aom/av1/common/idct.c

2247 строки
73 KiB
C

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "aom_dsp/inv_txfm.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_inv_txfm2d_cfg.h"
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
#include "av1/common/idct.h"
int get_tx_scale(const MACROBLOCKD *const xd, const TX_TYPE tx_type,
const TX_SIZE tx_size) {
(void)tx_type;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
return txsize_sqr_up_map[tx_size] == TX_32X32;
}
#else
(void)xd;
#endif
return txsize_sqr_up_map[tx_size] == TX_32X32;
}
// NOTE: The implementation of all inverses need to be aware of the fact
// that input and output could be the same buffer.
#if CONFIG_EXT_TX
static void iidtx4_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 4; ++i)
output[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2);
}
static void iidtx8_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 8; ++i) output[i] = input[i] * 2;
}
static void iidtx16_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 16; ++i)
output[i] = (tran_low_t)dct_const_round_shift(input[i] * 2 * Sqrt2);
}
static void iidtx32_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 32; ++i) output[i] = input[i] * 4;
}
#endif // CONFIG_EXT_TX
// For use in lieu of ADST
static void ihalfright32_c(const tran_low_t *input, tran_low_t *output) {
int i;
tran_low_t inputhalf[16];
// Multiply input by sqrt(2)
for (i = 0; i < 16; ++i) {
inputhalf[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2);
}
for (i = 0; i < 16; ++i) {
output[i] = input[16 + i] * 4;
}
aom_idct16_c(inputhalf, output + 16);
// Note overall scaling factor is 4 times orthogonal
}
#if CONFIG_TX64X64
static void idct64_col_c(const tran_low_t *input, tran_low_t *output) {
int32_t in[64], out[64];
int i;
for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i];
av1_idct64_new(in, out, inv_cos_bit_col_dct_dct_64,
inv_stage_range_col_dct_dct_64);
for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i];
}
static void idct64_row_c(const tran_low_t *input, tran_low_t *output) {
int32_t in[64], out[64];
int i;
for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i];
av1_idct64_new(in, out, inv_cos_bit_row_dct_dct_64,
inv_stage_range_row_dct_dct_64);
for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i];
}
static void iidtx64_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 64; ++i)
output[i] = (tran_low_t)dct_const_round_shift(input[i] * 4 * Sqrt2);
}
// For use in lieu of ADST
static void ihalfright64_c(const tran_low_t *input, tran_low_t *output) {
int i;
tran_low_t inputhalf[32];
// Multiply input by sqrt(2)
for (i = 0; i < 32; ++i) {
inputhalf[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2);
}
for (i = 0; i < 32; ++i) {
output[i] = (tran_low_t)dct_const_round_shift(input[32 + i] * 4 * Sqrt2);
}
aom_idct32_c(inputhalf, output + 32);
// Note overall scaling factor is 4 * sqrt(2) times orthogonal
}
#endif // CONFIG_TX64X64
#if CONFIG_AOM_HIGHBITDEPTH
#if CONFIG_EXT_TX
static void highbd_iidtx4_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int i;
for (i = 0; i < 4; ++i)
output[i] =
HIGHBD_WRAPLOW(highbd_dct_const_round_shift(input[i] * Sqrt2), bd);
}
static void highbd_iidtx8_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int i;
(void)bd;
for (i = 0; i < 8; ++i) output[i] = input[i] * 2;
}
static void highbd_iidtx16_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int i;
for (i = 0; i < 16; ++i)
output[i] =
HIGHBD_WRAPLOW(highbd_dct_const_round_shift(input[i] * 2 * Sqrt2), bd);
}
static void highbd_iidtx32_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int i;
(void)bd;
for (i = 0; i < 32; ++i) output[i] = input[i] * 4;
}
#endif // CONFIG_EXT_TX
static void highbd_ihalfright32_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int i;
tran_low_t inputhalf[16];
// Multiply input by sqrt(2)
for (i = 0; i < 16; ++i) {
inputhalf[i] =
HIGHBD_WRAPLOW(highbd_dct_const_round_shift(input[i] * Sqrt2), bd);
}
for (i = 0; i < 16; ++i) {
output[i] = input[16 + i] * 4;
}
aom_highbd_idct16_c(inputhalf, output + 16, bd);
// Note overall scaling factor is 4 times orthogonal
}
#if CONFIG_EXT_TX
#if CONFIG_TX64X64
static void highbd_iidtx64_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int i;
for (i = 0; i < 64; ++i)
output[i] =
HIGHBD_WRAPLOW(highbd_dct_const_round_shift(input[i] * 4 * Sqrt2), bd);
}
// For use in lieu of ADST
static void highbd_ihalfright64_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int i;
tran_low_t inputhalf[32];
// Multiply input by sqrt(2)
for (i = 0; i < 32; ++i) {
inputhalf[i] =
HIGHBD_WRAPLOW(highbd_dct_const_round_shift(input[i] * Sqrt2), bd);
}
for (i = 0; i < 32; ++i) {
output[i] = HIGHBD_WRAPLOW(
highbd_dct_const_round_shift(input[32 + i] * 4 * Sqrt2), bd);
}
aom_highbd_idct32_c(inputhalf, output + 32, bd);
// Note overall scaling factor is 4 * sqrt(2) times orthogonal
}
static void highbd_idct64_col_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int32_t in[64], out[64];
int i;
(void)bd;
for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i];
av1_idct64_new(in, out, inv_cos_bit_col_dct_dct_64,
inv_stage_range_col_dct_dct_64);
for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i];
}
static void highbd_idct64_row_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int32_t in[64], out[64];
int i;
(void)bd;
for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i];
av1_idct64_new(in, out, inv_cos_bit_row_dct_dct_64,
inv_stage_range_row_dct_dct_64);
for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i];
}
#endif // CONFIG_TX64X64
#endif // CONFIG_EXT_TX
#endif // CONFIG_AOM_HIGHBITDEPTH
// Inverse identity transform and add.
#if CONFIG_EXT_TX
static void inv_idtx_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int bs, int tx_type) {
int r, c;
const int shift = bs < 32 ? 3 : 2;
if (tx_type == IDTX) {
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c)
dest[c] = clip_pixel_add(dest[c], input[c] >> shift);
dest += stride;
input += bs;
}
}
}
#endif // CONFIG_EXT_TX
#define FLIPUD_PTR(dest, stride, size) \
do { \
(dest) = (dest) + ((size)-1) * (stride); \
(stride) = -(stride); \
} while (0)
#if CONFIG_EXT_TX
static void maybe_flip_strides(uint8_t **dst, int *dstride, tran_low_t **src,
int *sstride, int tx_type, int sizey,
int sizex) {
// Note that the transpose of src will be added to dst. In order to LR
// flip the addends (in dst coordinates), we UD flip the src. To UD flip
// the addends, we UD flip the dst.
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case IDTX:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST: break;
case FLIPADST_DCT:
case FLIPADST_ADST:
case V_FLIPADST:
// flip UD
FLIPUD_PTR(*dst, *dstride, sizey);
break;
case DCT_FLIPADST:
case ADST_FLIPADST:
case H_FLIPADST:
// flip LR
FLIPUD_PTR(*src, *sstride, sizex);
break;
case FLIPADST_FLIPADST:
// flip UD
FLIPUD_PTR(*dst, *dstride, sizey);
// flip LR
FLIPUD_PTR(*src, *sstride, sizex);
break;
default: assert(0); break;
}
}
#endif // CONFIG_EXT_TX
#if CONFIG_AOM_HIGHBITDEPTH
#if CONFIG_EXT_TX
static void highbd_inv_idtx_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bs, int tx_type, int bd) {
int r, c;
const int shift = bs < 32 ? 3 : 2;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
if (tx_type == IDTX) {
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c)
dest[c] = highbd_clip_pixel_add(dest[c], input[c] >> shift, bd);
dest += stride;
input += bs;
}
}
}
static void maybe_flip_strides16(uint16_t **dst, int *dstride, tran_low_t **src,
int *sstride, int tx_type, int sizey,
int sizex) {
// Note that the transpose of src will be added to dst. In order to LR
// flip the addends (in dst coordinates), we UD flip the src. To UD flip
// the addends, we UD flip the dst.
