aom/av1/common/partition.c

257 строки
8.4 KiB
C

/*
* Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
/* clang-format off */
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "enums.h"
#include "odintrin.h"
#include "partition.h"
#include "zigzag.h"
OD_EXTERN const index_pair *OD_ZIGZAG4[4] = {
OD_ZIGZAG4_DCT_DCT,
OD_ZIGZAG4_ADST_DCT,
OD_ZIGZAG4_DCT_ADST,
OD_ZIGZAG4_ADST_ADST
};
OD_EXTERN const index_pair *OD_ZIGZAG8[4] = {
OD_ZIGZAG8_DCT_DCT,
OD_ZIGZAG8_ADST_DCT,
OD_ZIGZAG8_DCT_ADST,
OD_ZIGZAG8_ADST_ADST
};
OD_EXTERN const index_pair *OD_ZIGZAG16[4] = {
OD_ZIGZAG16_DCT_DCT,
OD_ZIGZAG16_ADST_DCT,
OD_ZIGZAG16_DCT_ADST,
OD_ZIGZAG16_ADST_ADST
};
OD_EXTERN const index_pair *OD_ZIGZAG32[4] = {
OD_ZIGZAG32_DCT_DCT,
OD_ZIGZAG32_DCT_DCT,
OD_ZIGZAG32_DCT_DCT,
OD_ZIGZAG32_DCT_DCT
};
/* The tables below specify how coefficient blocks are translated to
and from PVQ partition coding scan order for 4x4, 8x8 and 16x16 */
static const int OD_LAYOUT32_OFFSETS[4] = { 0, 128, 256, 768 };
const band_layout OD_LAYOUT32 = {
OD_ZIGZAG32,
32,
3,
OD_LAYOUT32_OFFSETS
};
static const int OD_LAYOUT16_OFFSETS[4] = { 0, 32, 64, 192 };
const band_layout OD_LAYOUT16 = {
OD_ZIGZAG16,
16,
3,
OD_LAYOUT16_OFFSETS
};
const int OD_LAYOUT8_OFFSETS[4] = { 0, 8, 16, 48 };
const band_layout OD_LAYOUT8 = {
OD_ZIGZAG8,
8,
3,
OD_LAYOUT8_OFFSETS
};
static const int OD_LAYOUT4_OFFSETS[2] = { 0, 15 };
const band_layout OD_LAYOUT4 = {
OD_ZIGZAG4,
4,
1,
OD_LAYOUT4_OFFSETS
};
/* First element is the number of bands, followed by the list all the band
boundaries. */
static const int OD_BAND_OFFSETS4[] = {1, 1, 16};
static const int OD_BAND_OFFSETS8[] = {4, 1, 16, 24, 32, 64};
static const int OD_BAND_OFFSETS16[] = {7, 1, 16, 24, 32, 64, 96, 128, 256};
static const int OD_BAND_OFFSETS32[] = {10, 1, 16, 24, 32, 64, 96, 128, 256,
384, 512, 1024};
static const int OD_BAND_OFFSETS64[] = {13, 1, 16, 24, 32, 64, 96, 128, 256,
384, 512, 1024, 1536, 2048, 4096};
const int *const OD_BAND_OFFSETS[OD_TXSIZES + 1] = {
OD_BAND_OFFSETS4,
OD_BAND_OFFSETS8,
OD_BAND_OFFSETS16,
OD_BAND_OFFSETS32,
OD_BAND_OFFSETS64
};
/** Perform a single stage of conversion from a coefficient block in
* raster order into coding scan order
*
* @param [in] layout scan order specification
* @param [out] dst destination vector
* @param [in] src source coefficient block
* @param [int] int source vector row stride
*/
static void od_band_from_raster(const band_layout *layout, tran_low_t *dst,
const tran_low_t *src, int stride, TX_TYPE tx_type) {
int i;
int len;
len = layout->band_offsets[layout->nb_bands];
for (i = 0; i < len; i++) {
dst[i] = src[layout->dst_table[tx_type][i][1]*stride + layout->dst_table[tx_type][i][0]];
}
}
/** Perform a single stage of conversion from a vector in coding scan
order back into a coefficient block in raster order
*
* @param [in] layout scan order specification
* @param [out] dst destination coefficient block
* @param [in] src source vector
* @param [int] stride destination vector row stride
*/
static void od_raster_from_band(const band_layout *layout, tran_low_t *dst,
int stride, TX_TYPE tx_type, const tran_low_t *src) {
int i;
int len;
len = layout->band_offsets[layout->nb_bands];
for (i = 0; i < len; i++) {
dst[layout->dst_table[tx_type][i][1]*stride + layout->dst_table[tx_type][i][0]] = src[i];
}
}
static const band_layout *const OD_LAYOUTS[] = {&OD_LAYOUT4, &OD_LAYOUT8,
&OD_LAYOUT16, &OD_LAYOUT32};
/** Converts a coefficient block in raster order into a vector in
* coding scan order with the PVQ partitions laid out one after
* another. This works in stages; the 4x4 conversion is applied to
* the coefficients nearest DC, then the 8x8 applied to the 8x8 block
* nearest DC that was not already coded by 4x4, then 16x16 following
* the same pattern.
