aom/av1/common/reconinter.h

568 строки
23 KiB
C

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AV1_COMMON_RECONINTER_H_
#define AV1_COMMON_RECONINTER_H_
#include "av1/common/filter.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/convolve.h"
#include "aom/aom_integer.h"
#ifdef __cplusplus
extern "C" {
#endif
static INLINE void inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int subpel_x, const int subpel_y,
const struct scale_factors *sf, int w, int h,
int ref_idx,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
int xs, int ys) {
#if CONFIG_DUAL_FILTER
InterpFilterParams interp_filter_params_x =
av1_get_interp_filter_params(interp_filter[1 + 2 * ref_idx]);
InterpFilterParams interp_filter_params_y =
av1_get_interp_filter_params(interp_filter[0 + 2 * ref_idx]);
#else
InterpFilterParams interp_filter_params =
av1_get_interp_filter_params(interp_filter);
#endif
#if CONFIG_DUAL_FILTER
if (interp_filter_params_x.taps == SUBPEL_TAPS &&
interp_filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2) {
const int16_t *kernel_x =
av1_get_interp_filter_subpel_kernel(interp_filter_params_x, subpel_x);
const int16_t *kernel_y =
av1_get_interp_filter_subpel_kernel(interp_filter_params_y, subpel_y);
#else
if (interp_filter_params.taps == SUBPEL_TAPS && w > 2 && h > 2) {
const int16_t *kernel_x =
av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_x);
const int16_t *kernel_y =
av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_y);
#endif
#if CONFIG_EXT_INTERP && SUPPORT_NONINTERPOLATING_FILTERS
if (IsInterpolatingFilter(interp_filter)) {
// Interpolating filter
sf->predict[subpel_x != 0][subpel_y != 0][ref](
src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h);
} else {
sf->predict_ni[subpel_x != 0][subpel_y != 0][ref](
src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h);
}
#else
sf->predict[subpel_x != 0][subpel_y != 0][ref_idx](
src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h);
#endif // CONFIG_EXT_INTERP && SUPPORT_NONINTERPOLATING_FILTERS
} else {
// ref_idx > 0 means this is the second reference frame
// first reference frame's prediction result is already in dst
// therefore we need to average the first and second results
av1_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter,
subpel_x, xs, subpel_y, ys, ref_idx);
}
}
#if CONFIG_AOM_HIGHBITDEPTH
static INLINE void highbd_inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int subpel_x,
const int subpel_y,
const struct scale_factors *sf, int w,
int h, int ref,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
int xs, int ys, int bd) {
#if CONFIG_DUAL_FILTER
InterpFilterParams interp_filter_params_x =
av1_get_interp_filter_params(interp_filter[1 + 2 * ref]);
InterpFilterParams interp_filter_params_y =
av1_get_interp_filter_params(interp_filter[0 + 2 * ref]);
#else
InterpFilterParams interp_filter_params =
av1_get_interp_filter_params(interp_filter);
#endif
#if CONFIG_DUAL_FILTER
if (interp_filter_params_x.taps == SUBPEL_TAPS &&
interp_filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2) {
const int16_t *kernel_x =
av1_get_interp_filter_subpel_kernel(interp_filter_params_x, subpel_x);
const int16_t *kernel_y =
av1_get_interp_filter_subpel_kernel(interp_filter_params_y, subpel_y);
#else
if (interp_filter_params.taps == SUBPEL_TAPS && w > 2 && h > 2) {
const int16_t *kernel_x =
av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_x);
const int16_t *kernel_y =
av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_y);
#endif // CONFIG_DUAL_FILTER
#if CONFIG_EXT_INTERP && SUPPORT_NONINTERPOLATING_FILTERS
if (IsInterpolatingFilter(interp_filter)) {
// Interpolating filter
sf->highbd_predict[subpel_x != 0][subpel_y != 0][ref](
src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h,
bd);
} else {
sf->highbd_predict_ni[subpel_x != 0][subpel_y != 0][ref](
src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h,
bd);
}
#else
sf->highbd_predict[subpel_x != 0][subpel_y != 0][ref](
src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h, bd);
#endif // CONFIG_EXT_INTERP && SUPPORT_NONINTERPOLATING_FILTERS
} else {
// ref > 0 means this is the second reference frame
// first reference frame's prediction result is already in dst
// therefore we need to average the first and second results
int avg = ref > 0;