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case IDTX:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST: break;
case FLIPADST_DCT:
case FLIPADST_ADST:
case V_FLIPADST:
// flip UD
FLIPUD_PTR(*dst, *dstride, sizey);
break;
case DCT_FLIPADST:
case ADST_FLIPADST:
case H_FLIPADST:
// flip LR
FLIPUD_PTR(*src, *sstride, sizex);
break;
case FLIPADST_FLIPADST:
// flip UD
FLIPUD_PTR(*dst, *dstride, sizey);
// flip LR
FLIPUD_PTR(*src, *sstride, sizex);
break;
default: assert(0); break;
}
}
#endif // CONFIG_EXT_TX
#endif // CONFIG_AOM_HIGHBITDEPTH
void av1_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_4[] = {
{ aom_idct4_c, aom_idct4_c }, // DCT_DCT = 0
{ aom_iadst4_c, aom_idct4_c }, // ADST_DCT = 1
{ aom_idct4_c, aom_iadst4_c }, // DCT_ADST = 2
{ aom_iadst4_c, aom_iadst4_c }, // ADST_ADST = 3
#if CONFIG_EXT_TX
{ aom_iadst4_c, aom_idct4_c }, // FLIPADST_DCT
{ aom_idct4_c, aom_iadst4_c }, // DCT_FLIPADST
{ aom_iadst4_c, aom_iadst4_c }, // FLIPADST_FLIPADST
{ aom_iadst4_c, aom_iadst4_c }, // ADST_FLIPADST
{ aom_iadst4_c, aom_iadst4_c }, // FLIPADST_ADST
{ iidtx4_c, iidtx4_c }, // IDTX
{ aom_idct4_c, iidtx4_c }, // V_DCT
{ iidtx4_c, aom_idct4_c }, // H_DCT
{ aom_iadst4_c, iidtx4_c }, // V_ADST
{ iidtx4_c, aom_iadst4_c }, // H_ADST
{ aom_iadst4_c, iidtx4_c }, // V_FLIPADST
{ iidtx4_c, aom_iadst4_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
int i, j;
tran_low_t tmp;
tran_low_t out[4][4];
tran_low_t *outp = &out[0][0];
int outstride = 4;
// inverse transform row vectors
for (i = 0; i < 4; ++i) {
IHT_4[tx_type].rows(input, out[i]);
input += 4;
}
// transpose
for (i = 1; i < 4; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 4; ++i) {
IHT_4[tx_type].cols(out[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 4, 4);
#endif
// Sum with the destination
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4));
}
}
}
void av1_iht4x8_32_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_4x8[] = {
{ aom_idct8_c, aom_idct4_c }, // DCT_DCT
{ aom_iadst8_c, aom_idct4_c }, // ADST_DCT
{ aom_idct8_c, aom_iadst4_c }, // DCT_ADST
{ aom_iadst8_c, aom_iadst4_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst8_c, aom_idct4_c }, // FLIPADST_DCT
{ aom_idct8_c, aom_iadst4_c }, // DCT_FLIPADST
{ aom_iadst8_c, aom_iadst4_c }, // FLIPADST_FLIPADST
{ aom_iadst8_c, aom_iadst4_c }, // ADST_FLIPADST
{ aom_iadst8_c, aom_iadst4_c }, // FLIPADST_ADST
{ iidtx8_c, iidtx4_c }, // IDTX
{ aom_idct8_c, iidtx4_c }, // V_DCT
{ iidtx8_c, aom_idct4_c }, // H_DCT
{ aom_iadst8_c, iidtx4_c }, // V_ADST
{ iidtx8_c, aom_iadst4_c }, // H_ADST
{ aom_iadst8_c, iidtx4_c }, // V_FLIPADST
{ iidtx8_c, aom_iadst4_c }, // H_FLIPADST
#endif
};
const int n = 4;
const int n2 = 8;
int i, j;
tran_low_t out[4][8], outtmp[4];
tran_low_t *outp = &out[0][0];
int outstride = n2;
// inverse transform row vectors and transpose
for (i = 0; i < n2; ++i) {
IHT_4x8[tx_type].rows(input, outtmp);
for (j = 0; j < n; ++j)
out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2);
input += n;
}
// inverse transform column vectors
for (i = 0; i < n; ++i) {
IHT_4x8[tx_type].cols(out[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n);
#endif
// Sum with the destination
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5));
}
}
}
void av1_iht8x4_32_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_8x4[] = {
{ aom_idct4_c, aom_idct8_c }, // DCT_DCT
{ aom_iadst4_c, aom_idct8_c }, // ADST_DCT
{ aom_idct4_c, aom_iadst8_c }, // DCT_ADST
{ aom_iadst4_c, aom_iadst8_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst4_c, aom_idct8_c }, // FLIPADST_DCT
{ aom_idct4_c, aom_iadst8_c }, // DCT_FLIPADST
{ aom_iadst4_c, aom_iadst8_c }, // FLIPADST_FLIPADST
{ aom_iadst4_c, aom_iadst8_c }, // ADST_FLIPADST
{ aom_iadst4_c, aom_iadst8_c }, // FLIPADST_ADST
{ iidtx4_c, iidtx8_c }, // IDTX
{ aom_idct4_c, iidtx8_c }, // V_DCT
{ iidtx4_c, aom_idct8_c }, // H_DCT
{ aom_iadst4_c, iidtx8_c }, // V_ADST
{ iidtx4_c, aom_iadst8_c }, // H_ADST
{ aom_iadst4_c, iidtx8_c }, // V_FLIPADST
{ iidtx4_c, aom_iadst8_c }, // H_FLIPADST
#endif
};
const int n = 4;
const int n2 = 8;
int i, j;
tran_low_t out[8][4], outtmp[8];
tran_low_t *outp = &out[0][0];
int outstride = n;
// inverse transform row vectors and transpose
for (i = 0; i < n; ++i) {
IHT_8x4[tx_type].rows(input, outtmp);
for (j = 0; j < n2; ++j)
out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2);
input += n2;
}
// inverse transform column vectors
for (i = 0; i < n2; ++i) {
IHT_8x4[tx_type].cols(out[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2);
#endif
// Sum with the destination
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5));
}
}
}
void av1_iht8x16_128_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_8x16[] = {
{ aom_idct16_c, aom_idct8_c }, // DCT_DCT
{ aom_iadst16_c, aom_idct8_c }, // ADST_DCT
{ aom_idct16_c, aom_iadst8_c }, // DCT_ADST
{ aom_iadst16_c, aom_iadst8_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst16_c, aom_idct8_c }, // FLIPADST_DCT
{ aom_idct16_c, aom_iadst8_c }, // DCT_FLIPADST
{ aom_iadst16_c, aom_iadst8_c }, // FLIPADST_FLIPADST
{ aom_iadst16_c, aom_iadst8_c }, // ADST_FLIPADST
{ aom_iadst16_c, aom_iadst8_c }, // FLIPADST_ADST
{ iidtx16_c, iidtx8_c }, // IDTX
{ aom_idct16_c, iidtx8_c }, // V_DCT
{ iidtx16_c, aom_idct8_c }, // H_DCT
{ aom_iadst16_c, iidtx8_c }, // V_ADST
{ iidtx16_c, aom_iadst8_c }, // H_ADST
{ aom_iadst16_c, iidtx8_c }, // V_FLIPADST
{ iidtx16_c, aom_iadst8_c }, // H_FLIPADST
#endif
};
const int n = 8;
const int n2 = 16;
int i, j;
tran_low_t out[8][16], outtmp[8];
tran_low_t *outp = &out[0][0];
int outstride = n2;
// inverse transform row vectors and transpose
for (i = 0; i < n2; ++i) {
IHT_8x16[tx_type].rows(input, outtmp);
for (j = 0; j < n; ++j)
out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2);
input += n;
}
// inverse transform column vectors
for (i = 0; i < n; ++i) {
IHT_8x16[tx_type].cols(out[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n);
#endif
// Sum with the destination
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
void av1_iht16x8_128_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_16x8[] = {
{ aom_idct8_c, aom_idct16_c }, // DCT_DCT
{ aom_iadst8_c, aom_idct16_c }, // ADST_DCT
{ aom_idct8_c, aom_iadst16_c }, // DCT_ADST
{ aom_iadst8_c, aom_iadst16_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst8_c, aom_idct16_c }, // FLIPADST_DCT
{ aom_idct8_c, aom_iadst16_c }, // DCT_FLIPADST
{ aom_iadst8_c, aom_iadst16_c }, // FLIPADST_FLIPADST
{ aom_iadst8_c, aom_iadst16_c }, // ADST_FLIPADST
{ aom_iadst8_c, aom_iadst16_c }, // FLIPADST_ADST
{ iidtx8_c, iidtx16_c }, // IDTX
{ aom_idct8_c, iidtx16_c }, // V_DCT
{ iidtx8_c, aom_idct16_c }, // H_DCT
{ aom_iadst8_c, iidtx16_c }, // V_ADST
{ iidtx8_c, aom_iadst16_c }, // H_ADST
{ aom_iadst8_c, iidtx16_c }, // V_FLIPADST
{ iidtx8_c, aom_iadst16_c }, // H_FLIPADST
#endif
};
const int n = 8;