*
* @param [out] dst destination vector
* @param [in] n block size (along one side)
* @param [in] ty_type transfrom type
* @param [in] src source coefficient block
* @param [in] stride source vector row stride
*/
void od_raster_to_coding_order(tran_low_t *dst, int n, TX_TYPE ty_type,
const tran_low_t *src, int stride) {
int bs;
/* dst + 1 because DC is not included for 4x4 blocks. */
od_band_from_raster(OD_LAYOUTS[0], dst + 1, src, stride, ty_type);
for (bs = 1; bs < OD_TXSIZES; bs++) {
int size;
int offset;
/* Length of block size > 4. */
size = 1 << (OD_LOG_BSIZE0 + bs);
/* Offset is the size of the previous block squared. */
offset = 1 << 2*(OD_LOG_BSIZE0 - 1 + bs);
if (n >= size) {
/* 3 16x16 bands come after 3 8x8 bands, which come after 2 4x4 bands. */
od_band_from_raster(OD_LAYOUTS[bs], dst + offset, src, stride, ty_type);
}
}
dst[0] = src[0];
}
/** Converts a vector in coding scan order witht he PVQ partitions
* laid out one after another into a coefficient block in raster
* order. This works in stages in the reverse order of raster->scan
* order; the 16x16 conversion is applied to the coefficients that
* don't appear in an 8x8 block, then the 8x8 applied to the 8x8 block
* sans the 4x4 block it contains, then 4x4 is converted sans DC.
*
* @param [out] dst destination coefficient block
* @param [in] stride destination vector row stride
* @param [in] src source vector
* @param [in] n block size (along one side)
*/
void od_coding_order_to_raster(tran_low_t *dst, int stride, TX_TYPE ty_type,
const tran_low_t *src, int n) {
int bs;
/* src + 1 because DC is not included for 4x4 blocks. */
od_raster_from_band(OD_LAYOUTS[0], dst, stride, ty_type, src + 1);
for (bs = 1; bs < OD_TXSIZES; bs++) {
int size;
int offset;
/* Length of block size > 4 */
size = 1 << (OD_LOG_BSIZE0 + bs);
/* Offset is the size of the previous block squared. */
offset = 1 << 2*(OD_LOG_BSIZE0 - 1 + bs);
if (n >= size) {
/* 3 16x16 bands come after 3 8x8 bands, which come after 2 4x4 bands. */
od_raster_from_band(OD_LAYOUTS[bs], dst, stride, ty_type, src + offset);
}
}
dst[0] = src[0];
}
/** Perform a single stage of conversion from a coefficient block in
* raster order into coding scan order
*
* @param [in] layout scan order specification
* @param [out] dst destination vector
* @param [in] src source coefficient block
* @param [int] int source vector row stride
*/
static void od_band_from_raster_16(const band_layout *layout, int16_t *dst,
const int16_t *src, int stride) {
int i;
int len;
len = layout->band_offsets[layout->nb_bands];
for (i = 0; i < len; i++) {
dst[i] = src[layout->dst_table[DCT_DCT][i][1]*stride + layout->dst_table[DCT_DCT][i][0]];
}
}
/** Converts a coefficient block in raster order into a vector in
* coding scan order with the PVQ partitions laid out one after
* another. This works in stages; the 4x4 conversion is applied to
* the coefficients nearest DC, then the 8x8 applied to the 8x8 block
* nearest DC that was not already coded by 4x4, then 16x16 following
* the same pattern.
*
* @param [out] dst destination vector
* @param [in] n block size (along one side)
* @param [in] src source coefficient block
* @param [in] stride source vector row stride
*/
void od_raster_to_coding_order_16(int16_t *dst, int n, const int16_t *src,
int stride) {
int bs;
/* dst + 1 because DC is not included for 4x4 blocks. */
od_band_from_raster_16(OD_LAYOUTS[0], dst + 1, src, stride);
for (bs = 1; bs < OD_TXSIZES; bs++) {
int size;
int offset;
/* Length of block size > 4. */
size = 1 << (OD_LOG_BSIZE0 + bs);
/* Offset is the size of the previous block squared. */
offset = 1 << 2*(OD_LOG_BSIZE0 - 1 + bs);
if (n >= size) {
/* 3 16x16 bands come after 3 8x8 bands, which come after 2 4x4 bands. */
od_band_from_raster_16(OD_LAYOUTS[bs], dst + offset, src, stride);
}
}
dst[0] = src[0];
}