aom/av1/common/od_dering_simd.h

387 строки
15 KiB
C

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./av1_rtcd.h"
#include "./cdef_simd.h"
#include "./od_dering.h"
/* partial A is a 16-bit vector of the form:
[x8 x7 x6 x5 x4 x3 x2 x1] and partial B has the form:
[0 y1 y2 y3 y4 y5 y6 y7].
This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ...
(x7^2+y2^7)*C7 + (x8^2+0^2)*C8 where the C1..C8 constants are in const1
and const2. */
static INLINE v128 fold_mul_and_sum(v128 partiala, v128 partialb, v128 const1,
v128 const2) {
v128 tmp;
/* Reverse partial B. */
partialb = v128_shuffle_8(
partialb, v128_from_32(0x0f0e0100, 0x03020504, 0x07060908, 0x0b0a0d0c));
/* Interleave the x and y values of identical indices and pair x8 with 0. */
tmp = partiala;
partiala = v128_ziplo_16(partialb, partiala);
partialb = v128_ziphi_16(partialb, tmp);
/* Square and add the corresponding x and y values. */
partiala = v128_madd_s16(partiala, partiala);
partialb = v128_madd_s16(partialb, partialb);
/* Multiply by constant. */
partiala = v128_mullo_s32(partiala, const1);
partialb = v128_mullo_s32(partialb, const2);
/* Sum all results. */
partiala = v128_add_32(partiala, partialb);
return partiala;
}
static INLINE v128 hsum4(v128 x0, v128 x1, v128 x2, v128 x3) {
v128 t0, t1, t2, t3;
t0 = v128_ziplo_32(x1, x0);
t1 = v128_ziplo_32(x3, x2);
t2 = v128_ziphi_32(x1, x0);
t3 = v128_ziphi_32(x3, x2);
x0 = v128_ziplo_64(t1, t0);
x1 = v128_ziphi_64(t1, t0);
x2 = v128_ziplo_64(t3, t2);
x3 = v128_ziphi_64(t3, t2);
return v128_add_32(v128_add_32(x0, x1), v128_add_32(x2, x3));
}
/* Computes cost for directions 0, 5, 6 and 7. We can call this function again
to compute the remaining directions. */
static INLINE v128 compute_directions(v128 lines[8], int32_t tmp_cost1[4]) {
v128 partial4a, partial4b, partial5a, partial5b, partial7a, partial7b;
v128 partial6;
v128 tmp;
/* Partial sums for lines 0 and 1. */
partial4a = v128_shl_n_byte(lines[0], 14);
partial4b = v128_shr_n_byte(lines[0], 2);
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[1], 12));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[1], 4));
tmp = v128_add_16(lines[0], lines[1]);
partial5a = v128_shl_n_byte(tmp, 10);
partial5b = v128_shr_n_byte(tmp, 6);
partial7a = v128_shl_n_byte(tmp, 4);
partial7b = v128_shr_n_byte(tmp, 12);
partial6 = tmp;
/* Partial sums for lines 2 and 3. */
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[2], 10));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[2], 6));
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[3], 8));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[3], 8));
tmp = v128_add_16(lines[2], lines[3]);
partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 8));
partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 8));
partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 6));
partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 10));
partial6 = v128_add_16(partial6, tmp);
/* Partial sums for lines 4 and 5. */
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[4], 6));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[4], 10));
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[5], 4));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[5], 12));
tmp = v128_add_16(lines[4], lines[5]);
partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 6));
partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 10));
partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 8));
partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 8));
partial6 = v128_add_16(partial6, tmp);
/* Partial sums for lines 6 and 7. */
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[6], 2));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[6], 14));
partial4a = v128_add_16(partial4a, lines[7]);
tmp = v128_add_16(lines[6], lines[7]);
partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 4));
partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 12));
partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 10));
partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 6));
partial6 = v128_add_16(partial6, tmp);
/* Compute costs in terms of partial sums. */
partial4a =
fold_mul_and_sum(partial4a, partial4b, v128_from_32(210, 280, 420, 840),
v128_from_32(105, 120, 140, 168));
partial7a =
fold_mul_and_sum(partial7a, partial7b, v128_from_32(210, 420, 0, 0),
v128_from_32(105, 105, 105, 140));
partial5a =
fold_mul_and_sum(partial5a, partial5b, v128_from_32(210, 420, 0, 0),
v128_from_32(105, 105, 105, 140));
partial6 = v128_madd_s16(partial6, partial6);
partial6 = v128_mullo_s32(partial6, v128_dup_32(105));
partial4a = hsum4(partial4a, partial5a, partial6, partial7a);
v128_store_unaligned(tmp_cost1, partial4a);
return partial4a;
}
/* transpose and reverse the order of the lines -- equivalent to a 90-degree
counter-clockwise rotation of the pixels. */
static INLINE void array_reverse_transpose_8x8(v128 *in, v128 *res) {
const v128 tr0_0 = v128_ziplo_16(in[1], in[0]);
const v128 tr0_1 = v128_ziplo_16(in[3], in[2]);
const v128 tr0_2 = v128_ziphi_16(in[1], in[0]);
const v128 tr0_3 = v128_ziphi_16(in[3], in[2]);
const v128 tr0_4 = v128_ziplo_16(in[5], in[4]);
const v128 tr0_5 = v128_ziplo_16(in[7], in[6]);
const v128 tr0_6 = v128_ziphi_16(in[5], in[4]);
const v128 tr0_7 = v128_ziphi_16(in[7], in[6]);
const v128 tr1_0 = v128_ziplo_32(tr0_1, tr0_0);
const v128 tr1_1 = v128_ziplo_32(tr0_5, tr0_4);
const v128 tr1_2 = v128_ziphi_32(tr0_1, tr0_0);
const v128 tr1_3 = v128_ziphi_32(tr0_5, tr0_4);
const v128 tr1_4 = v128_ziplo_32(tr0_3, tr0_2);
const v128 tr1_5 = v128_ziplo_32(tr0_7, tr0_6);
const v128 tr1_6 = v128_ziphi_32(tr0_3, tr0_2);
const v128 tr1_7 = v128_ziphi_32(tr0_7, tr0_6);
res[7] = v128_ziplo_64(tr1_1, tr1_0);
res[6] = v128_ziphi_64(tr1_1, tr1_0);
res[5] = v128_ziplo_64(tr1_3, tr1_2);
res[4] = v128_ziphi_64(tr1_3, tr1_2);
res[3] = v128_ziplo_64(tr1_5, tr1_4);
res[2] = v128_ziphi_64(tr1_5, tr1_4);
res[1] = v128_ziplo_64(tr1_7, tr1_6);
res[0] = v128_ziphi_64(tr1_7, tr1_6);
}
int SIMD_FUNC(od_dir_find8)(const od_dering_in *img, int stride, int32_t *var,
int coeff_shift) {
int i;
int32_t cost[8];
int32_t best_cost = 0;
int best_dir = 0;
v128 lines[8];
for (i = 0; i < 8; i++) {
lines[i] = v128_load_unaligned(&img[i * stride]);
lines[i] =
v128_sub_16(v128_shr_s16(lines[i], coeff_shift), v128_dup_16(128));
}
#if defined(__SSE4_1__)
/* Compute "mostly vertical" directions. */
__m128i dir47 = compute_directions(lines, cost + 4);
array_reverse_transpose_8x8(lines, lines);
/* Compute "mostly horizontal" directions. */
