aom/vp8/encoder/bitstream.c

1735 строки
49 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp8/common/header.h"
#include "encodemv.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/findnearmv.h"
#include "mcomp.h"
#include "vp8/common/systemdependent.h"
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "vp8/common/pragmas.h"
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
#include "bitstream.h"
#include "defaultcoefcounts.h"
#include "vp8/common/common.h"
const int vp8cx_base_skip_false_prob[128] =
{
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255,
251, 248, 244, 240, 236, 232, 229, 225,
221, 217, 213, 208, 204, 199, 194, 190,
187, 183, 179, 175, 172, 168, 164, 160,
157, 153, 149, 145, 142, 138, 134, 130,
127, 124, 120, 117, 114, 110, 107, 104,
101, 98, 95, 92, 89, 86, 83, 80,
77, 74, 71, 68, 65, 62, 59, 56,
53, 50, 47, 44, 41, 38, 35, 32,
30, 28, 26, 24, 22, 20, 18, 16,
};
#if defined(SECTIONBITS_OUTPUT)
unsigned __int64 Sectionbits[500];
#endif
#ifdef ENTROPY_STATS
int intra_mode_stats[10][10][10];
static unsigned int tree_update_hist [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] [2];
extern unsigned int active_section;
#endif
#ifdef MODE_STATS
int count_mb_seg[4] = { 0, 0, 0, 0 };
#endif
static void update_mode(
vp8_writer *const w,
int n,
vp8_token tok [/* n */],
vp8_tree tree,
vp8_prob Pnew [/* n-1 */],
vp8_prob Pcur [/* n-1 */],
unsigned int bct [/* n-1 */] [2],
const unsigned int num_events[/* n */]
)
{
unsigned int new_b = 0, old_b = 0;
int i = 0;
vp8_tree_probs_from_distribution(
n--, tok, tree,
Pnew, bct, num_events,
256, 1
);
do
{
new_b += vp8_cost_branch(bct[i], Pnew[i]);
old_b += vp8_cost_branch(bct[i], Pcur[i]);
}
while (++i < n);
if (new_b + (n << 8) < old_b)
{
int i = 0;
vp8_write_bit(w, 1);
do
{
const vp8_prob p = Pnew[i];
vp8_write_literal(w, Pcur[i] = p ? p : 1, 8);
}
while (++i < n);
}
else
vp8_write_bit(w, 0);
}
static void update_mbintra_mode_probs(VP8_COMP *cpi)
{
VP8_COMMON *const x = & cpi->common;
vp8_writer *const w = cpi->bc;
{
vp8_prob Pnew [VP8_YMODES-1];
unsigned int bct [VP8_YMODES-1] [2];
update_mode(
w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree,
Pnew, x->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count
);
}
{
vp8_prob Pnew [VP8_UV_MODES-1];
unsigned int bct [VP8_UV_MODES-1] [2];
update_mode(
w, VP8_UV_MODES, vp8_uv_mode_encodings, vp8_uv_mode_tree,
Pnew, x->fc.uv_mode_prob, bct, (unsigned int *)cpi->uv_mode_count
);
}
}
static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p)
{
vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m);
}
static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p)
{
vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m);
}
static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p)
{
vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m);
}
static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p)
{
vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m);
}
static void write_split(vp8_writer *bc, int x)
{
vp8_write_token(
bc, vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + x
);
}
void vp8_pack_tokens_c(vp8_writer *w, const TOKENEXTRA *p, int xcount)
{
const TOKENEXTRA *stop = p + xcount;
unsigned int split;
unsigned int shift;
int count = w->count;
unsigned int range = w->range;
unsigned int lowvalue = w->lowvalue;
while (p < stop)
{
const int t = p->Token;
const vp8_token *a = vp8_coef_encodings + t;
const vp8_extra_bit_struct *b = vp8_extra_bits + t;
int i = 0;
const unsigned char *pp = p->context_tree;
int v = a->value;
int n = a->Len;
if (p->skip_eob_node)
{
n--;
i = 2;
}
do
{
const int bb = (v >> --n) & 1;
split = 1 + (((range - 1) * pp[i>>1]) >> 8);
i = vp8_coef_tree[i+bb];
if (bb)
{
lowvalue += split;
range = range - split;
}
else
{
range = split;
}
