aom/test/convolve_test.cc

646 строки
23 KiB
C++

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string.h>
#include "test/acm_random.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "third_party/googletest/src/include/gtest/gtest.h"
extern "C" {
#include "./vpx_config.h"
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_filter.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
}
namespace {
typedef void (*convolve_fn_t)(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int filter_x_stride,
const int16_t *filter_y, int filter_y_stride,
int w, int h);
struct ConvolveFunctions {
ConvolveFunctions(convolve_fn_t h8, convolve_fn_t h8_avg,
convolve_fn_t v8, convolve_fn_t v8_avg,
convolve_fn_t hv8, convolve_fn_t hv8_avg)
: h8_(h8), v8_(v8), hv8_(hv8), h8_avg_(h8_avg), v8_avg_(v8_avg),
hv8_avg_(hv8_avg) {}
convolve_fn_t h8_;
convolve_fn_t v8_;
convolve_fn_t hv8_;
convolve_fn_t h8_avg_;
convolve_fn_t v8_avg_;
convolve_fn_t hv8_avg_;
};
// Reference 8-tap subpixel filter, slightly modified to fit into this test.
#define VP9_FILTER_WEIGHT 128
#define VP9_FILTER_SHIFT 7
uint8_t clip_pixel(int x) {
return x < 0 ? 0 :
x > 255 ? 255 :
x;
}
void filter_block2d_8_c(const uint8_t *src_ptr,
const unsigned int src_stride,
const int16_t *HFilter,
const int16_t *VFilter,
uint8_t *dst_ptr,
unsigned int dst_stride,
unsigned int output_width,
unsigned int output_height) {
// Between passes, we use an intermediate buffer whose height is extended to
// have enough horizontally filtered values as input for the vertical pass.
// This buffer is allocated to be big enough for the largest block type we
// support.
const int kInterp_Extend = 4;
const unsigned int intermediate_height =
(kInterp_Extend - 1) + output_height + kInterp_Extend;
/* Size of intermediate_buffer is max_intermediate_height * filter_max_width,
* where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height
* + kInterp_Extend
* = 3 + 16 + 4
* = 23
* and filter_max_width = 16
*/
uint8_t intermediate_buffer[71 * 64];
const int intermediate_next_stride = 1 - intermediate_height * output_width;
// Horizontal pass (src -> transposed intermediate).
{
uint8_t *output_ptr = intermediate_buffer;
const int src_next_row_stride = src_stride - output_width;
unsigned int i, j;
src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1);
for (i = 0; i < intermediate_height; ++i) {
for (j = 0; j < output_width; ++j) {
// Apply filter...
const int temp = (src_ptr[0] * HFilter[0]) +
(src_ptr[1] * HFilter[1]) +
(src_ptr[2] * HFilter[2]) +
(src_ptr[3] * HFilter[3]) +
(src_ptr[4] * HFilter[4]) +
(src_ptr[5] * HFilter[5]) +
(src_ptr[6] * HFilter[6]) +
(src_ptr[7] * HFilter[7]) +
(VP9_FILTER_WEIGHT >> 1); // Rounding
// Normalize back to 0-255...
*output_ptr = clip_pixel(temp >> VP9_FILTER_SHIFT);
++src_ptr;
output_ptr += intermediate_height;
}
src_ptr += src_next_row_stride;
output_ptr += intermediate_next_stride;
}
}
// Vertical pass (transposed intermediate -> dst).
{
uint8_t *src_ptr = intermediate_buffer;
const int dst_next_row_stride = dst_stride - output_width;
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
// Apply filter...
const int temp = (src_ptr[0] * VFilter[0]) +
(src_ptr[1] * VFilter[1]) +
(src_ptr[2] * VFilter[2]) +
(src_ptr[3] * VFilter[3]) +
(src_ptr[4] * VFilter[4]) +
(src_ptr[5] * VFilter[5]) +
(src_ptr[6] * VFilter[6]) +
(src_ptr[7] * VFilter[7]) +
(VP9_FILTER_WEIGHT >> 1); // Rounding
// Normalize back to 0-255...