const int n2 = 16;
int i, j;
tran_low_t out[16][8], outtmp[16];
tran_low_t *outp = &out[0][0];
int outstride = n;
// inverse transform row vectors and transpose
for (i = 0; i < n; ++i) {
IHT_16x8[tx_type].rows(input, outtmp);
for (j = 0; j < n2; ++j)
out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2);
input += n2;
}
// inverse transform column vectors
for (i = 0; i < n2; ++i) {
IHT_16x8[tx_type].cols(out[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2);
#endif
// Sum with the destination
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
void av1_iht16x32_512_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_16x32[] = {
{ aom_idct32_c, aom_idct16_c }, // DCT_DCT
{ ihalfright32_c, aom_idct16_c }, // ADST_DCT
{ aom_idct32_c, aom_iadst16_c }, // DCT_ADST
{ ihalfright32_c, aom_iadst16_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ ihalfright32_c, aom_idct16_c }, // FLIPADST_DCT
{ aom_idct32_c, aom_iadst16_c }, // DCT_FLIPADST
{ ihalfright32_c, aom_iadst16_c }, // FLIPADST_FLIPADST
{ ihalfright32_c, aom_iadst16_c }, // ADST_FLIPADST
{ ihalfright32_c, aom_iadst16_c }, // FLIPADST_ADST
{ iidtx32_c, iidtx16_c }, // IDTX
{ aom_idct32_c, iidtx16_c }, // V_DCT
{ iidtx32_c, aom_idct16_c }, // H_DCT
{ ihalfright32_c, iidtx16_c }, // V_ADST
{ iidtx32_c, aom_iadst16_c }, // H_ADST
{ ihalfright32_c, iidtx16_c }, // V_FLIPADST
{ iidtx32_c, aom_iadst16_c }, // H_FLIPADST
#endif
};
const int n = 16;
const int n2 = 32;
int i, j;
tran_low_t out[16][32], outtmp[16];
tran_low_t *outp = &out[0][0];
int outstride = n2;
// inverse transform row vectors and transpose
for (i = 0; i < n2; ++i) {
IHT_16x32[tx_type].rows(input, outtmp);
for (j = 0; j < n; ++j)
out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2);
input += n;
}
// inverse transform column vectors
for (i = 0; i < n; ++i) {
IHT_16x32[tx_type].cols(out[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n);
#endif
// Sum with the destination
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
void av1_iht32x16_512_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_32x16[] = {
{ aom_idct16_c, aom_idct32_c }, // DCT_DCT
{ aom_iadst16_c, aom_idct32_c }, // ADST_DCT
{ aom_idct16_c, ihalfright32_c }, // DCT_ADST
{ aom_iadst16_c, ihalfright32_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst16_c, aom_idct32_c }, // FLIPADST_DCT
{ aom_idct16_c, ihalfright32_c }, // DCT_FLIPADST
{ aom_iadst16_c, ihalfright32_c }, // FLIPADST_FLIPADST
{ aom_iadst16_c, ihalfright32_c }, // ADST_FLIPADST
{ aom_iadst16_c, ihalfright32_c }, // FLIPADST_ADST
{ iidtx16_c, iidtx32_c }, // IDTX
{ aom_idct16_c, iidtx32_c }, // V_DCT
{ iidtx16_c, aom_idct32_c }, // H_DCT
{ aom_iadst16_c, iidtx32_c }, // V_ADST
{ iidtx16_c, ihalfright32_c }, // H_ADST
{ aom_iadst16_c, iidtx32_c }, // V_FLIPADST
{ iidtx16_c, ihalfright32_c }, // H_FLIPADST
#endif
};
const int n = 16;
const int n2 = 32;
int i, j;
tran_low_t out[32][16], outtmp[32];
tran_low_t *outp = &out[0][0];
int outstride = n;
// inverse transform row vectors and transpose
for (i = 0; i < n; ++i) {
IHT_32x16[tx_type].rows(input, outtmp);
for (j = 0; j < n2; ++j)
out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2);
input += n2;
}
// inverse transform column vectors
for (i = 0; i < n2; ++i) {
IHT_32x16[tx_type].cols(out[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2);
#endif
// Sum with the destination
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
void av1_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_8[] = {
{ aom_idct8_c, aom_idct8_c }, // DCT_DCT = 0
{ aom_iadst8_c, aom_idct8_c }, // ADST_DCT = 1
{ aom_idct8_c, aom_iadst8_c }, // DCT_ADST = 2
{ aom_iadst8_c, aom_iadst8_c }, // ADST_ADST = 3
#if CONFIG_EXT_TX
{ aom_iadst8_c, aom_idct8_c }, // FLIPADST_DCT
{ aom_idct8_c, aom_iadst8_c }, // DCT_FLIPADST
{ aom_iadst8_c, aom_iadst8_c }, // FLIPADST_FLIPADST
{ aom_iadst8_c, aom_iadst8_c }, // ADST_FLIPADST
{ aom_iadst8_c, aom_iadst8_c }, // FLIPADST_ADST
{ iidtx8_c, iidtx8_c }, // IDTX
{ aom_idct8_c, iidtx8_c }, // V_DCT
{ iidtx8_c, aom_idct8_c }, // H_DCT
{ aom_iadst8_c, iidtx8_c }, // V_ADST
{ iidtx8_c, aom_iadst8_c }, // H_ADST
{ aom_iadst8_c, iidtx8_c }, // V_FLIPADST
{ iidtx8_c, aom_iadst8_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
int i, j;
tran_low_t tmp;
tran_low_t out[8][8];
tran_low_t *outp = &out[0][0];
int outstride = 8;
// inverse transform row vectors
for (i = 0; i < 8; ++i) {
IHT_8[tx_type].rows(input, out[i]);
input += 8;
}
// transpose
for (i = 1; i < 8; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 8; ++i) {
IHT_8[tx_type].cols(out[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 8, 8);
#endif
// Sum with the destination
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5));
}
}
}
void av1_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_16[] = {
{ aom_idct16_c, aom_idct16_c }, // DCT_DCT = 0
{ aom_iadst16_c, aom_idct16_c }, // ADST_DCT = 1
{ aom_idct16_c, aom_iadst16_c }, // DCT_ADST = 2
{ aom_iadst16_c, aom_iadst16_c }, // ADST_ADST = 3
#if CONFIG_EXT_TX
{ aom_iadst16_c, aom_idct16_c }, // FLIPADST_DCT
{ aom_idct16_c, aom_iadst16_c }, // DCT_FLIPADST
{ aom_iadst16_c, aom_iadst16_c }, // FLIPADST_FLIPADST
{ aom_iadst16_c, aom_iadst16_c }, // ADST_FLIPADST
{ aom_iadst16_c, aom_iadst16_c }, // FLIPADST_ADST
{ iidtx16_c, iidtx16_c }, // IDTX
{ aom_idct16_c, iidtx16_c }, // V_DCT
{ iidtx16_c, aom_idct16_c }, // H_DCT
{ aom_iadst16_c, iidtx16_c }, // V_ADST
{ iidtx16_c, aom_iadst16_c }, // H_ADST
{ aom_iadst16_c, iidtx16_c }, // V_FLIPADST
{ iidtx16_c, aom_iadst16_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
int i, j;
tran_low_t tmp;
tran_low_t out[16][16];
tran_low_t *outp = &out[0][0];
int outstride = 16;
// inverse transform row vectors
for (i = 0; i < 16; ++i) {
IHT_16[tx_type].rows(input, out[i]);
input += 16;
}
// transpose
for (i = 1; i < 16; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 16; ++i) {
IHT_16[tx_type].cols(out[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 16, 16);
#endif
// Sum with the destination
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
#if CONFIG_EXT_TX
void av1_iht32x32_1024_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_32[] = {
{ aom_idct32_c, aom_idct32_c }, // DCT_DCT
{ ihalfright32_c, aom_idct32_c }, // ADST_DCT
{ aom_idct32_c, ihalfright32_c }, // DCT_ADST
{ ihalfright32_c, ihalfright32_c }, // ADST_ADST
{ ihalfright32_c, aom_idct32_c }, // FLIPADST_DCT
{ aom_idct32_c, ihalfright32_c }, // DCT_FLIPADST
{ ihalfright32_c, ihalfright32_c }, // FLIPADST_FLIPADST
{ ihalfright32_c, ihalfright32_c }, // ADST_FLIPADST
{ ihalfright32_c, ihalfright32_c }, // FLIPADST_ADST
{ iidtx32_c, iidtx32_c }, // IDTX
{ aom_idct32_c, iidtx32_c }, // V_DCT
{ iidtx32_c, aom_idct32_c }, // H_DCT
{ ihalfright32_c, iidtx32_c }, // V_ADST
{ iidtx32_c, ihalfright32_c }, // H_ADST
{ ihalfright32_c, iidtx32_c }, // V_FLIPADST