shift = vp8_norm[range];
range <<= shift;
count += shift;
if (count >= 0)
{
int offset = shift - count;
if ((lowvalue << (offset - 1)) & 0x80000000)
{
int x = w->pos - 1;
while (x >= 0 && w->buffer[x] == 0xff)
{
w->buffer[x] = (unsigned char)0;
x--;
}
w->buffer[x] += 1;
}
validate_buffer(w->buffer + w->pos,
1,
w->buffer_end,
w->error);
w->buffer[w->pos++] = (lowvalue >> (24 - offset));
lowvalue <<= offset;
shift = count;
lowvalue &= 0xffffff;
count -= 8 ;
}
lowvalue <<= shift;
}
while (n);
if (b->base_val)
{
const int e = p->Extra, L = b->Len;
if (L)
{
const unsigned char *pp = b->prob;
int v = e >> 1;
int n = L; /* number of bits in v, assumed nonzero */
int i = 0;
do
{
const int bb = (v >> --n) & 1;
split = 1 + (((range - 1) * pp[i>>1]) >> 8);
i = b->tree[i+bb];
if (bb)
{
lowvalue += split;
range = range - split;
}
else
{
range = split;
}
shift = vp8_norm[range];
range <<= shift;
count += shift;
if (count >= 0)
{
int offset = shift - count;
if ((lowvalue << (offset - 1)) & 0x80000000)
{
int x = w->pos - 1;
while (x >= 0 && w->buffer[x] == 0xff)
{
w->buffer[x] = (unsigned char)0;
x--;
}
w->buffer[x] += 1;
}
validate_buffer(w->buffer + w->pos,
1,
w->buffer_end,
w->error);
w->buffer[w->pos++] = (lowvalue >> (24 - offset));
lowvalue <<= offset;
shift = count;
lowvalue &= 0xffffff;
count -= 8 ;
}
lowvalue <<= shift;
}
while (n);
}
{
split = (range + 1) >> 1;
if (e & 1)
{
lowvalue += split;
range = range - split;
}
else
{
range = split;
}
range <<= 1;
if ((lowvalue & 0x80000000))
{
int x = w->pos - 1;
while (x >= 0 && w->buffer[x] == 0xff)
{
w->buffer[x] = (unsigned char)0;
x--;
}
w->buffer[x] += 1;
}
lowvalue <<= 1;
if (!++count)
{
count = -8;
validate_buffer(w->buffer + w->pos,
1,
w->buffer_end,
w->error);
w->buffer[w->pos++] = (lowvalue >> 24);
lowvalue &= 0xffffff;
}
}
}
++p;
}
w->count = count;
w->lowvalue = lowvalue;
w->range = range;
}
static void write_partition_size(unsigned char *cx_data, int size)
{
signed char csize;
csize = size & 0xff;
*cx_data = csize;
csize = (size >> 8) & 0xff;
*(cx_data + 1) = csize;
csize = (size >> 16) & 0xff;
*(cx_data + 2) = csize;
}
static void pack_tokens_into_partitions_c(VP8_COMP *cpi, unsigned char *cx_data,
unsigned char * cx_data_end,
int num_part)
{
int i;
unsigned char *ptr = cx_data;
unsigned char *ptr_end = cx_data_end;
vp8_writer * w;
for (i = 0; i < num_part; i++)
{
int mb_row;
w = cpi->bc + i + 1;
vp8_start_encode(w, ptr, ptr_end);
for (mb_row = i; mb_row < cpi->common.mb_rows; mb_row += num_part)
{
const TOKENEXTRA *p = cpi->tplist[mb_row].start;
const TOKENEXTRA *stop = cpi->tplist[mb_row].stop;
int tokens = stop - p;
vp8_pack_tokens_c(w, p, tokens);
}
vp8_stop_encode(w);
ptr += w->pos;
}
}
static void pack_mb_row_tokens_c(VP8_COMP *cpi, vp8_writer *w)
{
int mb_row;
for (mb_row = 0; mb_row < cpi->common.mb_rows; mb_row++)
{
const TOKENEXTRA *p = cpi->tplist[mb_row].start;
const TOKENEXTRA *stop = cpi->tplist[mb_row].stop;
int tokens = stop - p;
vp8_pack_tokens_c(w, p, tokens);
}
}
static void write_mv_ref
(
vp8_writer *w, MB_PREDICTION_MODE m, const vp8_prob *p
)
{
#if CONFIG_DEBUG
assert(NEARESTMV <= m && m <= SPLITMV);
#endif
vp8_write_token(w, vp8_mv_ref_tree, p,
vp8_mv_ref_encoding_array - NEARESTMV + m);
}
static void write_sub_mv_ref
(
vp8_writer *w, B_PREDICTION_MODE m, const vp8_prob *p
)
{
#if CONFIG_DEBUG
assert(LEFT4X4 <= m && m <= NEW4X4);
#endif
vp8_write_token(w, vp8_sub_mv_ref_tree, p,
vp8_sub_mv_ref_encoding_array - LEFT4X4 + m);
}
static void write_mv
(
vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT *mvc
)
{
MV e;
e.row = mv->row - ref->as_mv.row;
e.col = mv->col - ref->as_mv.col;
vp8_encode_motion_vector(w, &e, mvc);
}
static void write_mb_features(vp8_writer *w, const MB_MODE_INFO *mi, const MACROBLOCKD *x)
{
// Encode the MB segment id.