*dst_ptr++ = clip_pixel(temp >> VP9_FILTER_SHIFT);
src_ptr += intermediate_height;
}
src_ptr += intermediate_next_stride;
dst_ptr += dst_next_row_stride;
}
}
}
void block2d_average_c(uint8_t *src,
unsigned int src_stride,
uint8_t *output_ptr,
unsigned int output_stride,
unsigned int output_width,
unsigned int output_height) {
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1;
}
output_ptr += output_stride;
}
}
void filter_average_block2d_8_c(const uint8_t *src_ptr,
const unsigned int src_stride,
const int16_t *HFilter,
const int16_t *VFilter,
uint8_t *dst_ptr,
unsigned int dst_stride,
unsigned int output_width,
unsigned int output_height) {
uint8_t tmp[64 * 64];
assert(output_width <= 64);
assert(output_height <= 64);
filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, tmp, 64,
output_width, output_height);
block2d_average_c(tmp, 64, dst_ptr, dst_stride,
output_width, output_height);
}
class ConvolveTest : public PARAMS(int, int, const ConvolveFunctions*) {
public:
static void SetUpTestCase() {
// Force input_ to be unaligned, output to be 16 byte aligned.
input_ = reinterpret_cast<uint8_t*>(
vpx_memalign(kDataAlignment, kInputBufferSize + 1)) + 1;
output_ = reinterpret_cast<uint8_t*>(
vpx_memalign(kDataAlignment, kOutputBufferSize));
}
static void TearDownTestCase() {
vpx_free(input_ - 1);
input_ = NULL;
vpx_free(output_);
output_ = NULL;
}
protected:
static const int kDataAlignment = 16;
static const int kOuterBlockSize = 256;
static const int kInputStride = kOuterBlockSize;
static const int kOutputStride = kOuterBlockSize;
static const int kMaxDimension = 64;
static const int kInputBufferSize = kOuterBlockSize * kOuterBlockSize;
static const int kOutputBufferSize = kOuterBlockSize * kOuterBlockSize;
int Width() const { return GET_PARAM(0); }
int Height() const { return GET_PARAM(1); }
int BorderLeft() const {
const int center = (kOuterBlockSize - Width()) / 2;
return (center + (kDataAlignment - 1)) & ~(kDataAlignment - 1);
}
int BorderTop() const { return (kOuterBlockSize - Height()) / 2; }
bool IsIndexInBorder(int i) {
return (i < BorderTop() * kOuterBlockSize ||
i >= (BorderTop() + Height()) * kOuterBlockSize ||
i % kOuterBlockSize < BorderLeft() ||
i % kOuterBlockSize >= (BorderLeft() + Width()));
}
virtual void SetUp() {
UUT_ = GET_PARAM(2);
/* Set up guard blocks for an inner block centered in the outer block */
for (int i = 0; i < kOutputBufferSize; ++i) {
if (IsIndexInBorder(i))
output_[i] = 255;
else
output_[i] = 0;
}
::libvpx_test::ACMRandom prng;
for (int i = 0; i < kInputBufferSize; ++i)
input_[i] = prng.Rand8Extremes();
}
void SetConstantInput(int value) {
memset(input_, value, kInputBufferSize);
}
void CheckGuardBlocks() {
for (int i = 0; i < kOutputBufferSize; ++i) {
if (IsIndexInBorder(i))
EXPECT_EQ(255, output_[i]);
}
}
uint8_t* input() const {
return input_ + BorderTop() * kOuterBlockSize + BorderLeft();
}
uint8_t* output() const {
return output_ + BorderTop() * kOuterBlockSize + BorderLeft();
}
const ConvolveFunctions* UUT_;
static uint8_t* input_;
static uint8_t* output_;
};
uint8_t* ConvolveTest::input_ = NULL;
uint8_t* ConvolveTest::output_ = NULL;
TEST_P(ConvolveTest, GuardBlocks) {
CheckGuardBlocks();
}
TEST_P(ConvolveTest, CopyHoriz) {
uint8_t* const in = input();
uint8_t* const out = output();
DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0};
REGISTER_STATE_CHECK(
UUT_->h8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(out[y * kOutputStride + x], in[y * kInputStride + x])
<< "(" << x << "," << y << ")";
}
TEST_P(ConvolveTest, CopyVert) {
uint8_t* const in = input();
uint8_t* const out = output();
DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0};
REGISTER_STATE_CHECK(
UUT_->v8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(out[y * kOutputStride + x], in[y * kInputStride + x])
<< "(" << x << "," << y << ")";
}
TEST_P(ConvolveTest, Copy2D) {
uint8_t* const in = input();
uint8_t* const out = output();
DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0};
REGISTER_STATE_CHECK(
UUT_->hv8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(out[y * kOutputStride + x], in[y * kInputStride + x])
<< "(" << x << "," << y << ")";
}
const int16_t (*kTestFilterList[])[8] = {
vp9_bilinear_filters,
vp9_sub_pel_filters_8,
vp9_sub_pel_filters_8s,
vp9_sub_pel_filters_8lp
};
const int kNumFilterBanks = sizeof(kTestFilterList) /
sizeof(kTestFilterList[0]);
const int kNumFilters = 16;
TEST(ConvolveTest, FiltersWontSaturateWhenAddedPairwise) {
for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) {
const int16_t (*filters)[8] = kTestFilterList[filter_bank];
for (int i = 0; i < kNumFilters; i++) {
const int p0 = filters[i][0] + filters[i][1];
const int p1 = filters[i][2] + filters[i][3];
const int p2 = filters[i][4] + filters[i][5];
const int p3 = filters[i][6] + filters[i][7];
EXPECT_LE(p0, 128);
EXPECT_LE(p1, 128);
EXPECT_LE(p2, 128);
EXPECT_LE(p3, 128);
EXPECT_LE(p0 + p3, 128);
EXPECT_LE(p0 + p3 + p1, 128);
EXPECT_LE(p0 + p3 + p1 + p2, 128);
EXPECT_EQ(p0 + p1 + p2 + p3, 128);
}
}
}
const int16_t kInvalidFilter[8] = { 0 };
TEST_P(ConvolveTest, MatchesReferenceSubpixelFilter) {
uint8_t* const in = input();
uint8_t* const out = output();
uint8_t ref[kOutputStride * kMaxDimension];
for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) {
const int16_t (*filters)[8] = kTestFilterList[filter_bank];
for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) {
for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) {
filter_block2d_8_c(in, kInputStride,
filters[filter_x], filters[filter_y],
ref, kOutputStride,
Width(), Height());
if (filters == vp9_sub_pel_filters_8lp || (filter_x && filter_y))
REGISTER_STATE_CHECK(
UUT_->hv8_(in, kInputStride, out, kOutputStride,
filters[filter_x], 16, filters[filter_y], 16,
Width(), Height()));
else if (filter_y)
REGISTER_STATE_CHECK(
UUT_->v8_(in, kInputStride, out, kOutputStride,
kInvalidFilter, 16, filters[filter_y], 16,
Width(), Height()));
else
REGISTER_STATE_CHECK(
UUT_->h8_(in, kInputStride, out, kOutputStride,
filters[filter_x], 16, kInvalidFilter, 16,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(ref[y * kOutputStride + x], out[y * kOutputStride + x])
<< "mismatch at (" << x << "," << y << "), "
<< "filters (" << filter_bank << ","
<< filter_x << "," << filter_y << ")";
}
}
}
}
TEST_P(ConvolveTest, MatchesReferenceAveragingSubpixelFilter) {
uint8_t* const in = input();
uint8_t* const out = output();
uint8_t ref[kOutputStride * kMaxDimension];
// Populate ref and out with some random data
::libvpx_test::ACMRandom prng;
for (int y = 0; y < Height(); ++y) {
for (int x = 0; x < Width(); ++x) {
const uint8_t r = prng.Rand8Extremes();
out[y * kOutputStride + x] = r;
ref[y * kOutputStride + x] = r;
}
}
const int kNumFilterBanks = sizeof(kTestFilterList) /
sizeof(kTestFilterList[0]);
for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) {
const int16_t (*filters)[8] = kTestFilterList[filter_bank];
const int kNumFilters = 16;
for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) {
for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) {
filter_average_block2d_8_c(in, kInputStride,
filters[filter_x], filters[filter_y],
ref, kOutputStride,
Width(), Height());
