aom/av1/common/pred_common.h

257 строки
9.9 KiB
C

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AV1_COMMON_PRED_COMMON_H_
#define AV1_COMMON_PRED_COMMON_H_
#include "av1/common/blockd.h"
#include "av1/common/onyxc_int.h"
#include "aom_dsp/aom_dsp_common.h"
#ifdef __cplusplus
extern "C" {
#endif
static INLINE int get_segment_id(const AV1_COMMON *const cm,
const uint8_t *segment_ids, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
const int mi_offset = mi_row * cm->mi_cols + mi_col;
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int xmis = AOMMIN(cm->mi_cols - mi_col, bw);
const int ymis = AOMMIN(cm->mi_rows - mi_row, bh);
int x, y, segment_id = MAX_SEGMENTS;
for (y = 0; y < ymis; ++y)
for (x = 0; x < xmis; ++x)
segment_id =
AOMMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]);
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
return segment_id;
}
static INLINE int av1_get_pred_context_seg_id(const MACROBLOCKD *xd) {
const MODE_INFO *const above_mi = xd->above_mi;
const MODE_INFO *const left_mi = xd->left_mi;
const int above_sip =
(above_mi != NULL) ? above_mi->mbmi.seg_id_predicted : 0;
const int left_sip = (left_mi != NULL) ? left_mi->mbmi.seg_id_predicted : 0;
return above_sip + left_sip;
}
static INLINE aom_prob av1_get_pred_prob_seg_id(
const struct segmentation_probs *segp, const MACROBLOCKD *xd) {
return segp->pred_probs[av1_get_pred_context_seg_id(xd)];
}
static INLINE int av1_get_skip_context(const MACROBLOCKD *xd) {
const MODE_INFO *const above_mi = xd->above_mi;
const MODE_INFO *const left_mi = xd->left_mi;
const int above_skip = (above_mi != NULL) ? above_mi->mbmi.skip : 0;
const int left_skip = (left_mi != NULL) ? left_mi->mbmi.skip : 0;
return above_skip + left_skip;
}
static INLINE aom_prob av1_get_skip_prob(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->skip_probs[av1_get_skip_context(xd)];
}
#if CONFIG_DUAL_FILTER
int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir);
#else
int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd);
#endif
#if CONFIG_EXT_INTRA
int av1_get_pred_context_intra_interp(const MACROBLOCKD *xd);
#endif // CONFIG_EXT_INTRA
int av1_get_intra_inter_context(const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_intra_inter_prob(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->intra_inter_prob[av1_get_intra_inter_context(xd)];
}
int av1_get_reference_mode_context(const AV1_COMMON *cm, const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_reference_mode_prob(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->comp_inter_prob[av1_get_reference_mode_context(cm, xd)];
}
int av1_get_pred_context_comp_ref_p(const AV1_COMMON *cm,
const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_pred_prob_comp_ref_p(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
const int pred_context = av1_get_pred_context_comp_ref_p(cm, xd);
return cm->fc->comp_ref_prob[pred_context][0];
}
#if CONFIG_EXT_REFS
int av1_get_pred_context_comp_ref_p1(const AV1_COMMON *cm,
const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_pred_prob_comp_ref_p1(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
const int pred_context = av1_get_pred_context_comp_ref_p1(cm, xd);
return cm->fc->comp_ref_prob[pred_context][1];
}
int av1_get_pred_context_comp_ref_p2(const AV1_COMMON *cm,
const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_pred_prob_comp_ref_p2(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
const int pred_context = av1_get_pred_context_comp_ref_p2(cm, xd);
return cm->fc->comp_ref_prob[pred_context][2];
}
int av1_get_pred_context_comp_bwdref_p(const AV1_COMMON *cm,
const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_pred_prob_comp_bwdref_p(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
const int pred_context = av1_get_pred_context_comp_bwdref_p(cm, xd);
return cm->fc->comp_bwdref_prob[pred_context][0];
}
#endif // CONFIG_EXT_REFS
int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_pred_prob_single_ref_p1(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->single_ref_prob[av1_get_pred_context_single_ref_p1(xd)][0];
}
int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_pred_prob_single_ref_p2(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->single_ref_prob[av1_get_pred_context_single_ref_p2(xd)][1];
}
#if CONFIG_EXT_REFS
int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_pred_prob_single_ref_p3(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->single_ref_prob[av1_get_pred_context_single_ref_p3(xd)][2];
}
int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_pred_prob_single_ref_p4(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->single_ref_prob[av1_get_pred_context_single_ref_p4(xd)][3];
}
int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_pred_prob_single_ref_p5(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->single_ref_prob[av1_get_pred_context_single_ref_p5(xd)][4];
}
#endif // CONFIG_EXT_REFS
// Returns a context number for the given MB prediction signal
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real blocks.
// The prediction flags in these dummy entries are initialized to 0.
static INLINE int get_tx_size_context(const MACROBLOCKD *xd) {
const int max_tx_size = max_txsize_lookup[xd->mi[0]->mbmi.sb_type];
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
int above_ctx = (has_above && !above_mbmi->skip)
? (int)txsize_sqr_map[above_mbmi->tx_size]
: max_tx_size;
int left_ctx = (has_left && !left_mbmi->skip)
? (int)txsize_sqr_map[left_mbmi->tx_size]
: max_tx_size;
assert(xd->mi[0]->mbmi.sb_type >= BLOCK_8X8);
if (!has_left) left_ctx = above_ctx;
if (!has_above) above_ctx = left_ctx;
#if CONFIG_CB4X4
// TODO(jingning): Temporary setup. Will rework this after the cb4x4
// framework is up running.
return (above_ctx + left_ctx) > max_tx_size + 1;
#else
return (above_ctx + left_ctx) > max_tx_size;
#endif
}
#if CONFIG_VAR_TX
static void update_tx_counts(AV1_COMMON *cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, int blk_row, int blk_col,
TX_SIZE max_tx_size, int ctx) {
const struct macroblockd_plane *const pd = &xd->plane[0];
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col];
const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size) {
++xd->counts->tx_size[max_tx_size - TX_8X8][ctx][tx_size];
mbmi->tx_size = tx_size;
} else {
int bsl = b_width_log2_lookup[bsize];
int i;
assert(bsl > 0);
--bsl;
for (i = 0; i < 4; ++i) {
const int offsetr = blk_row + ((i >> 1) << bsl);
const int offsetc = blk_col + ((i & 0x01) << bsl);
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
update_tx_counts(cm, xd, mbmi, plane_bsize, (TX_SIZE)(tx_size - 1),
offsetr, offsetc, max_tx_size, ctx);
}
}
}
static INLINE void inter_block_tx_count_update(AV1_COMMON *cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi,
BLOCK_SIZE plane_bsize,
int ctx) {
const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize];
const int mi_height = num_4x4_blocks_high_lookup[plane_bsize];
TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
int bh = num_4x4_blocks_wide_lookup[txb_size];
int idx, idy;
for (idy = 0; idy < mi_height; idy += bh)
for (idx = 0; idx < mi_width; idx += bh)
update_tx_counts(cm, xd, mbmi, plane_bsize, max_tx_size, idy, idx,
max_tx_size, ctx);
}
#endif
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AV1_COMMON_PRED_COMMON_H_