if (x->segmentation_enabled && x->update_mb_segmentation_map)
{
switch (mi->segment_id)
{
case 0:
vp8_write(w, 0, x->mb_segment_tree_probs[0]);
vp8_write(w, 0, x->mb_segment_tree_probs[1]);
break;
case 1:
vp8_write(w, 0, x->mb_segment_tree_probs[0]);
vp8_write(w, 1, x->mb_segment_tree_probs[1]);
break;
case 2:
vp8_write(w, 1, x->mb_segment_tree_probs[0]);
vp8_write(w, 0, x->mb_segment_tree_probs[2]);
break;
case 3:
vp8_write(w, 1, x->mb_segment_tree_probs[0]);
vp8_write(w, 1, x->mb_segment_tree_probs[2]);
break;
// TRAP.. This should not happen
default:
vp8_write(w, 0, x->mb_segment_tree_probs[0]);
vp8_write(w, 0, x->mb_segment_tree_probs[1]);
break;
}
}
}
void vp8_convert_rfct_to_prob(VP8_COMP *const cpi)
{
const int *const rfct = cpi->count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
// Calculate the probabilities used to code the ref frame based on useage
if (!(cpi->prob_intra_coded = rf_intra * 255 / (rf_intra + rf_inter)))
cpi->prob_intra_coded = 1;
cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
if (!cpi->prob_last_coded)
cpi->prob_last_coded = 1;
cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
if (!cpi->prob_gf_coded)
cpi->prob_gf_coded = 1;
}
static void pack_inter_mode_mvs(VP8_COMP *const cpi)
{
VP8_COMMON *const pc = & cpi->common;
vp8_writer *const w = cpi->bc;
const MV_CONTEXT *mvc = pc->fc.mvc;
MODE_INFO *m = pc->mi;
const int mis = pc->mode_info_stride;
int mb_row = -1;
int prob_skip_false = 0;
cpi->mb.partition_info = cpi->mb.pi;
vp8_convert_rfct_to_prob(cpi);
#ifdef ENTROPY_STATS
active_section = 1;
#endif
if (pc->mb_no_coeff_skip)
{
int total_mbs = pc->mb_rows * pc->mb_cols;
prob_skip_false = (total_mbs - cpi->skip_true_count ) * 256 / total_mbs;
if (prob_skip_false <= 1)
prob_skip_false = 1;
if (prob_skip_false > 255)
prob_skip_false = 255;
cpi->prob_skip_false = prob_skip_false;
vp8_write_literal(w, prob_skip_false, 8);
}
vp8_write_literal(w, cpi->prob_intra_coded, 8);
vp8_write_literal(w, cpi->prob_last_coded, 8);
vp8_write_literal(w, cpi->prob_gf_coded, 8);
update_mbintra_mode_probs(cpi);
vp8_write_mvprobs(cpi);
while (++mb_row < pc->mb_rows)
{
int mb_col = -1;
while (++mb_col < pc->mb_cols)
{
const MB_MODE_INFO *const mi = & m->mbmi;
const MV_REFERENCE_FRAME rf = mi->ref_frame;
const MB_PREDICTION_MODE mode = mi->mode;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
// Distance of Mb to the various image edges.
// These specified to 8th pel as they are always compared to MV values that are in 1/8th pel units
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
#ifdef ENTROPY_STATS
active_section = 9;
#endif
if (cpi->mb.e_mbd.update_mb_segmentation_map)
write_mb_features(w, mi, &cpi->mb.e_mbd);
if (pc->mb_no_coeff_skip)
vp8_encode_bool(w, m->mbmi.mb_skip_coeff, prob_skip_false);
if (rf == INTRA_FRAME)
{
vp8_write(w, 0, cpi->prob_intra_coded);
#ifdef ENTROPY_STATS
active_section = 6;
#endif
write_ymode(w, mode, pc->fc.ymode_prob);
if (mode == B_PRED)
{
int j = 0;
do
write_bmode(w, m->bmi[j].as_mode, pc->fc.bmode_prob);
while (++j < 16);
}
write_uv_mode(w, mi->uv_mode, pc->fc.uv_mode_prob);
}
else /* inter coded */
{
int_mv best_mv;
vp8_prob mv_ref_p [VP8_MVREFS-1];
vp8_write(w, 1, cpi->prob_intra_coded);
if (rf == LAST_FRAME)
vp8_write(w, 0, cpi->prob_last_coded);
else
{
vp8_write(w, 1, cpi->prob_last_coded);
vp8_write(w, (rf == GOLDEN_FRAME) ? 0 : 1, cpi->prob_gf_coded);
}
{
int_mv n1, n2;
int ct[4];
vp8_find_near_mvs(xd, m, &n1, &n2, &best_mv, ct, rf, cpi->common.ref_frame_sign_bias);
vp8_clamp_mv2(&best_mv, xd);
vp8_mv_ref_probs(mv_ref_p, ct);
#ifdef ENTROPY_STATS
accum_mv_refs(mode, ct);
#endif
}
#ifdef ENTROPY_STATS
active_section = 3;
#endif
write_mv_ref(w, mode, mv_ref_p);
switch (mode) /* new, split require MVs */
{
case NEWMV:
#ifdef ENTROPY_STATS
active_section = 5;
#endif
write_mv(w, &mi->mv.as_mv, &best_mv, mvc);
break;
case SPLITMV:
{
int j = 0;
#ifdef MODE_STATS
++count_mb_seg [mi->partitioning];
#endif
write_split(w, mi->partitioning);
do
{
B_PREDICTION_MODE blockmode;
int_mv blockmv;
const int *const L = vp8_mbsplits [mi->partitioning];
int k = -1; /* first block in subset j */
int mv_contz;
int_mv leftmv, abovemv;
blockmode = cpi->mb.partition_info->bmi[j].mode;
blockmv = cpi->mb.partition_info->bmi[j].mv;
#if CONFIG_DEBUG
while (j != L[++k])
if (k >= 16)
assert(0);
#else
while (j != L[++k]);
#endif
leftmv.as_int = left_block_mv(m, k);
abovemv.as_int = above_block_mv(m, k, mis);
mv_contz = vp8_mv_cont(&leftmv, &abovemv);
write_sub_mv_ref(w, blockmode, vp8_sub_mv_ref_prob2 [mv_contz]);
if (blockmode == NEW4X4)
{
#ifdef ENTROPY_STATS
active_section = 11;
#endif
