* For keyframes, intra block modes are predicted by the (already decoded)
modes for the Y blocks to the left and above us; for interframes, there
is a single probability table. */
union b_mode_info {
struct {
MB_PREDICTION_MODE first;
} as_mode;
int_mv as_mv[2]; // first, second inter predictor motion vectors
};
typedef enum {
NONE = -1,
INTRA_FRAME = 0,
LAST_FRAME = 1,
GOLDEN_FRAME = 2,
ALTREF_FRAME = 3,
MAX_REF_FRAMES = 4
} MV_REFERENCE_FRAME;
static INLINE int b_width_log2(BLOCK_SIZE_TYPE sb_type) {
switch (sb_type) {
case BLOCK_SIZE_SB4X8:
case BLOCK_SIZE_AB4X4: return 0;
case BLOCK_SIZE_SB8X4:
case BLOCK_SIZE_SB8X8:
case BLOCK_SIZE_SB8X16: return 1;
case BLOCK_SIZE_SB16X8:
case BLOCK_SIZE_MB16X16:
case BLOCK_SIZE_SB16X32: return 2;
case BLOCK_SIZE_SB32X16:
case BLOCK_SIZE_SB32X32:
case BLOCK_SIZE_SB32X64: return 3;
case BLOCK_SIZE_SB64X32:
case BLOCK_SIZE_SB64X64: return 4;
default: assert(0);
return -1;
}
}
static INLINE int b_height_log2(BLOCK_SIZE_TYPE sb_type) {
switch (sb_type) {
case BLOCK_SIZE_SB8X4:
case BLOCK_SIZE_AB4X4: return 0;
case BLOCK_SIZE_SB4X8:
case BLOCK_SIZE_SB8X8:
case BLOCK_SIZE_SB16X8: return 1;
case BLOCK_SIZE_SB8X16:
case BLOCK_SIZE_MB16X16:
case BLOCK_SIZE_SB32X16: return 2;
case BLOCK_SIZE_SB16X32:
case BLOCK_SIZE_SB32X32:
case BLOCK_SIZE_SB64X32: return 3;
case BLOCK_SIZE_SB32X64:
case BLOCK_SIZE_SB64X64: return 4;
default: assert(0);
return -1;
}
}
static INLINE int mi_width_log2(BLOCK_SIZE_TYPE sb_type) {
int a = b_width_log2(sb_type) - 1;
// align 4x4 block to mode_info
if (a < 0)
a = 0;
assert(a >= 0);
return a;
}
static INLINE int mi_height_log2(BLOCK_SIZE_TYPE sb_type) {
int a = b_height_log2(sb_type) - 1;
if (a < 0)
a = 0;
assert(a >= 0);
return a;
}
typedef struct {
MB_PREDICTION_MODE mode, uv_mode;
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
TX_SIZE txfm_size;
int_mv mv[2]; // for each reference frame used
int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
int_mv best_mv, best_second_mv;
int mb_mode_context[MAX_REF_FRAMES];
unsigned char mb_skip_coeff; /* does this mb has coefficients at all, 1=no coefficients, 0=need decode tokens */
unsigned char need_to_clamp_mvs;
unsigned char need_to_clamp_secondmv;
unsigned char segment_id; // Segment id for current frame
// Flags used for prediction status of various bistream signals
unsigned char seg_id_predicted;
unsigned char ref_predicted;
// Indicates if the mb is part of the image (1) vs border (0)
// This can be useful in determining whether the MB provides
// a valid predictor
unsigned char mb_in_image;
INTERPOLATIONFILTERTYPE interp_filter;
BLOCK_SIZE_TYPE sb_type;
} MB_MODE_INFO;
typedef struct {
MB_MODE_INFO mbmi;
union b_mode_info bmi[4];
} MODE_INFO;
struct scale_factors {
int x_num;
int x_den;
int x_offset_q4;
int x_step_q4;
int y_num;
int y_den;
int y_offset_q4;
int y_step_q4;
int (*scale_value_x)(int val, const struct scale_factors *scale);
int (*scale_value_y)(int val, const struct scale_factors *scale);
void (*set_scaled_offsets)(struct scale_factors *scale, int row, int col);
int_mv32 (*scale_mv_q3_to_q4)(const int_mv *src_mv,
const struct scale_factors *scale);
int32_t (*scale_mv_component_q4)(int mv_q4, int num, int den, int offset_q4);
convolve_fn_t predict[2][2][2]; // horiz, vert, avg
};
#if CONFIG_ALPHA
enum { MAX_MB_PLANE = 4 };
#else
enum { MAX_MB_PLANE = 3 };
#endif
struct buf_2d {
uint8_t *buf;
int stride;
};
struct macroblockd_plane {
DECLARE_ALIGNED(16, int16_t, qcoeff[64 * 64]);
DECLARE_ALIGNED(16, int16_t, dqcoeff[64 * 64]);
DECLARE_ALIGNED(16, uint16_t, eobs[256]);
PLANE_TYPE plane_type;
int subsampling_x;
int subsampling_y;
struct buf_2d dst;
struct buf_2d pre[2];
int16_t *dequant;
ENTROPY_CONTEXT *above_context;
ENTROPY_CONTEXT *left_context;
};
#define BLOCK_OFFSET(x, i, n) ((x) + (i) * (n))