av1_highbd_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter,
subpel_x, xs, subpel_y, ys, avg, bd);
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#if CONFIG_EXT_INTER
// Set to one to use larger codebooks
#define USE_LARGE_WEDGE_CODEBOOK 0
#if USE_LARGE_WEDGE_CODEBOOK
#define MAX_WEDGE_TYPES (1 << 5)
#else
#define MAX_WEDGE_TYPES (1 << 4)
#endif
#define MAX_WEDGE_SIZE_LOG2 5 // 32x32
#define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2)
#define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE)
#define WEDGE_WEIGHT_BITS 6
#define WEDGE_NONE -1
// Angles are with respect to horizontal anti-clockwise
typedef enum {
WEDGE_HORIZONTAL = 0,
WEDGE_VERTICAL = 1,
WEDGE_OBLIQUE27 = 2,
WEDGE_OBLIQUE63 = 3,
WEDGE_OBLIQUE117 = 4,
WEDGE_OBLIQUE153 = 5,
WEDGE_DIRECTIONS
} WedgeDirectionType;
// 3-tuple: {direction, x_offset, y_offset}
typedef struct {
WedgeDirectionType direction;
int x_offset;
int y_offset;
} wedge_code_type;
typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES];
typedef struct {
int bits;
const wedge_code_type *codebook;
uint8_t *signflip;
int smoother;
wedge_masks_type *masks;
} wedge_params_type;
extern const wedge_params_type wedge_params_lookup[BLOCK_SIZES];
static INLINE int get_wedge_bits_lookup(BLOCK_SIZE sb_type) {
return wedge_params_lookup[sb_type].bits;
}
static INLINE int is_interinter_wedge_used(BLOCK_SIZE sb_type) {
(void)sb_type;
return wedge_params_lookup[sb_type].bits > 0;
}
static INLINE int get_interinter_wedge_bits(BLOCK_SIZE sb_type) {
const int wbits = wedge_params_lookup[sb_type].bits;
return (wbits > 0) ? wbits + 1 : 0;
}
static INLINE int is_interintra_wedge_used(BLOCK_SIZE sb_type) {
(void)sb_type;
return wedge_params_lookup[sb_type].bits > 0;
}
static INLINE int get_interintra_wedge_bits(BLOCK_SIZE sb_type) {
return wedge_params_lookup[sb_type].bits;
}
#endif // CONFIG_EXT_INTER
void build_inter_predictors(MACROBLOCKD *xd, int plane,
#if CONFIG_MOTION_VAR
int mi_col_offset, int mi_row_offset,
#endif // CONFIG_MOTION_VAR
int block, int bw, int bh, int x, int y, int w,
int h,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
int mi_x, int mi_y);
static INLINE void av1_make_inter_predictor(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
const int subpel_x, const int subpel_y, const struct scale_factors *sf,
int w, int h, int ref,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
int xs, int ys, const MACROBLOCKD *xd) {
(void)xd;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
sf, w, h, ref, interp_filter, xs, ys, xd->bd);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w,
h, ref, interp_filter, xs, ys);
}
#if CONFIG_EXT_INTER
void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
uint8_t *dst, int dst_stride,
const int subpel_x, const int subpel_y,
const struct scale_factors *sf, int w,
int h,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
int xs, int ys,
#if CONFIG_SUPERTX
int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX
const MACROBLOCKD *xd);
#endif // CONFIG_EXT_INTER
static INLINE int round_mv_comp_q4(int value) {
return (value < 0 ? value - 2 : value + 2) / 4;
}
static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
MV res = {
round_mv_comp_q4(
mi->bmi[0].as_mv[idx].as_mv.row + mi->bmi[1].as_mv[idx].as_mv.row +
mi->bmi[2].as_mv[idx].as_mv.row + mi->bmi[3].as_mv[idx].as_mv.row),
round_mv_comp_q4(
mi->bmi[0].as_mv[idx].as_mv.col + mi->bmi[1].as_mv[idx].as_mv.col +
mi->bmi[2].as_mv[idx].as_mv.col + mi->bmi[3].as_mv[idx].as_mv.col)
};
return res;
}
static INLINE int round_mv_comp_q2(int value) {
return (value < 0 ? value - 1 : value + 1) / 2;
}
static MV mi_mv_pred_q2(const MODE_INFO *mi, int idx, int block0, int block1) {
MV res = { round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.row +
mi->bmi[block1].as_mv[idx].as_mv.row),
round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.col +
mi->bmi[block1].as_mv[idx].as_mv.col) };
return res;
}
// TODO(jkoleszar): yet another mv clamping function :-(
static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd,
const MV *src_mv, int bw, int bh,
int ss_x, int ss_y) {
// If the MV points so far into the UMV border that no visible pixels
// are used for reconstruction, the subpel part of the MV can be
// discarded and the MV limited to 16 pixels with equivalent results.