write_mv(w, &blockmv.as_mv, &best_mv, (const MV_CONTEXT *) mvc);
}
}
while (++j < cpi->mb.partition_info->count);
}
break;
default:
break;
}
}
++m;
cpi->mb.partition_info++;
}
++m; /* skip L prediction border */
cpi->mb.partition_info++;
}
}
static void write_kfmodes(VP8_COMP *cpi)
{
vp8_writer *const bc = cpi->bc;
const VP8_COMMON *const c = & cpi->common;
/* const */
MODE_INFO *m = c->mi;
int mb_row = -1;
int prob_skip_false = 0;
if (c->mb_no_coeff_skip)
{
int total_mbs = c->mb_rows * c->mb_cols;
prob_skip_false = (total_mbs - cpi->skip_true_count ) * 256 / total_mbs;
if (prob_skip_false <= 1)
prob_skip_false = 1;
if (prob_skip_false >= 255)
prob_skip_false = 255;
cpi->prob_skip_false = prob_skip_false;
vp8_write_literal(bc, prob_skip_false, 8);
}
while (++mb_row < c->mb_rows)
{
int mb_col = -1;
while (++mb_col < c->mb_cols)
{
const int ym = m->mbmi.mode;
if (cpi->mb.e_mbd.update_mb_segmentation_map)
write_mb_features(bc, &m->mbmi, &cpi->mb.e_mbd);
if (c->mb_no_coeff_skip)
vp8_encode_bool(bc, m->mbmi.mb_skip_coeff, prob_skip_false);
kfwrite_ymode(bc, ym, c->kf_ymode_prob);
if (ym == B_PRED)
{
const int mis = c->mode_info_stride;
int i = 0;
do
{
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
const B_PREDICTION_MODE L = left_block_mode(m, i);
const int bm = m->bmi[i].as_mode;
#ifdef ENTROPY_STATS
++intra_mode_stats [A] [L] [bm];
#endif
write_bmode(bc, bm, c->kf_bmode_prob [A] [L]);
}
while (++i < 16);
}
write_uv_mode(bc, (m++)->mbmi.uv_mode, c->kf_uv_mode_prob);
}
m++; // skip L prediction border
}
}
#if 0
/* This function is used for debugging probability trees. */
static void print_prob_tree(vp8_prob
coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES])
{
/* print coef probability tree */
int i,j,k,l;
FILE* f = fopen("enc_tree_probs.txt", "a");
fprintf(f, "{\n");
for (i = 0; i < BLOCK_TYPES; i++)
{
fprintf(f, " {\n");
for (j = 0; j < COEF_BANDS; j++)
{
fprintf(f, " {\n");
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
{
fprintf(f, " {");
for (l = 0; l < ENTROPY_NODES; l++)
{
fprintf(f, "%3u, ",
(unsigned int)(coef_probs [i][j][k][l]));
}
fprintf(f, " }\n");
}
fprintf(f, " }\n");
}
fprintf(f, " }\n");
}
fprintf(f, "}\n");
fclose(f);
}
#endif
static void sum_probs_over_prev_coef_context(
const unsigned int probs[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS],
unsigned int* out)
{
int i, j;
for (i=0; i < MAX_ENTROPY_TOKENS; ++i)
{
for (j=0; j < PREV_COEF_CONTEXTS; ++j)
{
const unsigned int tmp = out[i];
out[i] += probs[j][i];
/* check for wrap */
if (out[i] < tmp)
out[i] = UINT_MAX;
}
}
}
static int prob_update_savings(const unsigned int *ct,
const vp8_prob oldp, const vp8_prob newp,
const vp8_prob upd)
{
const int old_b = vp8_cost_branch(ct, oldp);
const int new_b = vp8_cost_branch(ct, newp);
const int update_b = 8 +
((vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8);
return old_b - new_b - update_b;
}
static int independent_coef_context_savings(VP8_COMP *cpi)
{
int savings = 0;
int i = 0;
do
{
int j = 0;
do
{
int k = 0;
unsigned int prev_coef_count_sum[MAX_ENTROPY_TOKENS] = {0};
int prev_coef_savings[MAX_ENTROPY_TOKENS] = {0};
const unsigned int (*probs)[MAX_ENTROPY_TOKENS];
/* Calculate new probabilities given the constraint that
* they must be equal over the prev coef contexts
*/
probs = (const unsigned int (*)[MAX_ENTROPY_TOKENS])
cpi->coef_counts[i][j];
/* Reset to default probabilities at key frames */
if (cpi->common.frame_type == KEY_FRAME)
probs = default_coef_counts[i][j];
sum_probs_over_prev_coef_context(probs, prev_coef_count_sum);
do
{
/* at every context */
/* calc probs and branch cts for this frame only */
//vp8_prob new_p [ENTROPY_NODES];
//unsigned int branch_ct [ENTROPY_NODES] [2];
int t = 0; /* token/prob index */
vp8_tree_probs_from_distribution(
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
cpi->frame_coef_probs[i][j][k],
cpi->frame_branch_ct [i][j][k],
prev_coef_count_sum,
256, 1);
do
{
const unsigned int *ct = cpi->frame_branch_ct [i][j][k][t];
const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
const vp8_prob oldp = cpi->common.fc.coef_probs [i][j][k][t];
const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
const int s = prob_update_savings(ct, oldp, newp, upd);
if (cpi->common.frame_type != KEY_FRAME ||
(cpi->common.frame_type == KEY_FRAME && newp != oldp))
prev_coef_savings[t] += s;
}
while (++t < ENTROPY_NODES);
}
while (++k < PREV_COEF_CONTEXTS);
k = 0;
do
{
/* We only update probabilities if we can save bits, except
* for key frames where we have to update all probabilities
* to get the equal probabilities across the prev coef
* contexts.