{ iidtx32_c, ihalfright32_c }, // H_FLIPADST
};
int i, j;
tran_low_t tmp;
tran_low_t out[32][32];
tran_low_t *outp = &out[0][0];
int outstride = 32;
// inverse transform row vectors
for (i = 0; i < 32; ++i) {
IHT_32[tx_type].rows(input, out[i]);
input += 32;
}
// transpose
for (i = 1; i < 32; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 32; ++i) {
IHT_32[tx_type].cols(out[i], out[i]);
}
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 32, 32);
// Sum with the destination
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
#if CONFIG_TX64X64
void av1_iht64x64_4096_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_64[] = {
{ idct64_col_c, idct64_row_c }, // DCT_DCT
{ ihalfright64_c, idct64_row_c }, // ADST_DCT
{ idct64_col_c, ihalfright64_c }, // DCT_ADST
{ ihalfright64_c, ihalfright64_c }, // ADST_ADST
{ ihalfright64_c, idct64_row_c }, // FLIPADST_DCT
{ idct64_col_c, ihalfright64_c }, // DCT_FLIPADST
{ ihalfright64_c, ihalfright64_c }, // FLIPADST_FLIPADST
{ ihalfright64_c, ihalfright64_c }, // ADST_FLIPADST
{ ihalfright64_c, ihalfright64_c }, // FLIPADST_ADST
{ iidtx64_c, iidtx64_c }, // IDTX
{ idct64_col_c, iidtx64_c }, // V_DCT
{ iidtx64_c, idct64_row_c }, // H_DCT
{ ihalfright64_c, iidtx64_c }, // V_ADST
{ iidtx64_c, ihalfright64_c }, // H_ADST
{ ihalfright64_c, iidtx64_c }, // V_FLIPADST
{ iidtx64_c, ihalfright64_c }, // H_FLIPADST
};
int i, j;
tran_low_t tmp;
tran_low_t out[64][64];
tran_low_t *outp = &out[0][0];
int outstride = 64;
// inverse transform row vectors
for (i = 0; i < 64; ++i) {
IHT_64[tx_type].rows(input, out[i]);
for (j = 0; j < 64; ++j) out[i][j] = ROUND_POWER_OF_TWO(out[i][j], 1);
input += 64;
}
// transpose
for (i = 1; i < 64; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 64; ++i) {
IHT_64[tx_type].cols(out[i], out[i]);
}
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 64, 64);
// Sum with the destination
for (i = 0; i < 64; ++i) {
for (j = 0; j < 64; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5));
}
}
}
#endif // CONFIG_TX64X64
#endif // CONFIG_EXT_TX
// idct
void av1_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
if (eob > 1)
aom_idct4x4_16_add(input, dest, stride);
else
aom_idct4x4_1_add(input, dest, stride);
}
void av1_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
if (eob > 1)
aom_iwht4x4_16_add(input, dest, stride);
else
aom_iwht4x4_1_add(input, dest, stride);
}
void av1_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
// If dc is 1, then input[0] is the reconstructed value, do not need
// dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1.
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to decide what to do.
// TODO(yunqingwang): "eobs = 1" case is also handled in av1_short_idct8x8_c.
// Combine that with code here.
if (eob == 1)
// DC only DCT coefficient
aom_idct8x8_1_add(input, dest, stride);
#if !CONFIG_ADAPT_SCAN
else if (eob <= 12)
aom_idct8x8_12_add(input, dest, stride);
#endif
else
aom_idct8x8_64_add(input, dest, stride);
}
void av1_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
/* The calculation can be simplified if there are not many non-zero dct
* coefficients. Use eobs to separate different cases. */
if (eob == 1) /* DC only DCT coefficient. */
aom_idct16x16_1_add(input, dest, stride);
#if !CONFIG_ADAPT_SCAN
else if (eob <= 10)
aom_idct16x16_10_add(input, dest, stride);
#endif
else
aom_idct16x16_256_add(input, dest, stride);
}
void av1_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
if (eob == 1) aom_idct32x32_1_add(input, dest, stride);
#if !CONFIG_ADAPT_SCAN
else if (eob <= 34)
// non-zero coeff only in upper-left 8x8
aom_idct32x32_34_add(input, dest, stride);
#endif
else
aom_idct32x32_1024_add(input, dest, stride);
}
void av1_inv_txfm_add_4x4(const tran_low_t *input, uint8_t *dest, int stride,
int eob, TX_TYPE tx_type, int lossless) {
if (lossless) {
assert(tx_type == DCT_DCT);
av1_iwht4x4_add(input, dest, stride, eob);
return;
}
switch (tx_type) {
case DCT_DCT: av1_idct4x4_add(input, dest, stride, eob); break;
case ADST_DCT:
case DCT_ADST:
case ADST_ADST: av1_iht4x4_16_add(input, dest, stride, tx_type); break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST: av1_iht4x4_16_add(input, dest, stride, tx_type); break;
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
av1_iht4x4_16_add_c(input, dest, stride, tx_type);
break;
case IDTX: inv_idtx_add_c(input, dest, stride, 4, tx_type); break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
void av1_inv_txfm_add_4x8(const tran_low_t *input, uint8_t *dest, int stride,
int eob, TX_TYPE tx_type) {
(void)eob;
av1_iht4x8_32_add(input, dest, stride, tx_type);
}
void av1_inv_txfm_add_8x4(const tran_low_t *input, uint8_t *dest, int stride,
int eob, TX_TYPE tx_type) {
(void)eob;
av1_iht8x4_32_add(input, dest, stride, tx_type);
}
void av1_inv_txfm_add_8x16(const tran_low_t *input, uint8_t *dest, int stride,
int eob, TX_TYPE tx_type) {
(void)eob;
av1_iht8x16_128_add(input, dest, stride, tx_type);
}
void av1_inv_txfm_add_16x8(const tran_low_t *input, uint8_t *dest, int stride,
int eob, TX_TYPE tx_type) {
(void)eob;
av1_iht16x8_128_add(input, dest, stride, tx_type);
}
void av1_inv_txfm_add_16x32(const tran_low_t *input, uint8_t *dest, int stride,
int eob, TX_TYPE tx_type) {
(void)eob;
av1_iht16x32_512_add(input, dest, stride, tx_type);
}
void av1_inv_txfm_add_32x16(const tran_low_t *input, uint8_t *dest, int stride,
int eob, TX_TYPE tx_type) {
(void)eob;
av1_iht32x16_512_add(input, dest, stride, tx_type);
}
void av1_inv_txfm_add_8x8(const tran_low_t *input, uint8_t *dest, int stride,
int eob, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT: av1_idct8x8_add(input, dest, stride, eob); break;
case ADST_DCT:
case DCT_ADST:
case ADST_ADST: av1_iht8x8_64_add(input, dest, stride, tx_type); break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST: av1_iht8x8_64_add(input, dest, stride, tx_type); break;
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
av1_iht8x8_64_add_c(input, dest, stride, tx_type);
break;
case IDTX: inv_idtx_add_c(input, dest, stride, 8, tx_type); break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
void av1_inv_txfm_add_16x16(const tran_low_t *input, uint8_t *dest, int stride,
int eob, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT: av1_idct16x16_add(input, dest, stride, eob); break;
case ADST_DCT:
case DCT_ADST:
case ADST_ADST: av1_iht16x16_256_add(input, dest, stride, tx_type); break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST: av1_iht16x16_256_add(input, dest, stride, tx_type); break;
case IDTX: inv_idtx_add_c(input, dest, stride, 16, tx_type); break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
void av1_inv_txfm_add_32x32(const tran_low_t *input, uint8_t *dest, int stride,
int eob, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT: av1_idct32x32_add(input, dest, stride, eob); break;