typedef struct macroblockd {
struct macroblockd_plane plane[MAX_MB_PLANE];
struct scale_factors scale_factor[2];
struct scale_factors scale_factor_uv[2];
MODE_INFO *prev_mode_info_context;
MODE_INFO *mode_info_context;
int mode_info_stride;
FRAME_TYPE frame_type;
int up_available;
int left_available;
int right_available;
// partition contexts
PARTITION_CONTEXT *above_seg_context;
PARTITION_CONTEXT *left_seg_context;
/* 0 (disable) 1 (enable) segmentation */
unsigned char segmentation_enabled;
/* 0 (do not update) 1 (update) the macroblock segmentation map. */
unsigned char update_mb_segmentation_map;
/* 0 (do not update) 1 (update) the macroblock segmentation feature data. */
unsigned char update_mb_segmentation_data;
/* 0 (do not update) 1 (update) the macroblock segmentation feature data. */
unsigned char mb_segment_abs_delta;
/* Per frame flags that define which MB level features (such as quantizer or loop filter level) */
/* are enabled and when enabled the proabilities used to decode the per MB flags in MB_MODE_INFO */
// Probability Tree used to code Segment number
vp9_prob mb_segment_tree_probs[MB_SEG_TREE_PROBS];
// Segment features
signed char segment_feature_data[MAX_MB_SEGMENTS][SEG_LVL_MAX];
unsigned int segment_feature_mask[MAX_MB_SEGMENTS];
/* mode_based Loop filter adjustment */
unsigned char mode_ref_lf_delta_enabled;
unsigned char mode_ref_lf_delta_update;
/* Delta values have the range +/- MAX_LOOP_FILTER */
/* 0 = Intra, Last, GF, ARF */
signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS];
/* 0 = Intra, Last, GF, ARF */
signed char ref_lf_deltas[MAX_REF_LF_DELTAS];
/* 0 = I4X4_PRED, ZERO_MV, MV, SPLIT */
signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS];
/* 0 = I4X4_PRED, ZERO_MV, MV, SPLIT */
signed char mode_lf_deltas[MAX_MODE_LF_DELTAS];
/* Distance of MB away from frame edges */
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
unsigned int frames_since_golden;
unsigned int frames_till_alt_ref_frame;
int lossless;
/* Inverse transform function pointers. */
void (*inv_txm4x4_1_add)(int16_t *input, uint8_t *dest, int stride);
void (*inv_txm4x4_add)(int16_t *input, uint8_t *dest, int stride);
void (*itxm_add)(int16_t *input, uint8_t *dest, int stride, int eob);
void (*itxm_add_y_block)(int16_t *q, uint8_t *dst, int stride,
struct macroblockd *xd);
void (*itxm_add_uv_block)(int16_t *q, uint8_t *dst, int stride,
uint16_t *eobs);
struct subpix_fn_table subpix;
int allow_high_precision_mv;
int corrupted;
int sb_index; // index of 32x32 block inside the 64x64 block
int mb_index; // index of 16x16 block inside the 32x32 block
int b_index; // index of 8x8 block inside the 16x16 block
int ab_index; // index of 4x4 block inside the 8x8 block
int q_index;
} MACROBLOCKD;
static int *get_sb_index(MACROBLOCKD *xd, BLOCK_SIZE_TYPE subsize) {
switch (subsize) {
case BLOCK_SIZE_SB64X64:
case BLOCK_SIZE_SB64X32:
case BLOCK_SIZE_SB32X64:
case BLOCK_SIZE_SB32X32:
return &xd->sb_index;
case BLOCK_SIZE_SB32X16:
case BLOCK_SIZE_SB16X32:
case BLOCK_SIZE_MB16X16:
return &xd->mb_index;
case BLOCK_SIZE_SB16X8:
case BLOCK_SIZE_SB8X16:
case BLOCK_SIZE_SB8X8:
return &xd->b_index;
case BLOCK_SIZE_SB8X4:
case BLOCK_SIZE_SB4X8:
case BLOCK_SIZE_AB4X4:
return &xd->ab_index;
default:
assert(0);
return NULL;
}
}
static INLINE void update_partition_context(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE sb_type,
BLOCK_SIZE_TYPE sb_size) {
int bsl = b_width_log2(sb_size), bs = (1 << bsl) / 2;
int bwl = b_width_log2(sb_type);
int bhl = b_height_log2(sb_type);
int boffset = b_width_log2(BLOCK_SIZE_SB64X64) - bsl;
int i;
// update the partition context at the end notes. set partition bits
// of block sizes larger than the current one to be one, and partition
// bits of smaller block sizes to be zero.