*/
if (prev_coef_savings[k] > 0 ||
cpi->common.frame_type == KEY_FRAME)
savings += prev_coef_savings[k];
}
while (++k < ENTROPY_NODES);
}
while (++j < COEF_BANDS);
}
while (++i < BLOCK_TYPES);
return savings;
}
static int default_coef_context_savings(VP8_COMP *cpi)
{
int savings = 0;
int i = 0;
do
{
int j = 0;
do
{
int k = 0;
do
{
/* at every context */
/* calc probs and branch cts for this frame only */
//vp8_prob new_p [ENTROPY_NODES];
//unsigned int branch_ct [ENTROPY_NODES] [2];
int t = 0; /* token/prob index */
vp8_tree_probs_from_distribution(
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
cpi->frame_coef_probs [i][j][k],
cpi->frame_branch_ct [i][j][k],
cpi->coef_counts [i][j][k],
256, 1
);
do
{
const unsigned int *ct = cpi->frame_branch_ct [i][j][k][t];
const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
const vp8_prob oldp = cpi->common.fc.coef_probs [i][j][k][t];
const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
const int s = prob_update_savings(ct, oldp, newp, upd);
if (s > 0)
{
savings += s;
}
}
while (++t < ENTROPY_NODES);
}
while (++k < PREV_COEF_CONTEXTS);
}
while (++j < COEF_BANDS);
}
while (++i < BLOCK_TYPES);
return savings;
}
void vp8_calc_ref_frame_costs(int *ref_frame_cost,
int prob_intra,
int prob_last,
int prob_garf
)
{
ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(prob_intra);
ref_frame_cost[LAST_FRAME] = vp8_cost_one(prob_intra)
+ vp8_cost_zero(prob_last);
ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(prob_intra)
+ vp8_cost_one(prob_last)
+ vp8_cost_zero(prob_garf);
ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(prob_intra)
+ vp8_cost_one(prob_last)
+ vp8_cost_one(prob_garf);
}
int vp8_estimate_entropy_savings(VP8_COMP *cpi)
{
int savings = 0;
const int *const rfct = cpi->count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
int new_intra, new_last, new_garf, oldtotal, newtotal;
int ref_frame_cost[MAX_REF_FRAMES];
vp8_clear_system_state(); //__asm emms;
if (cpi->common.frame_type != KEY_FRAME)
{
if (!(new_intra = rf_intra * 255 / (rf_intra + rf_inter)))
new_intra = 1;
new_last = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
new_garf = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
vp8_calc_ref_frame_costs(ref_frame_cost,new_intra,new_last,new_garf);
newtotal =
rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] +
rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] +
rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] +
rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME];
// old costs
vp8_calc_ref_frame_costs(ref_frame_cost,cpi->prob_intra_coded,
cpi->prob_last_coded,cpi->prob_gf_coded);
oldtotal =
rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] +
rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] +
rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] +
rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME];
savings += (oldtotal - newtotal) / 256;
}
if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
savings += independent_coef_context_savings(cpi);
else
savings += default_coef_context_savings(cpi);
return savings;
}
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
int vp8_update_coef_context(VP8_COMP *cpi)
{
int savings = 0;
if (cpi->common.frame_type == KEY_FRAME)
{
/* Reset to default counts/probabilities at key frames */
vp8_copy(cpi->coef_counts, default_coef_counts);
}
if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
savings += independent_coef_context_savings(cpi);
else
savings += default_coef_context_savings(cpi);
return savings;
}
#endif
void vp8_update_coef_probs(VP8_COMP *cpi)
{
int i = 0;
#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
vp8_writer *const w = cpi->bc;
#endif
int savings = 0;
vp8_clear_system_state(); //__asm emms;
do
{
int j = 0;
do
{
int k = 0;
int prev_coef_savings[ENTROPY_NODES] = {0};
if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
{
for (k = 0; k < PREV_COEF_CONTEXTS; ++k)
{
int t; /* token/prob index */
for (t = 0; t < ENTROPY_NODES; ++t)
{
const unsigned int *ct = cpi->frame_branch_ct [i][j]
[k][t];
const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t];
const vp8_prob oldp = cpi->common.fc.coef_probs[i][j]
[k][t];
const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
prev_coef_savings[t] +=
prob_update_savings(ct, oldp, newp, upd);
}
}
k = 0;
}
do
{
//note: use result from vp8_estimate_entropy_savings, so no need to call vp8_tree_probs_from_distribution here.