if (filters == vp9_sub_pel_filters_8lp || (filter_x && filter_y))
REGISTER_STATE_CHECK(
UUT_->hv8_avg_(in, kInputStride, out, kOutputStride,
filters[filter_x], 16, filters[filter_y], 16,
Width(), Height()));
else if (filter_y)
REGISTER_STATE_CHECK(
UUT_->v8_avg_(in, kInputStride, out, kOutputStride,
filters[filter_x], 16, filters[filter_y], 16,
Width(), Height()));
else
REGISTER_STATE_CHECK(
UUT_->h8_avg_(in, kInputStride, out, kOutputStride,
filters[filter_x], 16, filters[filter_y], 16,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(ref[y * kOutputStride + x], out[y * kOutputStride + x])
<< "mismatch at (" << x << "," << y << "), "
<< "filters (" << filter_bank << ","
<< filter_x << "," << filter_y << ")";
}
}
}
}
DECLARE_ALIGNED(256, const int16_t, kChangeFilters[16][8]) = {
{ 0, 0, 0, 0, 0, 0, 0, 128},
{ 0, 0, 0, 0, 0, 0, 128},
{ 0, 0, 0, 0, 0, 128},
{ 0, 0, 0, 0, 128},
{ 0, 0, 0, 128},
{ 0, 0, 128},
{ 0, 128},
{ 128},
{ 0, 0, 0, 0, 0, 0, 0, 128},
{ 0, 0, 0, 0, 0, 0, 128},
{ 0, 0, 0, 0, 0, 128},
{ 0, 0, 0, 0, 128},
{ 0, 0, 0, 128},
{ 0, 0, 128},
{ 0, 128},
{ 128}
};
/* This test exercises the horizontal and vertical filter functions. */
TEST_P(ConvolveTest, ChangeFilterWorks) {
uint8_t* const in = input();
uint8_t* const out = output();
/* Assume that the first input sample is at the 8/16th position. */
const int kInitialSubPelOffset = 8;
/* Filters are 8-tap, so the first filter tap will be applied to the pixel
* at position -3 with respect to the current filtering position. Since
* kInitialSubPelOffset is set to 8, we first select sub-pixel filter 8,
* which is non-zero only in the last tap. So, applying the filter at the
* current input position will result in an output equal to the pixel at
* offset +4 (-3 + 7) with respect to the current filtering position.
*/
const int kPixelSelected = 4;
/* Assume that each output pixel requires us to step on by 17/16th pixels in
* the input.
*/
const int kInputPixelStep = 17;
/* The filters are setup in such a way that the expected output produces
* sets of 8 identical output samples. As the filter position moves to the
* next 1/16th pixel position the only active (=128) filter tap moves one
* position to the left, resulting in the same input pixel being replicated
* in to the output for 8 consecutive samples. After each set of 8 positions
* the filters select a different input pixel. kFilterPeriodAdjust below
* computes which input pixel is written to the output for a specified
* x or y position.
*/
/* Test the horizontal filter. */
REGISTER_STATE_CHECK(UUT_->h8_(in, kInputStride, out, kOutputStride,
kChangeFilters[kInitialSubPelOffset],
kInputPixelStep, NULL, 0, Width(), Height()));
for (int x = 0; x < Width(); ++x) {
const int kFilterPeriodAdjust = (x >> 3) << 3;
const int ref_x =
kPixelSelected + ((kInitialSubPelOffset
+ kFilterPeriodAdjust * kInputPixelStep)
>> SUBPEL_BITS);
ASSERT_EQ(in[ref_x], out[x]) << "x == " << x << "width = " << Width();
}
/* Test the vertical filter. */
REGISTER_STATE_CHECK(UUT_->v8_(in, kInputStride, out, kOutputStride,
NULL, 0, kChangeFilters[kInitialSubPelOffset],
kInputPixelStep, Width(), Height()));
for (int y = 0; y < Height(); ++y) {
const int kFilterPeriodAdjust = (y >> 3) << 3;
const int ref_y =
kPixelSelected + ((kInitialSubPelOffset
+ kFilterPeriodAdjust * kInputPixelStep)
>> SUBPEL_BITS);
ASSERT_EQ(in[ref_y * kInputStride], out[y * kInputStride]) << "y == " << y;
}
/* Test the horizontal and vertical filters in combination. */
REGISTER_STATE_CHECK(UUT_->hv8_(in, kInputStride, out, kOutputStride,
kChangeFilters[kInitialSubPelOffset],
kInputPixelStep,