if ((bwl == bsl) && (bhl == bsl)) {
for (i = 0; i < bs; i++)
xd->left_seg_context[i] = ~(0xf << boffset);
for (i = 0; i < bs; i++)
xd->above_seg_context[i] = ~(0xf << boffset);
} else if ((bwl == bsl) && (bhl < bsl)) {
for (i = 0; i < bs; i++)
xd->left_seg_context[i] = ~(0xe << boffset);
for (i = 0; i < bs; i++)
xd->above_seg_context[i] = ~(0xf << boffset);
} else if ((bwl < bsl) && (bhl == bsl)) {
for (i = 0; i < bs; i++)
xd->left_seg_context[i] = ~(0xf << boffset);
for (i = 0; i < bs; i++)
xd->above_seg_context[i] = ~(0xe << boffset);
} else if ((bwl < bsl) && (bhl < bsl)) {
for (i = 0; i < bs; i++)
xd->left_seg_context[i] = ~(0xe << boffset);
for (i = 0; i < bs; i++)
xd->above_seg_context[i] = ~(0xe << boffset);
} else {
assert(0);
}
}
static INLINE int partition_plane_context(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE sb_type) {
int bsl = mi_width_log2(sb_type), bs = 1 << bsl;
int above = 0, left = 0, i;
int boffset = mi_width_log2(BLOCK_SIZE_SB64X64) - bsl;
assert(mi_width_log2(sb_type) == mi_height_log2(sb_type));
assert(bsl >= 0);
assert(boffset >= 0);
for (i = 0; i < bs; i++)
above |= (xd->above_seg_context[i] & (1 << boffset));
for (i = 0; i < bs; i++)
left |= (xd->left_seg_context[i] & (1 << boffset));
above = (above > 0);
left = (left > 0);
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
}
static BLOCK_SIZE_TYPE get_subsize(BLOCK_SIZE_TYPE bsize,
PARTITION_TYPE partition) {
BLOCK_SIZE_TYPE subsize;
switch (partition) {
case PARTITION_NONE:
subsize = bsize;
break;
case PARTITION_HORZ:
if (bsize == BLOCK_SIZE_SB64X64)
subsize = BLOCK_SIZE_SB64X32;
else if (bsize == BLOCK_SIZE_SB32X32)
subsize = BLOCK_SIZE_SB32X16;
else if (bsize == BLOCK_SIZE_MB16X16)
subsize = BLOCK_SIZE_SB16X8;
else if (bsize == BLOCK_SIZE_SB8X8)
subsize = BLOCK_SIZE_SB8X4;
else
assert(0);
break;
case PARTITION_VERT:
if (bsize == BLOCK_SIZE_SB64X64)
subsize = BLOCK_SIZE_SB32X64;
else if (bsize == BLOCK_SIZE_SB32X32)
subsize = BLOCK_SIZE_SB16X32;
else if (bsize == BLOCK_SIZE_MB16X16)
subsize = BLOCK_SIZE_SB8X16;
else if (bsize == BLOCK_SIZE_SB8X8)
subsize = BLOCK_SIZE_SB4X8;
else
assert(0);
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_SIZE_SB64X64)
subsize = BLOCK_SIZE_SB32X32;
else if (bsize == BLOCK_SIZE_SB32X32)
subsize = BLOCK_SIZE_MB16X16;
else if (bsize == BLOCK_SIZE_MB16X16)
subsize = BLOCK_SIZE_SB8X8;
else if (bsize == BLOCK_SIZE_SB8X8)
subsize = BLOCK_SIZE_AB4X4;
else
assert(0);
break;
default:
assert(0);
}
return subsize;
}
// transform mapping
static TX_TYPE txfm_map(MB_PREDICTION_MODE bmode) {
switch (bmode) {
case TM_PRED :
case D135_PRED :
return ADST_ADST;
case V_PRED :
case D117_PRED :
case D63_PRED:
return ADST_DCT;
case H_PRED :
case D153_PRED :
case D27_PRED :
return DCT_ADST;
default:
return DCT_DCT;
}
}
static TX_TYPE get_tx_type_4x4(const MACROBLOCKD *xd, int ib) {
TX_TYPE tx_type;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (xd->lossless || mbmi->ref_frame != INTRA_FRAME)
return DCT_DCT;
if (mbmi->sb_type < BLOCK_SIZE_SB8X8) {
tx_type = txfm_map(mi->bmi[ib].as_mode.first);
} else {
assert(mbmi->mode <= TM_PRED);
tx_type = txfm_map(mbmi->mode);