__m128i dir03 = compute_directions(lines, cost);
__m128i max = _mm_max_epi32(dir03, dir47);
max = _mm_max_epi32(max, _mm_shuffle_epi32(max, _MM_SHUFFLE(1, 0, 3, 2)));
max = _mm_max_epi32(max, _mm_shuffle_epi32(max, _MM_SHUFFLE(2, 3, 0, 1)));
best_cost = _mm_cvtsi128_si32(max);
__m128i t =
_mm_packs_epi32(_mm_cmpeq_epi32(max, dir03), _mm_cmpeq_epi32(max, dir47));
best_dir = _mm_movemask_epi8(_mm_packs_epi16(t, t));
best_dir = get_msb(best_dir ^ (best_dir - 1)); // Count trailing zeros
#else
/* Compute "mostly vertical" directions. */
compute_directions(lines, cost + 4);
array_reverse_transpose_8x8(lines, lines);
/* Compute "mostly horizontal" directions. */
compute_directions(lines, cost);
for (i = 0; i < 8; i++) {
if (cost[i] > best_cost) {
best_cost = cost[i];
best_dir = i;
}
}
#endif
/* Difference between the optimal variance and the variance along the
orthogonal direction. Again, the sum(x^2) terms cancel out. */
*var = best_cost - cost[(best_dir + 4) & 7];
/* We'd normally divide by 840, but dividing by 1024 is close enough
for what we're going to do with this. */
*var >>= 10;
return best_dir;
}
void SIMD_FUNC(od_filter_dering_direction_4x4)(uint16_t *y, int ystride,
const uint16_t *in,
int threshold, int dir,
int damping) {
int i;
v128 p0, p1, sum, row, res;
int o1 = OD_DIRECTION_OFFSETS_TABLE[dir][0];
int o2 = OD_DIRECTION_OFFSETS_TABLE[dir][1];
if (threshold) damping -= get_msb(threshold);
for (i = 0; i < 4; i += 2) {
sum = v128_zero();
row = v128_from_v64(v64_load_aligned(&in[i * OD_FILT_BSTRIDE]),
v64_load_aligned(&in[(i + 1) * OD_FILT_BSTRIDE]));
// p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping)
p0 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE + o1]),
v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE + o1]));
p0 = constrain16(p0, row, threshold, damping);
// p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping)
p1 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE - o1]),
v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE - o1]));
p1 = constrain16(p1, row, threshold, damping);
// sum += 4 * (p0 + p1)
sum = v128_add_16(sum, v128_shl_n_16(v128_add_16(p0, p1), 2));
// p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping)
p0 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE + o2]),
v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE + o2]));
p0 = constrain16(p0, row, threshold, damping);
// p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping)
p1 = v128_from_v64(v64_load_unaligned(&in[i * OD_FILT_BSTRIDE - o2]),
v64_load_unaligned(&in[(i + 1) * OD_FILT_BSTRIDE - o2]));
p1 = constrain16(p1, row, threshold, damping);
// sum += 1 * (p0 + p1)
sum = v128_add_16(sum, v128_add_16(p0, p1));
// res = row + ((sum + 8) >> 4)
res = v128_add_16(sum, v128_dup_16(8));
res = v128_shr_n_s16(res, 4);
res = v128_add_16(row, res);
v64_store_aligned(&y[i * ystride], v128_high_v64(res));
v64_store_aligned(&y[(i + 1) * ystride], v128_low_v64(res));
}
}
void SIMD_FUNC(od_filter_dering_direction_8x8)(uint16_t *y, int ystride,
const uint16_t *in,
int threshold, int dir,
int damping) {
int i;
v128 sum, p0, p1, row, res;
int o1 = OD_DIRECTION_OFFSETS_TABLE[dir][0];
int o2 = OD_DIRECTION_OFFSETS_TABLE[dir][1];
int o3 = OD_DIRECTION_OFFSETS_TABLE[dir][2];
if (threshold) damping -= get_msb(threshold);
for (i = 0; i < 8; i++) {
sum = v128_zero();