#if CONFIG_EXT_TX
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
av1_iht32x32_1024_add_c(input, dest, stride, tx_type);
break;
case IDTX: inv_idtx_add_c(input, dest, stride, 32, tx_type); break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
#if CONFIG_AOM_HIGHBITDEPTH
void av1_highbd_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_4[] = {
{ aom_highbd_idct4_c, aom_highbd_idct4_c }, // DCT_DCT
{ aom_highbd_iadst4_c, aom_highbd_idct4_c }, // ADST_DCT
{ aom_highbd_idct4_c, aom_highbd_iadst4_c }, // DCT_ADST
{ aom_highbd_iadst4_c, aom_highbd_iadst4_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_highbd_iadst4_c, aom_highbd_idct4_c }, // FLIPADST_DCT
{ aom_highbd_idct4_c, aom_highbd_iadst4_c }, // DCT_FLIPADST
{ aom_highbd_iadst4_c, aom_highbd_iadst4_c }, // FLIPADST_FLIPADST
{ aom_highbd_iadst4_c, aom_highbd_iadst4_c }, // ADST_FLIPADST
{ aom_highbd_iadst4_c, aom_highbd_iadst4_c }, // FLIPADST_ADST
{ highbd_iidtx4_c, highbd_iidtx4_c }, // IDTX
{ aom_highbd_idct4_c, highbd_iidtx4_c }, // V_DCT
{ highbd_iidtx4_c, aom_highbd_idct4_c }, // H_DCT
{ aom_highbd_iadst4_c, highbd_iidtx4_c }, // V_ADST
{ highbd_iidtx4_c, aom_highbd_iadst4_c }, // H_ADST
{ aom_highbd_iadst4_c, highbd_iidtx4_c }, // V_FLIPADST
{ highbd_iidtx4_c, aom_highbd_iadst4_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t tmp;
tran_low_t out[4][4];
tran_low_t *outp = &out[0][0];
int outstride = 4;
// inverse transform row vectors
for (i = 0; i < 4; ++i) {
HIGH_IHT_4[tx_type].rows(input, out[i], bd);
input += 4;
}
// transpose
for (i = 1; i < 4; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 4; ++i) {
HIGH_IHT_4[tx_type].cols(out[i], out[i], bd);
}
#if CONFIG_EXT_TX
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 4, 4);
#endif
// Sum with the destination
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] =
highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4), bd);
}
}
}
void av1_highbd_iht4x8_32_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_4x8[] = {
{ aom_highbd_idct8_c, aom_highbd_idct4_c }, // DCT_DCT
{ aom_highbd_iadst8_c, aom_highbd_idct4_c }, // ADST_DCT
{ aom_highbd_idct8_c, aom_highbd_iadst4_c }, // DCT_ADST
{ aom_highbd_iadst8_c, aom_highbd_iadst4_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_highbd_iadst8_c, aom_highbd_idct4_c }, // FLIPADST_DCT
{ aom_highbd_idct8_c, aom_highbd_iadst4_c }, // DCT_FLIPADST
{ aom_highbd_iadst8_c, aom_highbd_iadst4_c }, // FLIPADST_FLIPADST
{ aom_highbd_iadst8_c, aom_highbd_iadst4_c }, // ADST_FLIPADST
{ aom_highbd_iadst8_c, aom_highbd_iadst4_c }, // FLIPADST_ADST
{ highbd_iidtx8_c, highbd_iidtx4_c }, // IDTX
{ aom_highbd_idct8_c, highbd_iidtx4_c }, // V_DCT
{ highbd_iidtx8_c, aom_highbd_idct4_c }, // H_DCT
{ aom_highbd_iadst8_c, highbd_iidtx4_c }, // V_ADST
{ highbd_iidtx8_c, aom_highbd_iadst4_c }, // H_ADST
{ aom_highbd_iadst8_c, highbd_iidtx4_c }, // V_FLIPADST
{ highbd_iidtx8_c, aom_highbd_iadst4_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
const int n = 4;
const int n2 = 8;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t out[4][8], outtmp[4];
tran_low_t *outp = &out[0][0];
int outstride = n2;
// inverse transform row vectors, and transpose
for (i = 0; i < n2; ++i) {
HIGH_IHT_4x8[tx_type].rows(input, outtmp, bd);
for (j = 0; j < n; ++j) {
out[j][i] =
HIGHBD_WRAPLOW(highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd);
}
input += n;
}
// inverse transform column vectors
for (i = 0; i < n; ++i) {
HIGH_IHT_4x8[tx_type].cols(out[i], out[i], bd);
}
#if CONFIG_EXT_TX
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, n2, n);
#endif // CONFIG_EXT_TX
// Sum with the destination
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] =
highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5), bd);
}
}
}
void av1_highbd_iht8x4_32_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_8x4[] = {
{ aom_highbd_idct4_c, aom_highbd_idct8_c }, // DCT_DCT
{ aom_highbd_iadst4_c, aom_highbd_idct8_c }, // ADST_DCT
{ aom_highbd_idct4_c, aom_highbd_iadst8_c }, // DCT_ADST
{ aom_highbd_iadst4_c, aom_highbd_iadst8_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_highbd_iadst4_c, aom_highbd_idct8_c }, // FLIPADST_DCT
{ aom_highbd_idct4_c, aom_highbd_iadst8_c }, // DCT_FLIPADST
{ aom_highbd_iadst4_c, aom_highbd_iadst8_c }, // FLIPADST_FLIPADST
{ aom_highbd_iadst4_c, aom_highbd_iadst8_c }, // ADST_FLIPADST
{ aom_highbd_iadst4_c, aom_highbd_iadst8_c }, // FLIPADST_ADST
{ highbd_iidtx4_c, highbd_iidtx8_c }, // IDTX
{ aom_highbd_idct4_c, highbd_iidtx8_c }, // V_DCT
{ highbd_iidtx4_c, aom_highbd_idct8_c }, // H_DCT
{ aom_highbd_iadst4_c, highbd_iidtx8_c }, // V_ADST
{ highbd_iidtx4_c, aom_highbd_iadst8_c }, // H_ADST
{ aom_highbd_iadst4_c, highbd_iidtx8_c }, // V_FLIPADST
{ highbd_iidtx4_c, aom_highbd_iadst8_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
const int n = 4;
const int n2 = 8;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t out[8][4], outtmp[8];
tran_low_t *outp = &out[0][0];
int outstride = n;
// inverse transform row vectors, and transpose
for (i = 0; i < n; ++i) {
HIGH_IHT_8x4[tx_type].rows(input, outtmp, bd);
for (j = 0; j < n2; ++j) {
out[j][i] =
HIGHBD_WRAPLOW(highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd);
}
input += n2;
}
// inverse transform column vectors
for (i = 0; i < n2; ++i) {
HIGH_IHT_8x4[tx_type].cols(out[i], out[i], bd);
}
#if CONFIG_EXT_TX
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, n, n2);
#endif // CONFIG_EXT_TX
// Sum with the destination
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] =
highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5), bd);
}
}
}
void av1_highbd_iht8x16_128_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_8x16[] = {
{ aom_highbd_idct16_c, aom_highbd_idct8_c }, // DCT_DCT
{ aom_highbd_iadst16_c, aom_highbd_idct8_c }, // ADST_DCT
{ aom_highbd_idct16_c, aom_highbd_iadst8_c }, // DCT_ADST
{ aom_highbd_iadst16_c, aom_highbd_iadst8_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_highbd_iadst16_c, aom_highbd_idct8_c }, // FLIPADST_DCT
{ aom_highbd_idct16_c, aom_highbd_iadst8_c }, // DCT_FLIPADST
{ aom_highbd_iadst16_c, aom_highbd_iadst8_c }, // FLIPADST_FLIPADST
{ aom_highbd_iadst16_c, aom_highbd_iadst8_c }, // ADST_FLIPADST
{ aom_highbd_iadst16_c, aom_highbd_iadst8_c }, // FLIPADST_ADST
{ highbd_iidtx16_c, highbd_iidtx8_c }, // IDTX
{ aom_highbd_idct16_c, highbd_iidtx8_c }, // V_DCT
{ highbd_iidtx16_c, aom_highbd_idct8_c }, // H_DCT
{ aom_highbd_iadst16_c, highbd_iidtx8_c }, // V_ADST
{ highbd_iidtx16_c, aom_highbd_iadst8_c }, // H_ADST
{ aom_highbd_iadst16_c, highbd_iidtx8_c }, // V_FLIPADST
{ highbd_iidtx16_c, aom_highbd_iadst8_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
const int n = 8;
const int n2 = 16;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t out[8][16], outtmp[8];
tran_low_t *outp = &out[0][0];
int outstride = n2;