}
return tx_type;
}
static TX_TYPE get_tx_type_8x8(const MACROBLOCKD *xd, int ib) {
TX_TYPE tx_type = DCT_DCT;
if (xd->mode_info_context->mbmi.mode <= TM_PRED) {
tx_type = txfm_map(xd->mode_info_context->mbmi.mode);
}
return tx_type;
}
static TX_TYPE get_tx_type_16x16(const MACROBLOCKD *xd, int ib) {
TX_TYPE tx_type = DCT_DCT;
if (xd->mode_info_context->mbmi.mode <= TM_PRED) {
tx_type = txfm_map(xd->mode_info_context->mbmi.mode);
}
return tx_type;
}
void vp9_setup_block_dptrs(MACROBLOCKD *xd,
int subsampling_x, int subsampling_y);
static TX_SIZE get_uv_tx_size(const MACROBLOCKD *xd) {
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
const TX_SIZE size = mbmi->txfm_size;
switch (mbmi->sb_type) {
case BLOCK_SIZE_SB64X64:
return size;
case BLOCK_SIZE_SB64X32:
case BLOCK_SIZE_SB32X64:
case BLOCK_SIZE_SB32X32:
if (size == TX_32X32)
return TX_16X16;
else
return size;
case BLOCK_SIZE_SB32X16:
case BLOCK_SIZE_SB16X32:
case BLOCK_SIZE_MB16X16:
if (size == TX_16X16)
return TX_8X8;
else
return size;
default:
return TX_4X4;
}
return size;
}
struct plane_block_idx {
int plane;
int block;
};
// TODO(jkoleszar): returning a struct so it can be used in a const context,
// expect to refactor this further later.
static INLINE struct plane_block_idx plane_block_idx(int y_blocks,
int b_idx) {
const int v_offset = y_blocks * 5 / 4;
struct plane_block_idx res;
if (b_idx < y_blocks) {
res.plane = 0;
res.block = b_idx;
} else if (b_idx < v_offset) {
res.plane = 1;
res.block = b_idx - y_blocks;
} else {
assert(b_idx < y_blocks * 3 / 2);
res.plane = 2;
res.block = b_idx - v_offset;
}
return res;
}
static INLINE int plane_block_width(BLOCK_SIZE_TYPE bsize,
const struct macroblockd_plane* plane) {
return 4 << (b_width_log2(bsize) - plane->subsampling_x);
}
static INLINE int plane_block_height(BLOCK_SIZE_TYPE bsize,
const struct macroblockd_plane* plane) {
return 4 << (b_height_log2(bsize) - plane->subsampling_y);
}
typedef void (*foreach_transformed_block_visitor)(int plane, int block,
BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size,
void *arg);
static INLINE void foreach_transformed_block_in_plane(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane,
foreach_transformed_block_visitor visit, void *arg) {
const int bw = b_width_log2(bsize), bh = b_height_log2(bsize);
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size =
plane ? get_uv_tx_size(xd) : xd->mode_info_context->mbmi.txfm_size;
const int block_size_b = bw + bh;
const int txfrm_size_b = tx_size * 2;
// subsampled size of the block
const int ss_sum = xd->plane[plane].subsampling_x
+ xd->plane[plane].subsampling_y;
const int ss_block_size = block_size_b - ss_sum;
const int step = 1 << txfrm_size_b;
int i;
assert(txfrm_size_b <= block_size_b);
assert(txfrm_size_b <= ss_block_size);
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) {
int r, c;
const int sw = bw - xd->plane[plane].subsampling_x;
const int sh = bh - xd->plane[plane].subsampling_y;
int max_blocks_wide = 1 << sw;
int max_blocks_high = 1 << sh;
// xd->mb_to_right_edge is in units of pixels * 8. This converts
// it to 4x4 block sizes.