const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS;
const int spel_right = spel_left - SUBPEL_SHIFTS;
const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS;
const int spel_bottom = spel_top - SUBPEL_SHIFTS;
MV clamped_mv = { src_mv->row * (1 << (1 - ss_y)),
src_mv->col * (1 << (1 - ss_x)) };
assert(ss_x <= 1);
assert(ss_y <= 1);
clamp_mv(&clamped_mv, xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);
return clamped_mv;
}
static INLINE MV average_split_mvs(const struct macroblockd_plane *pd,
const MODE_INFO *mi, int ref, int block) {
const int ss_idx = ((pd->subsampling_x > 0) << 1) | (pd->subsampling_y > 0);
MV res = { 0, 0 };
switch (ss_idx) {
case 0: res = mi->bmi[block].as_mv[ref].as_mv; break;
case 1: res = mi_mv_pred_q2(mi, ref, block, block + 2); break;
case 2: res = mi_mv_pred_q2(mi, ref, block, block + 1); break;
case 3: res = mi_mv_pred_q4(mi, ref); break;
default: assert(ss_idx <= 3 && ss_idx >= 0);
}
return res;
}
void av1_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane, int i, int ir,
int ic, int mi_row, int mi_col);
void av1_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize);
void av1_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize, int plane);
void av1_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize);
void av1_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize);
#if CONFIG_SUPERTX
void av1_build_inter_predictors_sb_sub8x8_extend(MACROBLOCKD *xd,
#if CONFIG_EXT_INTER
int mi_row_ori, int mi_col_ori,
#endif // CONFIG_EXT_INTER
int mi_row, int mi_col,
BLOCK_SIZE bsize, int block);
void av1_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
#if CONFIG_EXT_INTER
int mi_row_ori, int mi_col_ori,
#endif // CONFIG_EXT_INTER
int mi_row, int mi_col,
BLOCK_SIZE bsize);
struct macroblockd_plane;
void av1_build_masked_inter_predictor_complex(
MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre,
int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition,
int plane);
#endif // CONFIG_SUPERTX
void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, const MV *mv_q3,
const struct scale_factors *sf, int w, int h,
int do_avg,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
enum mv_precision precision, int x, int y);
#if CONFIG_AOM_HIGHBITDEPTH
void av1_highbd_build_inter_predictor(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
const MV *mv_q3, const struct scale_factors *sf, int w, int h, int do_avg,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
enum mv_precision precision, int x, int y, int bd);
#endif
static INLINE int scaled_buffer_offset(int x_offset, int y_offset, int stride,
const struct scale_factors *sf) {
const int x = sf ? sf->scale_value_x(x_offset, sf) : x_offset;
const int y = sf ? sf->scale_value_y(y_offset, sf) : y_offset;
return y * stride + x;
}
static INLINE void setup_pred_plane(struct buf_2d *dst, uint8_t *src, int width,
int height, int stride, int mi_row,
int mi_col,
const struct scale_factors *scale,
int subsampling_x, int subsampling_y) {
const int x = (MI_SIZE * mi_col) >> subsampling_x;
const int y = (MI_SIZE * mi_row) >> subsampling_y;
dst->buf = src + scaled_buffer_offset(x, y, stride, scale);
dst->buf0 = src;
dst->width = width;
dst->height = height;
dst->stride = stride;
}
void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src, int mi_row,
int mi_col);
void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *sf);
// Detect if the block have sub-pixel level motion vectors
// per component.