/* at every context */
/* calc probs and branch cts for this frame only */
//vp8_prob new_p [ENTROPY_NODES];
//unsigned int branch_ct [ENTROPY_NODES] [2];
int t = 0; /* token/prob index */
//vp8_tree_probs_from_distribution(
// MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
// new_p, branch_ct, (unsigned int *)cpi->coef_counts [i][j][k],
// 256, 1
// );
do
{
const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t;
const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
int s = prev_coef_savings[t];
int u = 0;
if (!(cpi->oxcf.error_resilient_mode &
VPX_ERROR_RESILIENT_PARTITIONS))
{
s = prob_update_savings(
cpi->frame_branch_ct [i][j][k][t],
*Pold, newp, upd);
}
if (s > 0)
u = 1;
/* Force updates on key frames if the new is different,
* so that we can be sure we end up with equal probabilities
* over the prev coef contexts.
*/
if ((cpi->oxcf.error_resilient_mode &
VPX_ERROR_RESILIENT_PARTITIONS) &&
cpi->common.frame_type == KEY_FRAME && newp != *Pold)
u = 1;
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
cpi->update_probs[i][j][k][t] = u;
#else
vp8_write(w, u, upd);
#endif
#ifdef ENTROPY_STATS
++ tree_update_hist [i][j][k][t] [u];
#endif
if (u)
{
/* send/use new probability */
*Pold = newp;
#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
vp8_write_literal(w, newp, 8);
#endif
savings += s;
}
}
while (++t < ENTROPY_NODES);
/* Accum token counts for generation of default statistics */
#ifdef ENTROPY_STATS
t = 0;
do
{
context_counters [i][j][k][t] += cpi->coef_counts [i][j][k][t];
}
while (++t < MAX_ENTROPY_TOKENS);
#endif
}
while (++k < PREV_COEF_CONTEXTS);
}
while (++j < COEF_BANDS);
}
while (++i < BLOCK_TYPES);
}
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
static void pack_coef_probs(VP8_COMP *cpi)
{
int i = 0;
vp8_writer *const w = cpi->bc;
do
{
int j = 0;
do
{
int k = 0;
do
{
int t = 0; /* token/prob index */
do
{
const vp8_prob newp = cpi->common.fc.coef_probs [i][j][k][t];
const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
const char u = cpi->update_probs[i][j][k][t] ;
vp8_write(w, u, upd);
if (u)
{
/* send/use new probability */
vp8_write_literal(w, newp, 8);
}
}
while (++t < ENTROPY_NODES);
}
while (++k < PREV_COEF_CONTEXTS);
}
while (++j < COEF_BANDS);
}
while (++i < BLOCK_TYPES);
}
#endif
#ifdef PACKET_TESTING
FILE *vpxlogc = 0;
#endif
static void put_delta_q(vp8_writer *bc, int delta_q)
{
if (delta_q != 0)
{
vp8_write_bit(bc, 1);
vp8_write_literal(bc, abs(delta_q), 4);
if (delta_q < 0)
vp8_write_bit(bc, 1);
else
vp8_write_bit(bc, 0);
}
else
vp8_write_bit(bc, 0);
}
void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest, unsigned char * dest_end, unsigned long *size)
{
int i, j;
VP8_HEADER oh;
VP8_COMMON *const pc = & cpi->common;
vp8_writer *const bc = cpi->bc;
MACROBLOCKD *const xd = & cpi->mb.e_mbd;
int extra_bytes_packed = 0;
unsigned char *cx_data = dest;
unsigned char *cx_data_end = dest_end;
const int *mb_feature_data_bits;
oh.show_frame = (int) pc->show_frame;
oh.type = (int)pc->frame_type;
oh.version = pc->version;
oh.first_partition_length_in_bytes = 0;
mb_feature_data_bits = vp8_mb_feature_data_bits;
bc[0].error = &pc->error;
validate_buffer(cx_data, 3, cx_data_end, &cpi->common.error);
cx_data += 3;
#if defined(SECTIONBITS_OUTPUT)
Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256;
#endif
//vp8_kf_default_bmode_probs() is called in vp8_setup_key_frame() once for each
//K frame before encode frame. pc->kf_bmode_prob doesn't get changed anywhere
//else. No need to call it again here. --yw
//vp8_kf_default_bmode_probs( pc->kf_bmode_prob);
// every keyframe send startcode, width, height, scale factor, clamp and color type
if (oh.type == KEY_FRAME)
{
int v;
validate_buffer(cx_data, 7, cx_data_end, &cpi->common.error);
// Start / synch code
cx_data[0] = 0x9D;
cx_data[1] = 0x01;
cx_data[2] = 0x2a;
v = (pc->horiz_scale << 14) | pc->Width;
cx_data[3] = v;
cx_data[4] = v >> 8;
v = (pc->vert_scale << 14) | pc->Height;
cx_data[5] = v;
cx_data[6] = v >> 8;
extra_bytes_packed = 7;
cx_data += extra_bytes_packed ;
vp8_start_encode(bc, cx_data, cx_data_end);
// signal clr type
vp8_write_bit(bc, pc->clr_type);
vp8_write_bit(bc, pc->clamp_type);
}
else
vp8_start_encode(bc, cx_data, cx_data_end);
// Signal whether or not Segmentation is enabled
vp8_write_bit(bc, xd->segmentation_enabled);
// Indicate which features are enabled
if (xd->segmentation_enabled)
{
// Signal whether or not the segmentation map is being updated.