kChangeFilters[kInitialSubPelOffset],
kInputPixelStep,
Width(), Height()));
for (int y = 0; y < Height(); ++y) {
const int kFilterPeriodAdjustY = (y >> 3) << 3;
const int ref_y =
kPixelSelected + ((kInitialSubPelOffset
+ kFilterPeriodAdjustY * kInputPixelStep)
>> SUBPEL_BITS);
for (int x = 0; x < Width(); ++x) {
const int kFilterPeriodAdjustX = (x >> 3) << 3;
const int ref_x =
kPixelSelected + ((kInitialSubPelOffset
+ kFilterPeriodAdjustX * kInputPixelStep)
>> SUBPEL_BITS);
ASSERT_EQ(in[ref_y * kInputStride + ref_x], out[y * kOutputStride + x])
<< "x == " << x << ", y == " << y;
}
}
}
/* This test exercises that enough rows and columns are filtered with every
possible initial fractional positions and scaling steps. */
TEST_P(ConvolveTest, CheckScalingFiltering) {
uint8_t* const in = input();
uint8_t* const out = output();
SetConstantInput(127);
for (int frac = 0; frac < 16; ++frac) {
for (int step = 1; step <= 32; ++step) {
/* Test the horizontal and vertical filters in combination. */
REGISTER_STATE_CHECK(UUT_->hv8_(in, kInputStride, out, kOutputStride,
vp9_sub_pel_filters_8[frac], step,
vp9_sub_pel_filters_8[frac], step,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y) {
for (int x = 0; x < Width(); ++x) {
ASSERT_EQ(in[y * kInputStride + x], out[y * kOutputStride + x])
<< "x == " << x << ", y == " << y
<< ", frac == " << frac << ", step == " << step;
}
}
}
}
}
using std::tr1::make_tuple;
const ConvolveFunctions convolve8_c(
vp9_convolve8_horiz_c, vp9_convolve8_avg_horiz_c,
vp9_convolve8_vert_c, vp9_convolve8_avg_vert_c,
vp9_convolve8_c, vp9_convolve8_avg_c);
INSTANTIATE_TEST_CASE_P(C, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve8_c),
make_tuple(8, 4, &convolve8_c),
make_tuple(4, 8, &convolve8_c),
make_tuple(8, 8, &convolve8_c),
make_tuple(16, 8, &convolve8_c),
make_tuple(8, 16, &convolve8_c),
make_tuple(16, 16, &convolve8_c),
make_tuple(32, 16, &convolve8_c),
make_tuple(16, 32, &convolve8_c),
make_tuple(32, 32, &convolve8_c),
make_tuple(64, 32, &convolve8_c),
make_tuple(32, 64, &convolve8_c),
make_tuple(64, 64, &convolve8_c)));
#if HAVE_SSSE3
const ConvolveFunctions convolve8_ssse3(
vp9_convolve8_horiz_ssse3, vp9_convolve8_avg_horiz_ssse3,
vp9_convolve8_vert_ssse3, vp9_convolve8_avg_vert_ssse3,
vp9_convolve8_ssse3, vp9_convolve8_avg_ssse3);
INSTANTIATE_TEST_CASE_P(SSSE3, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve8_ssse3),
make_tuple(8, 4, &convolve8_ssse3),
make_tuple(4, 8, &convolve8_ssse3),
make_tuple(8, 8, &convolve8_ssse3),
make_tuple(16, 8, &convolve8_ssse3),
make_tuple(8, 16, &convolve8_ssse3),
make_tuple(16, 16, &convolve8_ssse3),
make_tuple(32, 16, &convolve8_ssse3),
make_tuple(16, 32, &convolve8_ssse3),
make_tuple(32, 32, &convolve8_ssse3),
make_tuple(64, 32, &convolve8_ssse3),
make_tuple(32, 64, &convolve8_ssse3),
make_tuple(64, 64, &convolve8_ssse3)));
#endif
#if HAVE_NEON
const ConvolveFunctions convolve8_neon(
vp9_convolve8_horiz_neon, vp9_convolve8_avg_horiz_neon,
vp9_convolve8_vert_neon, vp9_convolve8_avg_vert_neon,
vp9_convolve8_neon, vp9_convolve8_avg_neon);
INSTANTIATE_TEST_CASE_P(NEON, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve8_neon),
make_tuple(8, 4, &convolve8_neon),
make_tuple(4, 8, &convolve8_neon),
make_tuple(8, 8, &convolve8_neon),
make_tuple(16, 8, &convolve8_neon),
make_tuple(8, 16, &convolve8_neon),
make_tuple(16, 16, &convolve8_neon),
make_tuple(32, 16, &convolve8_neon),
make_tuple(16, 32, &convolve8_neon),
make_tuple(32, 32, &convolve8_neon),
make_tuple(64, 32, &convolve8_neon),
make_tuple(32, 64, &convolve8_neon),
make_tuple(64, 64, &convolve8_neon)));
#endif
} // namespace