// inverse transform row vectors, and transpose
for (i = 0; i < n2; ++i) {
HIGH_IHT_8x16[tx_type].rows(input, outtmp, bd);
for (j = 0; j < n; ++j)
out[j][i] =
HIGHBD_WRAPLOW(highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd);
input += n;
}
// inverse transform column vectors
for (i = 0; i < n; ++i) {
HIGH_IHT_8x16[tx_type].cols(out[i], out[i], bd);
}
#if CONFIG_EXT_TX
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, n2, n);
#endif // CONFIG_EXT_TX
// Sum with the destination
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] =
highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd);
}
}
}
void av1_highbd_iht16x8_128_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_16x8[] = {
{ aom_highbd_idct8_c, aom_highbd_idct16_c }, // DCT_DCT
{ aom_highbd_iadst8_c, aom_highbd_idct16_c }, // ADST_DCT
{ aom_highbd_idct8_c, aom_highbd_iadst16_c }, // DCT_ADST
{ aom_highbd_iadst8_c, aom_highbd_iadst16_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_highbd_iadst8_c, aom_highbd_idct16_c }, // FLIPADST_DCT
{ aom_highbd_idct8_c, aom_highbd_iadst16_c }, // DCT_FLIPADST
{ aom_highbd_iadst8_c, aom_highbd_iadst16_c }, // FLIPADST_FLIPADST
{ aom_highbd_iadst8_c, aom_highbd_iadst16_c }, // ADST_FLIPADST
{ aom_highbd_iadst8_c, aom_highbd_iadst16_c }, // FLIPADST_ADST
{ highbd_iidtx8_c, highbd_iidtx16_c }, // IDTX
{ aom_highbd_idct8_c, highbd_iidtx16_c }, // V_DCT
{ highbd_iidtx8_c, aom_highbd_idct16_c }, // H_DCT
{ aom_highbd_iadst8_c, highbd_iidtx16_c }, // V_ADST
{ highbd_iidtx8_c, aom_highbd_iadst16_c }, // H_ADST
{ aom_highbd_iadst8_c, highbd_iidtx16_c }, // V_FLIPADST
{ highbd_iidtx8_c, aom_highbd_iadst16_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
const int n = 8;
const int n2 = 16;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t out[16][8], outtmp[16];
tran_low_t *outp = &out[0][0];
int outstride = n;
// inverse transform row vectors, and transpose
for (i = 0; i < n; ++i) {
HIGH_IHT_16x8[tx_type].rows(input, outtmp, bd);
for (j = 0; j < n2; ++j)
out[j][i] =
HIGHBD_WRAPLOW(highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd);
input += n2;
}
// inverse transform column vectors
for (i = 0; i < n2; ++i) {
HIGH_IHT_16x8[tx_type].cols(out[i], out[i], bd);
}
#if CONFIG_EXT_TX
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, n, n2);
#endif // CONFIG_EXT_TX
// Sum with the destination
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] =
highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd);
}
}
}
void av1_highbd_iht16x32_512_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_16x32[] = {
{ aom_highbd_idct32_c, aom_highbd_idct16_c }, // DCT_DCT
{ highbd_ihalfright32_c, aom_highbd_idct16_c }, // ADST_DCT
{ aom_highbd_idct32_c, aom_highbd_iadst16_c }, // DCT_ADST
{ highbd_ihalfright32_c, aom_highbd_iadst16_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ highbd_ihalfright32_c, aom_highbd_idct16_c }, // FLIPADST_DCT
{ aom_highbd_idct32_c, aom_highbd_iadst16_c }, // DCT_FLIPADST
{ highbd_ihalfright32_c, aom_highbd_iadst16_c }, // FLIPADST_FLIPADST
{ highbd_ihalfright32_c, aom_highbd_iadst16_c }, // ADST_FLIPADST
{ highbd_ihalfright32_c, aom_highbd_iadst16_c }, // FLIPADST_ADST
{ highbd_iidtx32_c, highbd_iidtx16_c }, // IDTX
{ aom_highbd_idct32_c, highbd_iidtx16_c }, // V_DCT
{ highbd_iidtx32_c, aom_highbd_idct16_c }, // H_DCT
{ highbd_ihalfright32_c, highbd_iidtx16_c }, // V_ADST
{ highbd_iidtx32_c, aom_highbd_iadst16_c }, // H_ADST
{ highbd_ihalfright32_c, highbd_iidtx16_c }, // V_FLIPADST
{ highbd_iidtx32_c, aom_highbd_iadst16_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
const int n = 16;
const int n2 = 32;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t out[16][32], outtmp[16];
tran_low_t *outp = &out[0][0];
int outstride = n2;
// inverse transform row vectors, and transpose
for (i = 0; i < n2; ++i) {
HIGH_IHT_16x32[tx_type].rows(input, outtmp, bd);
for (j = 0; j < n; ++j)
out[j][i] =
HIGHBD_WRAPLOW(highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd);
input += n;
}
// inverse transform column vectors
for (i = 0; i < n; ++i) {
HIGH_IHT_16x32[tx_type].cols(out[i], out[i], bd);
}
#if CONFIG_EXT_TX
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, n2, n);
#endif // CONFIG_EXT_TX
// Sum with the destination
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] =
highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd);
}
}
}
void av1_highbd_iht32x16_512_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_32x16[] = {
{ aom_highbd_idct16_c, aom_highbd_idct32_c }, // DCT_DCT
{ aom_highbd_iadst16_c, aom_highbd_idct32_c }, // ADST_DCT
{ aom_highbd_idct16_c, highbd_ihalfright32_c }, // DCT_ADST
{ aom_highbd_iadst16_c, highbd_ihalfright32_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_highbd_iadst16_c, aom_highbd_idct32_c }, // FLIPADST_DCT
{ aom_highbd_idct16_c, highbd_ihalfright32_c }, // DCT_FLIPADST
{ aom_highbd_iadst16_c, highbd_ihalfright32_c }, // FLIPADST_FLIPADST
{ aom_highbd_iadst16_c, highbd_ihalfright32_c }, // ADST_FLIPADST
{ aom_highbd_iadst16_c, highbd_ihalfright32_c }, // FLIPADST_ADST
{ highbd_iidtx16_c, highbd_iidtx32_c }, // IDTX
{ aom_highbd_idct16_c, highbd_iidtx32_c }, // V_DCT
{ highbd_iidtx16_c, aom_highbd_idct32_c }, // H_DCT
{ aom_highbd_iadst16_c, highbd_iidtx32_c }, // V_ADST
{ highbd_iidtx16_c, highbd_ihalfright32_c }, // H_ADST
{ aom_highbd_iadst16_c, highbd_iidtx32_c }, // V_FLIPADST
{ highbd_iidtx16_c, highbd_ihalfright32_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
const int n = 16;
const int n2 = 32;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t out[32][16], outtmp[32];
tran_low_t *outp = &out[0][0];
int outstride = n;
// inverse transform row vectors, and transpose
for (i = 0; i < n; ++i) {
HIGH_IHT_32x16[tx_type].rows(input, outtmp, bd);
for (j = 0; j < n2; ++j)
out[j][i] =
HIGHBD_WRAPLOW(highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd);
input += n2;
}
// inverse transform column vectors
for (i = 0; i < n2; ++i) {
HIGH_IHT_32x16[tx_type].cols(out[i], out[i], bd);
}
#if CONFIG_EXT_TX
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, n, n2);
#endif // CONFIG_EXT_TX
// Sum with the destination
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] =
highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd);
}
}
}
void av1_highbd_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_8[] = {
{ aom_highbd_idct8_c, aom_highbd_idct8_c }, // DCT_DCT
{ aom_highbd_iadst8_c, aom_highbd_idct8_c }, // ADST_DCT
{ aom_highbd_idct8_c, aom_highbd_iadst8_c }, // DCT_ADST
{ aom_highbd_iadst8_c, aom_highbd_iadst8_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_highbd_iadst8_c, aom_highbd_idct8_c }, // FLIPADST_DCT
{ aom_highbd_idct8_c, aom_highbd_iadst8_c }, // DCT_FLIPADST
{ aom_highbd_iadst8_c, aom_highbd_iadst8_c }, // FLIPADST_FLIPADST
{ aom_highbd_iadst8_c, aom_highbd_iadst8_c }, // ADST_FLIPADST