vp8_write_bit(bc, xd->update_mb_segmentation_map);
vp8_write_bit(bc, xd->update_mb_segmentation_data);
if (xd->update_mb_segmentation_data)
{
signed char Data;
vp8_write_bit(bc, xd->mb_segement_abs_delta);
// For each segmentation feature (Quant and loop filter level)
for (i = 0; i < MB_LVL_MAX; i++)
{
// For each of the segments
for (j = 0; j < MAX_MB_SEGMENTS; j++)
{
Data = xd->segment_feature_data[i][j];
// Frame level data
if (Data)
{
vp8_write_bit(bc, 1);
if (Data < 0)
{
Data = - Data;
vp8_write_literal(bc, Data, mb_feature_data_bits[i]);
vp8_write_bit(bc, 1);
}
else
{
vp8_write_literal(bc, Data, mb_feature_data_bits[i]);
vp8_write_bit(bc, 0);
}
}
else
vp8_write_bit(bc, 0);
}
}
}
if (xd->update_mb_segmentation_map)
{
// Write the probs used to decode the segment id for each macro block.
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
{
int Data = xd->mb_segment_tree_probs[i];
if (Data != 255)
{
vp8_write_bit(bc, 1);
vp8_write_literal(bc, Data, 8);
}
else
vp8_write_bit(bc, 0);
}
}
}
// Code to determine whether or not to update the scan order.
vp8_write_bit(bc, pc->filter_type);
vp8_write_literal(bc, pc->filter_level, 6);
vp8_write_literal(bc, pc->sharpness_level, 3);
// Write out loop filter deltas applied at the MB level based on mode or ref frame (if they are enabled).
vp8_write_bit(bc, xd->mode_ref_lf_delta_enabled);
if (xd->mode_ref_lf_delta_enabled)
{
// Do the deltas need to be updated
int send_update = xd->mode_ref_lf_delta_update
|| cpi->oxcf.error_resilient_mode;
vp8_write_bit(bc, send_update);
if (send_update)
{
int Data;
// Send update
for (i = 0; i < MAX_REF_LF_DELTAS; i++)
{
Data = xd->ref_lf_deltas[i];
// Frame level data
if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i]
|| cpi->oxcf.error_resilient_mode)
{
xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i];
vp8_write_bit(bc, 1);
if (Data > 0)
{
vp8_write_literal(bc, (Data & 0x3F), 6);
vp8_write_bit(bc, 0); // sign
}
else
{
Data = -Data;
vp8_write_literal(bc, (Data & 0x3F), 6);
vp8_write_bit(bc, 1); // sign
}
}
else
vp8_write_bit(bc, 0);
}
// Send update
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
{
Data = xd->mode_lf_deltas[i];
if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i]
|| cpi->oxcf.error_resilient_mode)
{
xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i];
vp8_write_bit(bc, 1);
if (Data > 0)
{
vp8_write_literal(bc, (Data & 0x3F), 6);
vp8_write_bit(bc, 0); // sign
}
else
{
Data = -Data;
vp8_write_literal(bc, (Data & 0x3F), 6);
vp8_write_bit(bc, 1); // sign
}
}
else
vp8_write_bit(bc, 0);
}
}
}
//signal here is multi token partition is enabled
vp8_write_literal(bc, pc->multi_token_partition, 2);
// Frame Qbaseline quantizer index
vp8_write_literal(bc, pc->base_qindex, 7);
// Transmit Dc, Second order and Uv quantizer delta information
put_delta_q(bc, pc->y1dc_delta_q);
put_delta_q(bc, pc->y2dc_delta_q);
put_delta_q(bc, pc->y2ac_delta_q);
put_delta_q(bc, pc->uvdc_delta_q);
put_delta_q(bc, pc->uvac_delta_q);
// When there is a key frame all reference buffers are updated using the new key frame
if (pc->frame_type != KEY_FRAME)
{
// Should the GF or ARF be updated using the transmitted frame or buffer
vp8_write_bit(bc, pc->refresh_golden_frame);
vp8_write_bit(bc, pc->refresh_alt_ref_frame);
// If not being updated from current frame should either GF or ARF be updated from another buffer
if (!pc->refresh_golden_frame)
vp8_write_literal(bc, pc->copy_buffer_to_gf, 2);
if (!pc->refresh_alt_ref_frame)
vp8_write_literal(bc, pc->copy_buffer_to_arf, 2);
// Indicate reference frame sign bias for Golden and ARF frames (always 0 for last frame buffer)
vp8_write_bit(bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]);
vp8_write_bit(bc, pc->ref_frame_sign_bias[ALTREF_FRAME]);
}
#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
{
if (pc->frame_type == KEY_FRAME)
pc->refresh_entropy_probs = 1;
else
pc->refresh_entropy_probs = 0;
}
#endif
vp8_write_bit(bc, pc->refresh_entropy_probs);