static INLINE int has_subpel_mv_component(const MODE_INFO *const mi,
const MACROBLOCKD *const xd,
int dir) {
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
int plane;
int ref = (dir >> 1);
if (bsize >= BLOCK_8X8) {
if (dir & 0x01) {
if (mbmi->mv[ref].as_mv.col & SUBPEL_MASK) return 1;
} else {
if (mbmi->mv[ref].as_mv.row & SUBPEL_MASK) return 1;
}
} else {
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const PARTITION_TYPE bp = BLOCK_8X8 - bsize;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int have_vsplit = bp != PARTITION_HORZ;
const int have_hsplit = bp != PARTITION_VERT;
const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x);
const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y);
int x, y;
for (y = 0; y < num_4x4_h; ++y) {
for (x = 0; x < num_4x4_w; ++x) {
const MV mv = average_split_mvs(pd, mi, ref, y * 2 + x);
if (dir & 0x01) {
if (mv.col & SUBPEL_MASK) return 1;
} else {
if (mv.row & SUBPEL_MASK) return 1;
}
}
}
}
}
return 0;
}
#define CHECK_SUBPEL 0
static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) {
#if CHECK_SUBPEL
MODE_INFO *const mi = xd->mi[0];
const int is_compound = has_second_ref(&mi->mbmi);
int ref;
for (ref = 0; ref < 1 + is_compound; ++ref) {
int row_col;
for (row_col = 0; row_col < 2; ++row_col) {
const int dir = (ref << 1) + row_col;
if (has_subpel_mv_component(mi, xd, dir)) {
return 1;
}
}
}
return 0;
#else
(void)xd;
return 1;
#endif
}
#if CONFIG_MOTION_VAR
const uint8_t *av1_get_obmc_mask(int length);
void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *above[MAX_MB_PLANE],
int above_stride[MAX_MB_PLANE],
uint8_t *left[MAX_MB_PLANE],
int left_stride[MAX_MB_PLANE]);
void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]);
void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]);
void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col);
#endif // CONFIG_MOTION_VAR
#if CONFIG_EXT_INTER
#define MASK_MASTER_SIZE (2 * MAX_SB_SIZE)
#define MASK_MASTER_STRIDE (2 * MAX_SB_SIZE)
void av1_init_wedge_masks();
static INLINE const uint8_t *av1_get_contiguous_soft_mask(int wedge_index,
int wedge_sign,
BLOCK_SIZE sb_type) {
return wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index];
}
const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign,
BLOCK_SIZE sb_type, int wedge_offset_x,
int wedge_offset_y);
void av1_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred,
uint8_t *upred, uint8_t *vpred,
int ystride, int ustride, int vstride,
BLOCK_SIZE bsize);
void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred,
int ystride, BLOCK_SIZE bsize);
void av1_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred,
int ustride, int plane,
BLOCK_SIZE bsize);
void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred,
uint8_t *vpred, int ustride,
int vstride, BLOCK_SIZE bsize);
void av1_build_intra_predictors_for_interintra(MACROBLOCKD *xd,
BLOCK_SIZE bsize, int plane,
uint8_t *intra_pred,
int intra_stride);
void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
const uint8_t *inter_pred, int inter_stride,
const uint8_t *intra_pred, int intra_stride);
void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred,
uint8_t *vpred, int ustride,
int vstride, BLOCK_SIZE bsize);
void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred,
int ystride, BLOCK_SIZE bsize);
// Encoder only
void av1_build_inter_predictors_for_planes_single_buf(
MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row,
int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]);
void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane_from, int plane_to,
uint8_t *ext_dst0[3],
int ext_dst_stride0[3],
uint8_t *ext_dst1[3],
int ext_dst_stride1[3]);
#endif // CONFIG_EXT_INTER
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AV1_COMMON_RECONINTER_H_