{ aom_highbd_iadst8_c, aom_highbd_iadst8_c }, // FLIPADST_ADST
{ highbd_iidtx8_c, highbd_iidtx8_c }, // IDTX
{ aom_highbd_idct8_c, highbd_iidtx8_c }, // V_DCT
{ highbd_iidtx8_c, aom_highbd_idct8_c }, // H_DCT
{ aom_highbd_iadst8_c, highbd_iidtx8_c }, // V_ADST
{ highbd_iidtx8_c, aom_highbd_iadst8_c }, // H_ADST
{ aom_highbd_iadst8_c, highbd_iidtx8_c }, // V_FLIPADST
{ highbd_iidtx8_c, aom_highbd_iadst8_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t tmp;
tran_low_t out[8][8];
tran_low_t *outp = &out[0][0];
int outstride = 8;
// inverse transform row vectors
for (i = 0; i < 8; ++i) {
HIGH_IHT_8[tx_type].rows(input, out[i], bd);
input += 8;
}
// transpose
for (i = 1; i < 8; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 8; ++i) {
HIGH_IHT_8[tx_type].cols(out[i], out[i], bd);
}
#if CONFIG_EXT_TX
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 8, 8);
#endif
// Sum with the destination
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] =
highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5), bd);
}
}
}
void av1_highbd_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_16[] = {
{ aom_highbd_idct16_c, aom_highbd_idct16_c }, // DCT_DCT
{ aom_highbd_iadst16_c, aom_highbd_idct16_c }, // ADST_DCT
{ aom_highbd_idct16_c, aom_highbd_iadst16_c }, // DCT_ADST
{ aom_highbd_iadst16_c, aom_highbd_iadst16_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_highbd_iadst16_c, aom_highbd_idct16_c }, // FLIPADST_DCT
{ aom_highbd_idct16_c, aom_highbd_iadst16_c }, // DCT_FLIPADST
{ aom_highbd_iadst16_c, aom_highbd_iadst16_c }, // FLIPADST_FLIPADST
{ aom_highbd_iadst16_c, aom_highbd_iadst16_c }, // ADST_FLIPADST
{ aom_highbd_iadst16_c, aom_highbd_iadst16_c }, // FLIPADST_ADST
{ highbd_iidtx16_c, highbd_iidtx16_c }, // IDTX
{ aom_highbd_idct16_c, highbd_iidtx16_c }, // V_DCT
{ highbd_iidtx16_c, aom_highbd_idct16_c }, // H_DCT
{ aom_highbd_iadst16_c, highbd_iidtx16_c }, // V_ADST
{ highbd_iidtx16_c, aom_highbd_iadst16_c }, // H_ADST
{ aom_highbd_iadst16_c, highbd_iidtx16_c }, // V_FLIPADST
{ highbd_iidtx16_c, aom_highbd_iadst16_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t tmp;
tran_low_t out[16][16];
tran_low_t *outp = &out[0][0];
int outstride = 16;
// inverse transform row vectors
for (i = 0; i < 16; ++i) {
HIGH_IHT_16[tx_type].rows(input, out[i], bd);
input += 16;
}
// transpose
for (i = 1; i < 16; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 16; ++i) {
HIGH_IHT_16[tx_type].cols(out[i], out[i], bd);
}
#if CONFIG_EXT_TX
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 16, 16);
#endif
// Sum with the destination
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] =
highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd);
}
}
}
#if CONFIG_EXT_TX
void av1_highbd_iht32x32_1024_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_32[] = {
{ aom_highbd_idct32_c, aom_highbd_idct32_c }, // DCT_DCT
{ highbd_ihalfright32_c, aom_highbd_idct32_c }, // ADST_DCT
{ aom_highbd_idct32_c, highbd_ihalfright32_c }, // DCT_ADST
{ highbd_ihalfright32_c, highbd_ihalfright32_c }, // ADST_ADST
{ highbd_ihalfright32_c, aom_highbd_idct32_c }, // FLIPADST_DCT
{ aom_highbd_idct32_c, highbd_ihalfright32_c }, // DCT_FLIPADST
{ highbd_ihalfright32_c, highbd_ihalfright32_c }, // FLIPADST_FLIPADST
{ highbd_ihalfright32_c, highbd_ihalfright32_c }, // ADST_FLIPADST
{ highbd_ihalfright32_c, highbd_ihalfright32_c }, // FLIPADST_ADST
{ highbd_iidtx32_c, highbd_iidtx32_c }, // IDTX
{ aom_highbd_idct32_c, highbd_iidtx32_c }, // V_DCT
{ highbd_iidtx32_c, aom_highbd_idct32_c }, // H_DCT
{ highbd_ihalfright32_c, highbd_iidtx32_c }, // V_ADST
{ highbd_iidtx32_c, highbd_ihalfright32_c }, // H_ADST
{ highbd_ihalfright32_c, highbd_iidtx32_c }, // V_FLIPADST
{ highbd_iidtx32_c, highbd_ihalfright32_c }, // H_FLIPADST
};
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t tmp;
tran_low_t out[32][32];
tran_low_t *outp = &out[0][0];
int outstride = 32;
// inverse transform row vectors
for (i = 0; i < 32; ++i) {
HIGH_IHT_32[tx_type].rows(input, out[i], bd);
input += 32;
}
// transpose
for (i = 1; i < 32; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 32; ++i) {
HIGH_IHT_32[tx_type].cols(out[i], out[i], bd);
}
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 32, 32);
// Sum with the destination
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] =
highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd);
}
}
}
#if CONFIG_TX64X64
void av1_highbd_iht64x64_4096_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_64[] = {
{ highbd_idct64_col_c, highbd_idct64_row_c }, // DCT_DCT
{ highbd_ihalfright64_c, highbd_idct64_row_c }, // ADST_DCT
{ highbd_idct64_col_c, highbd_ihalfright64_c }, // DCT_ADST
{ highbd_ihalfright64_c, highbd_ihalfright64_c }, // ADST_ADST
{ highbd_ihalfright64_c, highbd_idct64_row_c }, // FLIPADST_DCT
{ highbd_idct64_col_c, highbd_ihalfright64_c }, // DCT_FLIPADST
{ highbd_ihalfright64_c, highbd_ihalfright64_c }, // FLIPADST_FLIPADST
{ highbd_ihalfright64_c, highbd_ihalfright64_c }, // ADST_FLIPADST
{ highbd_ihalfright64_c, highbd_ihalfright64_c }, // FLIPADST_ADST
{ highbd_iidtx64_c, highbd_iidtx64_c }, // IDTX
{ highbd_idct64_col_c, highbd_iidtx64_c }, // V_DCT
{ highbd_iidtx64_c, highbd_idct64_row_c }, // H_DCT
{ highbd_ihalfright64_c, highbd_iidtx64_c }, // V_ADST
{ highbd_iidtx64_c, highbd_ihalfright64_c }, // H_ADST
{ highbd_ihalfright64_c, highbd_iidtx64_c }, // V_FLIPADST
{ highbd_iidtx64_c, highbd_ihalfright64_c }, // H_FLIPADST
};
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t tmp;
tran_low_t out[64][64];
tran_low_t *outp = &out[0][0];
int outstride = 64;
// inverse transform row vectors
for (i = 0; i < 64; ++i) {
HIGH_IHT_64[tx_type].rows(input, out[i], bd);
for (j = 0; j < 64; ++j) out[i][j] = ROUND_POWER_OF_TWO(out[i][j], 1);
input += 64;
}
// transpose
for (i = 1; i < 64; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 64; ++i) {
HIGH_IHT_64[tx_type].cols(out[i], out[i], bd);
}
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 64, 64);
// Sum with the destination
for (i = 0; i < 64; ++i) {
for (j = 0; j < 64; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] =
highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5), bd);
}
}
}
#endif // CONFIG_TX64X64
#endif // CONFIG_EXT_TX
// idct
void av1_highbd_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
if (eob > 1)
aom_highbd_idct4x4_16_add(input, dest, stride, bd);
else
aom_highbd_idct4x4_1_add(input, dest, stride, bd);
}
void av1_highbd_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
if (eob > 1)
aom_highbd_iwht4x4_16_add(input, dest, stride, bd);
else
aom_highbd_iwht4x4_1_add(input, dest, stride, bd);
}
void av1_highbd_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
// If dc is 1, then input[0] is the reconstructed value, do not need
// dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1.