if (xd->mb_to_right_edge < 0)
max_blocks_wide +=
+ (xd->mb_to_right_edge >> (5 + xd->plane[plane].subsampling_x));
if (xd->mb_to_bottom_edge < 0)
max_blocks_high +=
+ (xd->mb_to_bottom_edge >> (5 + xd->plane[plane].subsampling_y));
i = 0;
// Unlike the normal case - in here we have to keep track of the
// row and column of the blocks we use so that we know if we are in
// the unrestricted motion border..
for (r = 0; r < (1 << sh); r += (1 << tx_size)) {
for (c = 0; c < (1 << sw); c += (1 << tx_size)) {
if (r < max_blocks_high && c < max_blocks_wide)
visit(plane, i, bsize, txfrm_size_b, arg);
i += step;
}
}
} else {
for (i = 0; i < (1 << ss_block_size); i += step) {
visit(plane, i, bsize, txfrm_size_b, arg);
}
}
}
static INLINE void foreach_transformed_block(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_transformed_block_visitor visit, void *arg) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
foreach_transformed_block_in_plane(xd, bsize, plane,
visit, arg);
}
}
static INLINE void foreach_transformed_block_uv(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_transformed_block_visitor visit, void *arg) {
int plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
foreach_transformed_block_in_plane(xd, bsize, plane,
visit, arg);
}
}
// TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could
// calculate the subsampled BLOCK_SIZE_TYPE, but that type isn't defined for
// sizes smaller than 16x16 yet.
typedef void (*foreach_predicted_block_visitor)(int plane, int block,
BLOCK_SIZE_TYPE bsize,
int pred_w, int pred_h,
void *arg);
static INLINE void foreach_predicted_block_in_plane(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane,
foreach_predicted_block_visitor visit, void *arg) {
int i, x, y;
// block sizes in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// subsampled size of the block
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
// size of the predictor to use.
int pred_w, pred_h;
if (xd->mode_info_context->mbmi.sb_type < BLOCK_SIZE_SB8X8) {
assert(bsize == BLOCK_SIZE_SB8X8);
pred_w = 0;
pred_h = 0;
} else {
pred_w = bwl;
pred_h = bhl;
}
assert(pred_w <= bwl);
assert(pred_h <= bhl);
// visit each subblock in raster order
i = 0;
for (y = 0; y < 1 << bhl; y += 1 << pred_h) {
for (x = 0; x < 1 << bwl; x += 1 << pred_w) {
visit(plane, i, bsize, pred_w, pred_h, arg);
i += 1 << pred_w;
}
i += (1 << (bwl + pred_h)) - (1 << bwl);
}
}
static INLINE void foreach_predicted_block(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_predicted_block_visitor visit, void *arg) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg);
}
}
static INLINE void foreach_predicted_block_uv(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_predicted_block_visitor visit, void *arg) {
int plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg);
}
}
static int raster_block_offset(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize,
int plane, int block, int stride) {
const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int y = 4 * (block >> bw), x = 4 * (block & ((1 << bw) - 1));
return y * stride + x;
}
static int16_t* raster_block_offset_int16(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE bsize,
int plane, int block, int16_t *base) {
const int stride = plane_block_width(bsize, &xd->plane[plane]);
return base + raster_block_offset(xd, bsize, plane, block, stride);
}
static uint8_t* raster_block_offset_uint8(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE bsize,
int plane, int block,
uint8_t *base, int stride) {
return base + raster_block_offset(xd, bsize, plane, block, stride);
}
static int txfrm_block_to_raster_block(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE bsize,
int plane, int block,
int ss_txfrm_size) {
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int txwl = ss_txfrm_size / 2;
const int tx_cols_lg2 = bwl - txwl;
const int tx_cols = 1 << tx_cols_lg2;
const int raster_mb = block >> ss_txfrm_size;
const int x = (raster_mb & (tx_cols - 1)) << (txwl);
const int y = raster_mb >> tx_cols_lg2 << (txwl);
return x + (y << bwl);
}
static void txfrm_block_to_raster_xy(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE bsize,
int plane, int block,
int ss_txfrm_size,
int *x, int *y) {
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int txwl = ss_txfrm_size / 2;
const int tx_cols_lg2 = bwl - txwl;
const int tx_cols = 1 << tx_cols_lg2;
const int raster_mb = block >> ss_txfrm_size;
*x = (raster_mb & (tx_cols - 1)) << (txwl);
*y = raster_mb >> tx_cols_lg2 << (txwl);
}
static void extend_for_intra(MACROBLOCKD* const xd, int plane, int block,
BLOCK_SIZE_TYPE bsize, int ss_txfrm_size) {
const int bw = plane_block_width(bsize, &xd->plane[plane]);
const int bh = plane_block_height(bsize, &xd->plane[plane]);
int x, y;
txfrm_block_to_raster_xy(xd, bsize, plane, block, ss_txfrm_size, &x, &y);
x = x * 4 - 1;
y = y * 4 - 1;
// Copy a pixel into the umv if we are in a situation where the block size
// extends into the UMV.
// TODO(JBB): Should be able to do the full extend in place so we don't have
// to do this multiple times.
if (xd->mb_to_right_edge < 0) {
int umv_border_start = bw
+ (xd->mb_to_right_edge >> (3 + xd->plane[plane].subsampling_x));
if (x + bw > umv_border_start)
vpx_memset(
xd->plane[plane].dst.buf + y * xd->plane[plane].dst.stride
+ umv_border_start,
*(xd->plane[plane].dst.buf + y * xd->plane[plane].dst.stride
+ umv_border_start - 1),
bw);
}
if (xd->mb_to_bottom_edge < 0) {
int umv_border_start = bh
+ (xd->mb_to_bottom_edge >> (3 + xd->plane[plane].subsampling_y));
int i;
uint8_t c = *(xd->plane[plane].dst.buf
+ (umv_border_start - 1) * xd->plane[plane].dst.stride + x);
uint8_t *d = xd->plane[plane].dst.buf
+ umv_border_start * xd->plane[plane].dst.stride + x;
if (y + bh > umv_border_start)
for (i = 0; i < bh; i++, d += xd->plane[plane].dst.stride)
*d = c;
}
}
static void set_contexts_on_border(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize,
int plane, int ss_tx_size, int eob, int aoff,
int loff, ENTROPY_CONTEXT *A,
ENTROPY_CONTEXT *L) {
const int bw = b_width_log2(bsize), bh = b_height_log2(bsize);
const int sw = bw - xd->plane[plane].subsampling_x;
const int sh = bh - xd->plane[plane].subsampling_y;
int mi_blocks_wide = 1 << sw;
int mi_blocks_high = 1 << sh;
int tx_size_in_blocks = (1 << ss_tx_size);
int above_contexts = tx_size_in_blocks;
int left_contexts = tx_size_in_blocks;
int pt;
// xd->mb_to_right_edge is in units of pixels * 8. This converts
// it to 4x4 block sizes.
if (xd->mb_to_right_edge < 0) {
mi_blocks_wide += (xd->mb_to_right_edge
>> (5 + xd->plane[plane].subsampling_x));
}
// this code attempts to avoid copying into contexts that are outside
// our border. Any blocks that do are set to 0...
if (above_contexts + aoff > mi_blocks_wide)
above_contexts = mi_blocks_wide - aoff;
if (xd->mb_to_bottom_edge < 0) {
mi_blocks_high += (xd->mb_to_bottom_edge
>> (5 + xd->plane[plane].subsampling_y));
}
if (left_contexts + loff > mi_blocks_high) {
left_contexts = mi_blocks_high - loff;
}
for (pt = 0; pt < above_contexts; pt++)
A[pt] = eob > 0;
for (pt = above_contexts; pt < (1 << ss_tx_size); pt++)
A[pt] = 0;
for (pt = 0; pt < left_contexts; pt++)
L[pt] = eob > 0;
for (pt = left_contexts; pt < (1 << ss_tx_size); pt++)
L[pt] = 0;
}
#endif // VP9_COMMON_VP9_BLOCKD_H_