row = v128_load_aligned(&in[i * OD_FILT_BSTRIDE]);
// p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping)
p0 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE + o1]);
p0 = constrain16(p0, row, threshold, damping);
// p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping)
p1 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE - o1]);
p1 = constrain16(p1, row, threshold, damping);
// sum += 3 * (p0 + p1)
p0 = v128_add_16(p0, p1);
p0 = v128_add_16(p0, v128_shl_n_16(p0, 1));
sum = v128_add_16(sum, p0);
// p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping)
p0 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE + o2]);
p0 = constrain16(p0, row, threshold, damping);
// p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping)
p1 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE - o2]);
p1 = constrain16(p1, row, threshold, damping);
// sum += 2 * (p0 + p1)
p0 = v128_shl_n_16(v128_add_16(p0, p1), 1);
sum = v128_add_16(sum, p0);
// p0 = constrain16(in[i*OD_FILT_BSTRIDE + offset], row, threshold, damping)
p0 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE + o3]);
p0 = constrain16(p0, row, threshold, damping);
// p1 = constrain16(in[i*OD_FILT_BSTRIDE - offset], row, threshold, damping)
p1 = v128_load_unaligned(&in[i * OD_FILT_BSTRIDE - o3]);
p1 = constrain16(p1, row, threshold, damping);
// sum += (p0 + p1)
p0 = v128_add_16(p0, p1);
sum = v128_add_16(sum, p0);
// res = row + ((sum + 8) >> 4)
res = v128_add_16(sum, v128_dup_16(8));
res = v128_shr_n_s16(res, 4);
res = v128_add_16(row, res);
v128_store_unaligned(&y[i * ystride], res);
}
}
void SIMD_FUNC(copy_8x8_16bit_to_8bit)(uint8_t *dst, int dstride,
const uint16_t *src, int sstride) {
int i;
for (i = 0; i < 8; i++) {
v128 row = v128_load_unaligned(&src[i * sstride]);
row = v128_pack_s16_u8(row, row);
v64_store_unaligned(&dst[i * dstride], v128_low_v64(row));
}
}
void SIMD_FUNC(copy_4x4_16bit_to_8bit)(uint8_t *dst, int dstride,
const uint16_t *src, int sstride) {
int i;
for (i = 0; i < 4; i++) {
v128 row = v128_load_unaligned(&src[i * sstride]);
row = v128_pack_s16_u8(row, row);
u32_store_unaligned(&dst[i * dstride], v128_low_u32(row));
}
}
void SIMD_FUNC(copy_8x8_16bit_to_16bit)(uint16_t *dst, int dstride,
const uint16_t *src, int sstride) {
int i;
for (i = 0; i < 8; i++) {
v128 row = v128_load_unaligned(&src[i * sstride]);
v128_store_unaligned(&dst[i * dstride], row);
}
}
void SIMD_FUNC(copy_4x4_16bit_to_16bit)(uint16_t *dst, int dstride,
const uint16_t *src, int sstride) {
int i;
for (i = 0; i < 4; i++) {
v64 row = v64_load_unaligned(&src[i * sstride]);
v64_store_unaligned(&dst[i * dstride], row);
}
}
void SIMD_FUNC(copy_rect8_8bit_to_16bit)(uint16_t *dst, int dstride,
const uint8_t *src, int sstride, int v,
int h) {
int i, j;
OD_ASSERT((h & 0x7) == 0);
for (i = 0; i < v; i++) {
for (j = 0; j < h; j += 8) {
v64 row = v64_load_unaligned(&src[i * sstride + j]);
v128_store_unaligned(&dst[i * dstride + j], v128_unpack_u8_s16(row));
}
}
}
void SIMD_FUNC(copy_rect8_16bit_to_16bit)(uint16_t *dst, int dstride,
const uint16_t *src, int sstride,
int v, int h) {
int i, j;
OD_ASSERT((h & 0x7) == 0);
for (i = 0; i < v; i++) {
for (j = 0; j < h; j += 8) {
v128 row = v128_load_unaligned(&src[i * sstride + j]);
v128_store_unaligned(&dst[i * dstride + j], row);
}
}
}