if (pc->frame_type != KEY_FRAME)
vp8_write_bit(bc, pc->refresh_last_frame);
#ifdef ENTROPY_STATS
if (pc->frame_type == INTER_FRAME)
active_section = 0;
else
active_section = 7;
#endif
vp8_clear_system_state(); //__asm emms;
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
pack_coef_probs(cpi);
#else
if (pc->refresh_entropy_probs == 0)
{
// save a copy for later refresh
vpx_memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc));
}
vp8_update_coef_probs(cpi);
#endif
#ifdef ENTROPY_STATS
active_section = 2;
#endif
// Write out the mb_no_coeff_skip flag
vp8_write_bit(bc, pc->mb_no_coeff_skip);
if (pc->frame_type == KEY_FRAME)
{
write_kfmodes(cpi);
#ifdef ENTROPY_STATS
active_section = 8;
#endif
}
else
{
pack_inter_mode_mvs(cpi);
#ifdef ENTROPY_STATS
active_section = 1;
#endif
}
vp8_stop_encode(bc);
cx_data += bc->pos;
oh.first_partition_length_in_bytes = cpi->bc->pos;
/* update frame tag */
{
int v = (oh.first_partition_length_in_bytes << 5) |
(oh.show_frame << 4) |
(oh.version << 1) |
oh.type;
dest[0] = v;
dest[1] = v >> 8;
dest[2] = v >> 16;
}
*size = VP8_HEADER_SIZE + extra_bytes_packed + cpi->bc->pos;
cpi->partition_sz[0] = *size;
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
{
const int num_part = (1 << pc->multi_token_partition);
unsigned char * dp = cpi->partition_d[0] + cpi->partition_sz[0];
if (num_part > 1)
{
/* write token part sizes (all but last) if more than 1 */
validate_buffer(dp, 3 * (num_part - 1), cpi->partition_d_end[0],
&pc->error);
cpi->partition_sz[0] += 3*(num_part-1);
for(i = 1; i < num_part; i++)
{
write_partition_size(dp, cpi->partition_sz[i]);
dp += 3;
}
}
if (!cpi->output_partition)
{
/* concatenate partition buffers */
for(i = 0; i < num_part; i++)
{
vpx_memmove(dp, cpi->partition_d[i+1], cpi->partition_sz[i+1]);
cpi->partition_d[i+1] = dp;
dp += cpi->partition_sz[i+1];
}
}
/* update total size */
*size = 0;
for(i = 0; i < num_part+1; i++)
{
*size += cpi->partition_sz[i];
}
}
#else
if (pc->multi_token_partition != ONE_PARTITION)
{
int num_part = 1 << pc->multi_token_partition;
/* partition size table at the end of first partition */
cpi->partition_sz[0] += 3 * (num_part - 1);
*size += 3 * (num_part - 1);
validate_buffer(cx_data, 3 * (num_part - 1), cx_data_end,
&pc->error);
for(i = 1; i < num_part + 1; i++)
{
cpi->bc[i].error = &pc->error;
}
pack_tokens_into_partitions(cpi, cx_data + 3 * (num_part - 1),
cx_data_end, num_part);
for(i = 1; i < num_part; i++)
{
cpi->partition_sz[i] = cpi->bc[i].pos;
write_partition_size(cx_data, cpi->partition_sz[i]);
cx_data += 3;
*size += cpi->partition_sz[i]; /* add to total */
}
/* add last partition to total size */
cpi->partition_sz[i] = cpi->bc[i].pos;
*size += cpi->partition_sz[i];
}
else
{
bc[1].error = &pc->error;
vp8_start_encode(&cpi->bc[1], cx_data, cx_data_end);
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded)
pack_mb_row_tokens(cpi, &cpi->bc[1]);
else
#endif
pack_tokens(&cpi->bc[1], cpi->tok, cpi->tok_count);
vp8_stop_encode(&cpi->bc[1]);
*size += cpi->bc[1].pos;
cpi->partition_sz[1] = cpi->bc[1].pos;
}
#endif
}
#ifdef ENTROPY_STATS
void print_tree_update_probs()
{
int i, j, k, l;
FILE *f = fopen("context.c", "a");
int Sum;
fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
fprintf(f, "const vp8_prob tree_update_probs[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {\n");
for (i = 0; i < BLOCK_TYPES; i++)
{
fprintf(f, " { \n");
for (j = 0; j < COEF_BANDS; j++)
{
fprintf(f, " {\n");
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
{
fprintf(f, " {");
for (l = 0; l < ENTROPY_NODES; l++)
{
Sum = tree_update_hist[i][j][k][l][0] + tree_update_hist[i][j][k][l][1];
if (Sum > 0)
{
if (((tree_update_hist[i][j][k][l][0] * 255) / Sum) > 0)
fprintf(f, "%3ld, ", (tree_update_hist[i][j][k][l][0] * 255) / Sum);
else
fprintf(f, "%3ld, ", 1);
}
else
fprintf(f, "%3ld, ", 128);
}
fprintf(f, "},\n");
}
fprintf(f, " },\n");
}
fprintf(f, " },\n");
}
fprintf(f, "};\n");
fclose(f);
}
#endif