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to decide what to do.
// TODO(yunqingwang): "eobs = 1" case is also handled in av1_short_idct8x8_c.
// Combine that with code here.
// DC only DCT coefficient
if (eob == 1) aom_highbd_idct8x8_1_add(input, dest, stride, bd);
#if !CONFIG_ADAPT_SCAN
else if (eob <= 10)
aom_highbd_idct8x8_10_add(input, dest, stride, bd);
#endif
else
aom_highbd_idct8x8_64_add(input, dest, stride, bd);
}
void av1_highbd_idct16x16_add(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd) {
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to separate different cases.
// DC only DCT coefficient.
if (eob == 1) aom_highbd_idct16x16_1_add(input, dest, stride, bd);
#if !CONFIG_ADAPT_SCAN
else if (eob <= 10)
aom_highbd_idct16x16_10_add(input, dest, stride, bd);
#endif
else
aom_highbd_idct16x16_256_add(input, dest, stride, bd);
}
void av1_highbd_idct32x32_add(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd) {
// Non-zero coeff only in upper-left 8x8
if (eob == 1) aom_highbd_idct32x32_1_add(input, dest, stride, bd);
#if !CONFIG_ADAPT_SCAN
else if (eob <= 34)
aom_highbd_idct32x32_34_add(input, dest, stride, bd);
#endif
else
aom_highbd_idct32x32_1024_add(input, dest, stride, bd);
}
void av1_highbd_inv_txfm_add_4x4(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd, TX_TYPE tx_type,
int lossless) {
if (lossless) {
assert(tx_type == DCT_DCT);
av1_highbd_iwht4x4_add(input, dest, stride, eob, bd);
return;
}
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
av1_inv_txfm2d_add_4x4(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
av1_inv_txfm2d_add_4x4(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
av1_highbd_iht4x4_16_add_c(input, dest, stride, tx_type, bd);
break;
case IDTX:
highbd_inv_idtx_add_c(input, dest, stride, 4, tx_type, bd);
break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
void av1_highbd_inv_txfm_add_4x8(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd, TX_TYPE tx_type) {
(void)eob;
av1_highbd_iht4x8_32_add_c(input, dest, stride, tx_type, bd);
}
void av1_highbd_inv_txfm_add_8x4(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd, TX_TYPE tx_type) {
(void)eob;
av1_highbd_iht8x4_32_add_c(input, dest, stride, tx_type, bd);
}
void av1_highbd_inv_txfm_add_8x16(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd,
TX_TYPE tx_type) {
(void)eob;
av1_highbd_iht8x16_128_add_c(input, dest, stride, tx_type, bd);
}
void av1_highbd_inv_txfm_add_16x8(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd,
TX_TYPE tx_type) {
(void)eob;
av1_highbd_iht16x8_128_add_c(input, dest, stride, tx_type, bd);
}
void av1_highbd_inv_txfm_add_16x32(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd,
TX_TYPE tx_type) {
(void)eob;
av1_highbd_iht16x32_512_add_c(input, dest, stride, tx_type, bd);
}
void av1_highbd_inv_txfm_add_32x16(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd,
TX_TYPE tx_type) {
(void)eob;
av1_highbd_iht32x16_512_add_c(input, dest, stride, tx_type, bd);
}
void av1_highbd_inv_txfm_add_8x8(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd, TX_TYPE tx_type) {
(void)eob;
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
av1_inv_txfm2d_add_8x8(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
av1_inv_txfm2d_add_8x8(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
av1_highbd_iht8x8_64_add_c(input, dest, stride, tx_type, bd);
break;
case IDTX:
highbd_inv_idtx_add_c(input, dest, stride, 8, tx_type, bd);
break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
void av1_highbd_inv_txfm_add_16x16(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd,
TX_TYPE tx_type) {
(void)eob;
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
av1_inv_txfm2d_add_16x16(input, CONVERT_TO_SHORTPTR(dest), stride,
tx_type, bd);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
av1_inv_txfm2d_add_16x16(input, CONVERT_TO_SHORTPTR(dest), stride,
tx_type, bd);
break;
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
av1_highbd_iht16x16_256_add_c(input, dest, stride, tx_type, bd);
break;
case IDTX:
highbd_inv_idtx_add_c(input, dest, stride, 16, tx_type, bd);
break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
void av1_highbd_inv_txfm_add_32x32(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd,
TX_TYPE tx_type) {
(void)eob;
switch (tx_type) {
case DCT_DCT:
av1_inv_txfm2d_add_32x32(input, CONVERT_TO_SHORTPTR(dest), stride,
DCT_DCT, bd);
break;
#if CONFIG_EXT_TX
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
av1_highbd_iht32x32_1024_add_c(input, dest, stride, tx_type, bd);
break;
case IDTX:
highbd_inv_idtx_add_c(input, dest, stride, 32, tx_type, bd);
break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
void inv_txfm_add(const tran_low_t *input, uint8_t *dest, int stride,
INV_TXFM_PARAM *inv_txfm_param) {
const TX_TYPE tx_type = inv_txfm_param->tx_type;
const TX_SIZE tx_size = inv_txfm_param->tx_size;
const int eob = inv_txfm_param->eob;
const int lossless = inv_txfm_param->lossless;
switch (tx_size) {
case TX_32X32:
av1_inv_txfm_add_32x32(input, dest, stride, eob, tx_type);
break;
case TX_16X16:
av1_inv_txfm_add_16x16(input, dest, stride, eob, tx_type);
break;
case TX_8X8: av1_inv_txfm_add_8x8(input, dest, stride, eob, tx_type); break;
case TX_4X8: av1_inv_txfm_add_4x8(input, dest, stride, eob, tx_type); break;
case TX_8X4: av1_inv_txfm_add_8x4(input, dest, stride, eob, tx_type); break;
case TX_8X16:
av1_inv_txfm_add_8x16(input, dest, stride, eob, tx_type);
break;
case TX_16X8:
av1_inv_txfm_add_16x8(input, dest, stride, eob, tx_type);
break;
case TX_16X32:
av1_inv_txfm_add_16x32(input, dest, stride, eob, tx_type);
break;
case TX_32X16:
av1_inv_txfm_add_32x16(input, dest, stride, eob, tx_type);
break;
case TX_4X4:
// this is like av1_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
av1_inv_txfm_add_4x4(input, dest, stride, eob, tx_type, lossless);
break;
default: assert(0 && "Invalid transform size"); break;
}
}
#if CONFIG_AOM_HIGHBITDEPTH
void highbd_inv_txfm_add(const tran_low_t *input, uint8_t *dest, int stride,
INV_TXFM_PARAM *inv_txfm_param) {
const TX_TYPE tx_type = inv_txfm_param->tx_type;
const TX_SIZE tx_size = inv_txfm_param->tx_size;
const int eob = inv_txfm_param->eob;
const int bd = inv_txfm_param->bd;
const int lossless = inv_txfm_param->lossless;
switch (tx_size) {
case TX_32X32:
av1_highbd_inv_txfm_add_32x32(input, dest, stride, eob, bd, tx_type);
break;
case TX_16X16:
av1_highbd_inv_txfm_add_16x16(input, dest, stride, eob, bd, tx_type);
break;
case TX_8X8:
av1_highbd_inv_txfm_add_8x8(input, dest, stride, eob, bd, tx_type);
break;
case TX_4X8:
av1_highbd_inv_txfm_add_4x8(input, dest, stride, eob, bd, tx_type);
break;
case TX_8X4:
av1_highbd_inv_txfm_add_8x4(input, dest, stride, eob, bd, tx_type);
break;
case TX_8X16:
av1_highbd_inv_txfm_add_8x16(input, dest, stride, eob, bd, tx_type);
break;
case TX_16X8:
av1_highbd_inv_txfm_add_16x8(input, dest, stride, eob, bd, tx_type);
break;
case TX_16X32:
av1_highbd_inv_txfm_add_16x32(input, dest, stride, eob, bd, tx_type);
break;
case TX_32X16:
av1_highbd_inv_txfm_add_32x16(input, dest, stride, eob, bd, tx_type);
break;
case TX_4X4:
// this is like av1_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
av1_highbd_inv_txfm_add_4x4(input, dest, stride, eob, bd, tx_type,
lossless);
break;
default: assert(0 && "Invalid transform size"); break;
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH