1234 строки
41 KiB
C
1234 строки
41 KiB
C
/*
|
|
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be
|
|
* found in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <memory.h>
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
|
|
#include "av1/common/warped_motion.h"
|
|
|
|
static ProjectPointsFunc get_project_points_type(TransformationType type) {
|
|
switch (type) {
|
|
case HOMOGRAPHY: return project_points_homography;
|
|
case AFFINE: return project_points_affine;
|
|
case ROTZOOM: return project_points_rotzoom;
|
|
case TRANSLATION: return project_points_translation;
|
|
default: assert(0); return NULL;
|
|
}
|
|
}
|
|
|
|
void project_points_translation(int16_t *mat, int *points, int *proj,
|
|
const int n, const int stride_points,
|
|
const int stride_proj, const int subsampling_x,
|
|
const int subsampling_y) {
|
|
int i;
|
|
for (i = 0; i < n; ++i) {
|
|
const int x = *(points++), y = *(points++);
|
|
if (subsampling_x)
|
|
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
|
|
((x * (1 << (WARPEDMODEL_PREC_BITS + 1))) + mat[1]),
|
|
WARPEDDIFF_PREC_BITS + 1);
|
|
else
|
|
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
|
|
((x * (1 << WARPEDMODEL_PREC_BITS)) + mat[1]), WARPEDDIFF_PREC_BITS);
|
|
if (subsampling_y)
|
|
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
|
|
((y * (1 << (WARPEDMODEL_PREC_BITS + 1))) + mat[0]),
|
|
WARPEDDIFF_PREC_BITS + 1);
|
|
else
|
|
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
|
|
((y * (1 << WARPEDMODEL_PREC_BITS))) + mat[0], WARPEDDIFF_PREC_BITS);
|
|
points += stride_points - 2;
|
|
proj += stride_proj - 2;
|
|
}
|
|
}
|
|
|
|
void project_points_rotzoom(int16_t *mat, int *points, int *proj, const int n,
|
|
const int stride_points, const int stride_proj,
|
|
const int subsampling_x, const int subsampling_y) {
|
|
int i;
|
|
for (i = 0; i < n; ++i) {
|
|
const int x = *(points++), y = *(points++);
|
|
if (subsampling_x)
|
|
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
|
|
mat[3] * 2 * x + mat[2] * 2 * y + mat[1] +
|
|
(mat[3] + mat[2] - (1 << WARPEDMODEL_PREC_BITS)) / 2,
|
|
WARPEDDIFF_PREC_BITS + 1);
|
|
else
|
|
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(mat[3] * x + mat[2] * y + mat[1],
|
|
WARPEDDIFF_PREC_BITS);
|
|
if (subsampling_y)
|
|
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
|
|
-mat[2] * 2 * x + mat[3] * 2 * y + mat[0] +
|
|
(-mat[2] + mat[3] - (1 << WARPEDMODEL_PREC_BITS)) / 2,
|
|
WARPEDDIFF_PREC_BITS + 1);
|
|
else
|
|
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(-mat[2] * x + mat[3] * y + mat[0],
|
|
WARPEDDIFF_PREC_BITS);
|
|
points += stride_points - 2;
|
|
proj += stride_proj - 2;
|
|
}
|
|
}
|
|
|
|
void project_points_affine(int16_t *mat, int *points, int *proj, const int n,
|
|
const int stride_points, const int stride_proj,
|
|
const int subsampling_x, const int subsampling_y) {
|
|
int i;
|
|
for (i = 0; i < n; ++i) {
|
|
const int x = *(points++), y = *(points++);
|
|
if (subsampling_x)
|
|
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
|
|
mat[3] * 2 * x + mat[2] * 2 * y + mat[1] +
|
|
(mat[3] + mat[2] - (1 << WARPEDMODEL_PREC_BITS)) / 2,
|
|
WARPEDDIFF_PREC_BITS + 1);
|
|
else
|
|
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(mat[3] * x + mat[2] * y + mat[1],
|
|
WARPEDDIFF_PREC_BITS);
|
|
if (subsampling_y)
|
|
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
|
|
mat[4] * 2 * x + mat[5] * 2 * y + mat[0] +
|
|
(mat[4] + mat[5] - (1 << WARPEDMODEL_PREC_BITS)) / 2,
|
|
WARPEDDIFF_PREC_BITS + 1);
|
|
else
|
|
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(mat[4] * x + mat[5] * y + mat[0],
|
|
WARPEDDIFF_PREC_BITS);
|
|
points += stride_points - 2;
|
|
proj += stride_proj - 2;
|
|
}
|
|
}
|
|
|
|
void project_points_homography(int16_t *mat, int *points, int *proj,
|
|
const int n, const int stride_points,
|
|
const int stride_proj, const int subsampling_x,
|
|
const int subsampling_y) {
|
|
int i;
|
|
int64_t x, y, Z;
|
|
int64_t xp, yp;
|
|
for (i = 0; i < n; ++i) {
|
|
x = *(points++), y = *(points++);
|
|
x = (subsampling_x ? 4 * x + 1 : 2 * x);
|
|
y = (subsampling_y ? 4 * y + 1 : 2 * y);
|
|
|
|
Z = (mat[7] * x + mat[6] * y + (1 << (WARPEDMODEL_ROW3HOMO_PREC_BITS + 1)));
|
|
xp = (mat[1] * x + mat[0] * y + 2 * mat[3]) *
|
|
(1 << (WARPEDPIXEL_PREC_BITS + WARPEDMODEL_ROW3HOMO_PREC_BITS -
|
|
WARPEDMODEL_PREC_BITS));
|
|
yp = (mat[2] * x + mat[5] * y + 2 * mat[4]) *
|
|
(1 << (WARPEDPIXEL_PREC_BITS + WARPEDMODEL_ROW3HOMO_PREC_BITS -
|
|
WARPEDMODEL_PREC_BITS));
|
|
|
|
xp = xp > 0 ? (xp + Z / 2) / Z : (xp - Z / 2) / Z;
|
|
yp = yp > 0 ? (yp + Z / 2) / Z : (yp - Z / 2) / Z;
|
|
|
|
if (subsampling_x) xp = (xp - (1 << (WARPEDPIXEL_PREC_BITS - 1))) / 2;
|
|
if (subsampling_y) yp = (yp - (1 << (WARPEDPIXEL_PREC_BITS - 1))) / 2;
|
|
*(proj++) = xp;
|
|
*(proj++) = yp;
|
|
|
|
points += stride_points - 2;
|
|
proj += stride_proj - 2;
|
|
}
|
|
}
|
|
|
|
static const int16_t filter_4tap[WARPEDPIXEL_PREC_SHIFTS][4] = {
|
|
{ 0, 128, 0, 0 }, { -1, 127, 2, 0 }, { -2, 127, 4, -1 },
|
|
{ -3, 126, 6, -1 }, { -3, 125, 8, -2 }, { -4, 124, 11, -3 },
|
|
{ -5, 123, 13, -3 }, { -5, 121, 15, -3 }, { -6, 120, 18, -4 },
|
|
{ -7, 119, 20, -4 }, { -7, 118, 22, -5 }, { -8, 116, 25, -5 },
|
|
{ -8, 115, 27, -6 }, { -9, 113, 30, -6 }, { -9, 112, 32, -7 },
|
|
{ -9, 110, 34, -7 }, { -10, 108, 37, -7 }, { -10, 107, 39, -8 },
|
|
{ -10, 105, 41, -8 }, { -11, 103, 44, -8 }, { -11, 101, 47, -9 },
|
|
{ -11, 99, 49, -9 }, { -11, 97, 51, -9 }, { -11, 95, 54, -10 },
|
|
{ -11, 93, 56, -10 }, { -12, 91, 59, -10 }, { -12, 89, 61, -10 },
|
|
{ -12, 87, 64, -11 }, { -12, 85, 66, -11 }, { -12, 82, 69, -11 },
|
|
{ -12, 80, 71, -11 }, { -12, 78, 73, -11 }, { -11, 75, 75, -11 },
|
|
{ -11, 73, 78, -12 }, { -11, 71, 80, -12 }, { -11, 69, 82, -12 },
|
|
{ -11, 66, 85, -12 }, { -11, 64, 87, -12 }, { -10, 61, 89, -12 },
|
|
{ -10, 59, 91, -12 }, { -10, 56, 93, -11 }, { -10, 54, 95, -11 },
|
|
{ -9, 51, 97, -11 }, { -9, 49, 99, -11 }, { -9, 47, 101, -11 },
|
|
{ -8, 44, 103, -11 }, { -8, 41, 105, -10 }, { -8, 39, 107, -10 },
|
|
{ -7, 37, 108, -10 }, { -7, 34, 110, -9 }, { -7, 32, 112, -9 },
|
|
{ -6, 30, 113, -9 }, { -6, 27, 115, -8 }, { -5, 25, 116, -8 },
|
|
{ -5, 22, 118, -7 }, { -4, 20, 119, -7 }, { -4, 18, 120, -6 },
|
|
{ -3, 15, 121, -5 }, { -3, 13, 123, -5 }, { -3, 11, 124, -4 },
|
|
{ -2, 8, 125, -3 }, { -1, 6, 126, -3 }, { -1, 4, 127, -2 },
|
|
{ 0, 2, 127, -1 },
|
|
};
|
|
|
|
static const int16_t
|
|
filter_ntap[WARPEDPIXEL_PREC_SHIFTS][WARPEDPIXEL_FILTER_TAPS] = {
|
|
{ 0, 0, 128, 0, 0, 0 }, { 0, -1, 128, 2, -1, 0 },
|
|
{ 1, -3, 127, 4, -1, 0 }, { 1, -4, 126, 6, -2, 1 },
|
|
{ 1, -5, 126, 8, -3, 1 }, { 1, -6, 125, 11, -4, 1 },
|
|
{ 1, -7, 124, 13, -4, 1 }, { 2, -8, 123, 15, -5, 1 },
|
|
{ 2, -9, 122, 18, -6, 1 }, { 2, -10, 121, 20, -6, 1 },
|
|
{ 2, -11, 120, 22, -7, 2 }, { 2, -12, 119, 25, -8, 2 },
|
|
{ 3, -13, 117, 27, -8, 2 }, { 3, -13, 116, 29, -9, 2 },
|
|
{ 3, -14, 114, 32, -10, 3 }, { 3, -15, 113, 35, -10, 2 },
|
|
{ 3, -15, 111, 37, -11, 3 }, { 3, -16, 109, 40, -11, 3 },
|
|
{ 3, -16, 108, 42, -12, 3 }, { 4, -17, 106, 45, -13, 3 },
|
|
{ 4, -17, 104, 47, -13, 3 }, { 4, -17, 102, 50, -14, 3 },
|
|
{ 4, -17, 100, 52, -14, 3 }, { 4, -18, 98, 55, -15, 4 },
|
|
{ 4, -18, 96, 58, -15, 3 }, { 4, -18, 94, 60, -16, 4 },
|
|
{ 4, -18, 91, 63, -16, 4 }, { 4, -18, 89, 65, -16, 4 },
|
|
{ 4, -18, 87, 68, -17, 4 }, { 4, -18, 85, 70, -17, 4 },
|
|
{ 4, -18, 82, 73, -17, 4 }, { 4, -18, 80, 75, -17, 4 },
|
|
{ 4, -18, 78, 78, -18, 4 }, { 4, -17, 75, 80, -18, 4 },
|
|
{ 4, -17, 73, 82, -18, 4 }, { 4, -17, 70, 85, -18, 4 },
|
|
{ 4, -17, 68, 87, -18, 4 }, { 4, -16, 65, 89, -18, 4 },
|
|
{ 4, -16, 63, 91, -18, 4 }, { 4, -16, 60, 94, -18, 4 },
|
|
{ 3, -15, 58, 96, -18, 4 }, { 4, -15, 55, 98, -18, 4 },
|
|
{ 3, -14, 52, 100, -17, 4 }, { 3, -14, 50, 102, -17, 4 },
|
|
{ 3, -13, 47, 104, -17, 4 }, { 3, -13, 45, 106, -17, 4 },
|
|
{ 3, -12, 42, 108, -16, 3 }, { 3, -11, 40, 109, -16, 3 },
|
|
{ 3, -11, 37, 111, -15, 3 }, { 2, -10, 35, 113, -15, 3 },
|
|
{ 3, -10, 32, 114, -14, 3 }, { 2, -9, 29, 116, -13, 3 },
|
|
{ 2, -8, 27, 117, -13, 3 }, { 2, -8, 25, 119, -12, 2 },
|
|
{ 2, -7, 22, 120, -11, 2 }, { 1, -6, 20, 121, -10, 2 },
|
|
{ 1, -6, 18, 122, -9, 2 }, { 1, -5, 15, 123, -8, 2 },
|
|
{ 1, -4, 13, 124, -7, 1 }, { 1, -4, 11, 125, -6, 1 },
|
|
{ 1, -3, 8, 126, -5, 1 }, { 1, -2, 6, 126, -4, 1 },
|
|
{ 0, -1, 4, 127, -3, 1 }, { 0, -1, 2, 128, -1, 0 },
|
|
};
|
|
|
|
static int32_t do_ntap_filter(int32_t *p, int x) {
|
|
int i;
|
|
int32_t sum = 0;
|
|
for (i = 0; i < WARPEDPIXEL_FILTER_TAPS; ++i) {
|
|
sum += p[i - WARPEDPIXEL_FILTER_TAPS / 2 + 1] * filter_ntap[x][i];
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
static int32_t do_cubic_filter(int32_t *p, int x) {
|
|
if (x == 0) {
|
|
return p[0];
|
|
} else if (x == (1 << WARPEDPIXEL_PREC_BITS)) {
|
|
return p[1];
|
|
} else {
|
|
const int64_t v1 = x * x * x * (3 * (p[0] - p[1]) + p[2] - p[-1]);
|
|
const int64_t v2 = x * x * (2 * p[-1] - 5 * p[0] + 4 * p[1] - p[2]);
|
|
const int64_t v3 = x * (p[1] - p[-1]);
|
|
const int64_t v4 = 2 * p[0];
|
|
return (int32_t)ROUND_POWER_OF_TWO_SIGNED(
|
|
(v4 * (1 << (3 * WARPEDPIXEL_PREC_BITS))) +
|
|
(v3 * (1 << (2 * WARPEDPIXEL_PREC_BITS))) +
|
|
(v2 * (1 << WARPEDPIXEL_PREC_BITS)) + v1,
|
|
3 * WARPEDPIXEL_PREC_BITS + 1 - WARPEDPIXEL_FILTER_BITS);
|
|
}
|
|
}
|
|
|
|
static INLINE void get_subcolumn(int taps, uint8_t *ref, int32_t *col,
|
|
int stride, int x, int y_start) {
|
|
int i;
|
|
for (i = 0; i < taps; ++i) {
|
|
col[i] = ref[(i + y_start) * stride + x];
|
|
}
|
|
}
|
|
|
|
static uint8_t bi_ntap_filter(uint8_t *ref, int x, int y, int stride) {
|
|
int32_t val, arr[WARPEDPIXEL_FILTER_TAPS];
|
|
int k;
|
|
int i = (int)x >> WARPEDPIXEL_PREC_BITS;
|
|
int j = (int)y >> WARPEDPIXEL_PREC_BITS;
|
|
for (k = 0; k < WARPEDPIXEL_FILTER_TAPS; ++k) {
|
|
int32_t arr_temp[WARPEDPIXEL_FILTER_TAPS];
|
|
get_subcolumn(WARPEDPIXEL_FILTER_TAPS, ref, arr_temp, stride,
|
|
i + k + 1 - WARPEDPIXEL_FILTER_TAPS / 2,
|
|
j + 1 - WARPEDPIXEL_FILTER_TAPS / 2);
|
|
arr[k] = do_ntap_filter(arr_temp + WARPEDPIXEL_FILTER_TAPS / 2 - 1,
|
|
y - (j * (1 << WARPEDPIXEL_PREC_BITS)));
|
|
}
|
|
val = do_ntap_filter(arr + WARPEDPIXEL_FILTER_TAPS / 2 - 1,
|
|
x - (i * (1 << WARPEDPIXEL_PREC_BITS)));
|
|
val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2);
|
|
return (uint8_t)clip_pixel(val);
|
|
}
|
|
|
|
static uint8_t bi_cubic_filter(uint8_t *ref, int x, int y, int stride) {
|
|
int32_t val, arr[4];
|
|
int k;
|
|
int i = (int)x >> WARPEDPIXEL_PREC_BITS;
|
|
int j = (int)y >> WARPEDPIXEL_PREC_BITS;
|
|
for (k = 0; k < 4; ++k) {
|
|
int32_t arr_temp[4];
|
|
get_subcolumn(4, ref, arr_temp, stride, i + k - 1, j - 1);
|
|
arr[k] =
|
|
do_cubic_filter(arr_temp + 1, y - (j * (1 << WARPEDPIXEL_PREC_BITS)));
|
|
}
|
|
val = do_cubic_filter(arr + 1, x - (i * (1 << WARPEDPIXEL_PREC_BITS)));
|
|
val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2);
|
|
return (uint8_t)clip_pixel(val);
|
|
}
|
|
|
|
static uint8_t bi_linear_filter(uint8_t *ref, int x, int y, int stride) {
|
|
const int ix = x >> WARPEDPIXEL_PREC_BITS;
|
|
const int iy = y >> WARPEDPIXEL_PREC_BITS;
|
|
const int sx = x - (ix * (1 << WARPEDPIXEL_PREC_BITS));
|
|
const int sy = y - (iy * (1 << WARPEDPIXEL_PREC_BITS));
|
|
int32_t val;
|
|
val = ROUND_POWER_OF_TWO_SIGNED(
|
|
ref[iy * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sy) *
|
|
(WARPEDPIXEL_PREC_SHIFTS - sx) +
|
|
ref[iy * stride + ix + 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) * sx +
|
|
ref[(iy + 1) * stride + ix] * sy * (WARPEDPIXEL_PREC_SHIFTS - sx) +
|
|
ref[(iy + 1) * stride + ix + 1] * sy * sx,
|
|
WARPEDPIXEL_PREC_BITS * 2);
|
|
return (uint8_t)clip_pixel(val);
|
|
}
|
|
|
|
static uint8_t warp_interpolate(uint8_t *ref, int x, int y, int width,
|
|
int height, int stride) {
|
|
int ix = x >> WARPEDPIXEL_PREC_BITS;
|
|
int iy = y >> WARPEDPIXEL_PREC_BITS;
|
|
int sx = x - (ix * (1 << WARPEDPIXEL_PREC_BITS));
|
|
int sy = y - (iy * (1 << WARPEDPIXEL_PREC_BITS));
|
|
int32_t v;
|
|
|
|
if (ix < 0 && iy < 0)
|
|
return ref[0];
|
|
else if (ix < 0 && iy > height - 1)
|
|
return ref[(height - 1) * stride];
|
|
else if (ix > width - 1 && iy < 0)
|
|
return ref[width - 1];
|
|
else if (ix > width - 1 && iy > height - 1)
|
|
return ref[(height - 1) * stride + (width - 1)];
|
|
else if (ix < 0) {
|
|
v = ROUND_POWER_OF_TWO_SIGNED(
|
|
ref[iy * stride] * (WARPEDPIXEL_PREC_SHIFTS - sy) +
|
|
ref[(iy + 1) * stride] * sy,
|
|
WARPEDPIXEL_PREC_BITS);
|
|
return clip_pixel(v);
|
|
} else if (iy < 0) {
|
|
v = ROUND_POWER_OF_TWO_SIGNED(
|
|
ref[ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) + ref[ix + 1] * sx,
|
|
WARPEDPIXEL_PREC_BITS);
|
|
return clip_pixel(v);
|
|
} else if (ix > width - 1) {
|
|
v = ROUND_POWER_OF_TWO_SIGNED(
|
|
ref[iy * stride + width - 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) +
|
|
ref[(iy + 1) * stride + width - 1] * sy,
|
|
WARPEDPIXEL_PREC_BITS);
|
|
return clip_pixel(v);
|
|
} else if (iy > height - 1) {
|
|
v = ROUND_POWER_OF_TWO_SIGNED(
|
|
ref[(height - 1) * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) +
|
|
ref[(height - 1) * stride + ix + 1] * sx,
|
|
WARPEDPIXEL_PREC_BITS);
|
|
return clip_pixel(v);
|
|
} else if (ix >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 &&
|
|
iy >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 &&
|
|
ix < width - WARPEDPIXEL_FILTER_TAPS / 2 &&
|
|
iy < height - WARPEDPIXEL_FILTER_TAPS / 2) {
|
|
return bi_ntap_filter(ref, x, y, stride);
|
|
} else if (ix >= 1 && iy >= 1 && ix < width - 2 && iy < height - 2) {
|
|
return bi_cubic_filter(ref, x, y, stride);
|
|
} else {
|
|
return bi_linear_filter(ref, x, y, stride);
|
|
}
|
|
}
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
static INLINE void highbd_get_subcolumn(int taps, uint16_t *ref, int32_t *col,
|
|
int stride, int x, int y_start) {
|
|
int i;
|
|
for (i = 0; i < taps; ++i) {
|
|
col[i] = ref[(i + y_start) * stride + x];
|
|
}
|
|
}
|
|
|
|
static uint16_t highbd_bi_ntap_filter(uint16_t *ref, int x, int y, int stride,
|
|
int bd) {
|
|
int32_t val, arr[WARPEDPIXEL_FILTER_TAPS];
|
|
int k;
|
|
int i = (int)x >> WARPEDPIXEL_PREC_BITS;
|
|
int j = (int)y >> WARPEDPIXEL_PREC_BITS;
|
|
for (k = 0; k < WARPEDPIXEL_FILTER_TAPS; ++k) {
|
|
int32_t arr_temp[WARPEDPIXEL_FILTER_TAPS];
|
|
highbd_get_subcolumn(WARPEDPIXEL_FILTER_TAPS, ref, arr_temp, stride,
|
|
i + k + 1 - WARPEDPIXEL_FILTER_TAPS / 2,
|
|
j + 1 - WARPEDPIXEL_FILTER_TAPS / 2);
|
|
arr[k] = do_ntap_filter(arr_temp + WARPEDPIXEL_FILTER_TAPS / 2 - 1,
|
|
y - (j * (1 << WARPEDPIXEL_PREC_BITS)));
|
|
}
|
|
val = do_ntap_filter(arr + WARPEDPIXEL_FILTER_TAPS / 2 - 1,
|
|
x - (i * (1 << WARPEDPIXEL_PREC_BITS)));
|
|
val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2);
|
|
return (uint16_t)clip_pixel_highbd(val, bd);
|
|
}
|
|
|
|
static uint16_t highbd_bi_cubic_filter(uint16_t *ref, int x, int y, int stride,
|
|
int bd) {
|
|
int32_t val, arr[4];
|
|
int k;
|
|
int i = (int)x >> WARPEDPIXEL_PREC_BITS;
|
|
int j = (int)y >> WARPEDPIXEL_PREC_BITS;
|
|
for (k = 0; k < 4; ++k) {
|
|
int32_t arr_temp[4];
|
|
highbd_get_subcolumn(4, ref, arr_temp, stride, i + k - 1, j - 1);
|
|
arr[k] =
|
|
do_cubic_filter(arr_temp + 1, y - (j * (1 << WARPEDPIXEL_PREC_BITS)));
|
|
}
|
|
val = do_cubic_filter(arr + 1, x - (i * (1 << WARPEDPIXEL_PREC_BITS)));
|
|
val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2);
|
|
return (uint16_t)clip_pixel_highbd(val, bd);
|
|
}
|
|
|
|
static uint16_t highbd_bi_linear_filter(uint16_t *ref, int x, int y, int stride,
|
|
int bd) {
|
|
const int ix = x >> WARPEDPIXEL_PREC_BITS;
|
|
const int iy = y >> WARPEDPIXEL_PREC_BITS;
|
|
const int sx = x - (ix * (1 << WARPEDPIXEL_PREC_BITS));
|
|
const int sy = y - (iy * (1 << WARPEDPIXEL_PREC_BITS));
|
|
int32_t val;
|
|
val = ROUND_POWER_OF_TWO_SIGNED(
|
|
ref[iy * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sy) *
|
|
(WARPEDPIXEL_PREC_SHIFTS - sx) +
|
|
ref[iy * stride + ix + 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) * sx +
|
|
ref[(iy + 1) * stride + ix] * sy * (WARPEDPIXEL_PREC_SHIFTS - sx) +
|
|
ref[(iy + 1) * stride + ix + 1] * sy * sx,
|
|
WARPEDPIXEL_PREC_BITS * 2);
|
|
return (uint16_t)clip_pixel_highbd(val, bd);
|
|
}
|
|
|
|
static uint16_t highbd_warp_interpolate(uint16_t *ref, int x, int y, int width,
|
|
int height, int stride, int bd) {
|
|
int ix = x >> WARPEDPIXEL_PREC_BITS;
|
|
int iy = y >> WARPEDPIXEL_PREC_BITS;
|
|
int sx = x - (ix * (1 << WARPEDPIXEL_PREC_BITS));
|
|
int sy = y - (iy * (1 << WARPEDPIXEL_PREC_BITS));
|
|
int32_t v;
|
|
|
|
if (ix < 0 && iy < 0)
|
|
return ref[0];
|
|
else if (ix < 0 && iy > height - 1)
|
|
return ref[(height - 1) * stride];
|
|
else if (ix > width - 1 && iy < 0)
|
|
return ref[width - 1];
|
|
else if (ix > width - 1 && iy > height - 1)
|
|
return ref[(height - 1) * stride + (width - 1)];
|
|
else if (ix < 0) {
|
|
v = ROUND_POWER_OF_TWO_SIGNED(
|
|
ref[iy * stride] * (WARPEDPIXEL_PREC_SHIFTS - sy) +
|
|
ref[(iy + 1) * stride] * sy,
|
|
WARPEDPIXEL_PREC_BITS);
|
|
return clip_pixel_highbd(v, bd);
|
|
} else if (iy < 0) {
|
|
v = ROUND_POWER_OF_TWO_SIGNED(
|
|
ref[ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) + ref[ix + 1] * sx,
|
|
WARPEDPIXEL_PREC_BITS);
|
|
return clip_pixel_highbd(v, bd);
|
|
} else if (ix > width - 1) {
|
|
v = ROUND_POWER_OF_TWO_SIGNED(
|
|
ref[iy * stride + width - 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) +
|
|
ref[(iy + 1) * stride + width - 1] * sy,
|
|
WARPEDPIXEL_PREC_BITS);
|
|
return clip_pixel_highbd(v, bd);
|
|
} else if (iy > height - 1) {
|
|
v = ROUND_POWER_OF_TWO_SIGNED(
|
|
ref[(height - 1) * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) +
|
|
ref[(height - 1) * stride + ix + 1] * sx,
|
|
WARPEDPIXEL_PREC_BITS);
|
|
return clip_pixel_highbd(v, bd);
|
|
} else if (ix >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 &&
|
|
iy >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 &&
|
|
ix < width - WARPEDPIXEL_FILTER_TAPS / 2 &&
|
|
iy < height - WARPEDPIXEL_FILTER_TAPS / 2) {
|
|
return highbd_bi_ntap_filter(ref, x, y, stride, bd);
|
|
} else if (ix >= 1 && iy >= 1 && ix < width - 2 && iy < height - 2) {
|
|
return highbd_bi_cubic_filter(ref, x, y, stride, bd);
|
|
} else {
|
|
return highbd_bi_linear_filter(ref, x, y, stride, bd);
|
|
}
|
|
}
|
|
|
|
static double highbd_warp_erroradv(WarpedMotionParams *wm, uint8_t *ref8,
|
|
int width, int height, int stride,
|
|
uint8_t *dst8, int p_col, int p_row,
|
|
int p_width, int p_height, int p_stride,
|
|
int subsampling_x, int subsampling_y,
|
|
int x_scale, int y_scale, int bd) {
|
|
int i, j;
|
|
ProjectPointsFunc projectpoints = get_project_points_type(wm->wmtype);
|
|
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
|
|
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
|
|
int gm_err = 0, no_gm_err = 0;
|
|
int64_t gm_sumerr = 0, no_gm_sumerr = 0;
|
|
for (i = p_row; i < p_row + p_height; ++i) {
|
|
for (j = p_col; j < p_col + p_width; ++j) {
|
|
int in[2], out[2];
|
|
in[0] = j;
|
|
in[1] = i;
|
|
projectpoints((int16_t *)wm->wmmat, in, out, 1, 2, 2, subsampling_x,
|
|
subsampling_y);
|
|
out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4);
|
|
out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4);
|
|
gm_err = dst[(j - p_col) + (i - p_row) * p_stride] -
|
|
highbd_warp_interpolate(ref, out[0], out[1], width, height,
|
|
stride, bd);
|
|
no_gm_err = dst[(j - p_col) + (i - p_row) * p_stride] -
|
|
ref[(j - p_col) + (i - p_row) * stride];
|
|
gm_sumerr += (int64_t)gm_err * gm_err;
|
|
no_gm_sumerr += (int64_t)no_gm_err * no_gm_err;
|
|
}
|
|
}
|
|
return (double)gm_sumerr / no_gm_sumerr;
|
|
}
|
|
|
|
static void highbd_warp_plane(WarpedMotionParams *wm, uint8_t *ref8, int width,
|
|
int height, int stride, uint8_t *pred8, int p_col,
|
|
int p_row, int p_width, int p_height,
|
|
int p_stride, int subsampling_x,
|
|
int subsampling_y, int x_scale, int y_scale,
|
|
int bd, int ref_frm) {
|
|
int i, j;
|
|
ProjectPointsFunc projectpoints = get_project_points_type(wm->wmtype);
|
|
uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
|
|
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
|
|
if (projectpoints == NULL) return;
|
|
for (i = p_row; i < p_row + p_height; ++i) {
|
|
for (j = p_col; j < p_col + p_width; ++j) {
|
|
int in[2], out[2];
|
|
in[0] = j;
|
|
in[1] = i;
|
|
projectpoints((int16_t *)wm->wmmat, in, out, 1, 2, 2, subsampling_x,
|
|
subsampling_y);
|
|
out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4);
|
|
out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4);
|
|
if (ref_frm)
|
|
pred[(j - p_col) + (i - p_row) * p_stride] = ROUND_POWER_OF_TWO(
|
|
pred[(j - p_col) + (i - p_row) * p_stride] +
|
|
highbd_warp_interpolate(ref, out[0], out[1], width, height,
|
|
stride, bd),
|
|
1);
|
|
else
|
|
pred[(j - p_col) + (i - p_row) * p_stride] = highbd_warp_interpolate(
|
|
ref, out[0], out[1], width, height, stride, bd);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
static double warp_erroradv(WarpedMotionParams *wm, uint8_t *ref, int width,
|
|
int height, int stride, uint8_t *dst, int p_col,
|
|
int p_row, int p_width, int p_height, int p_stride,
|
|
int subsampling_x, int subsampling_y, int x_scale,
|
|
int y_scale) {
|
|
int gm_err = 0, no_gm_err = 0;
|
|
int gm_sumerr = 0, no_gm_sumerr = 0;
|
|
int i, j;
|
|
ProjectPointsFunc projectpoints = get_project_points_type(wm->wmtype);
|
|
for (i = p_row; i < p_row + p_height; ++i) {
|
|
for (j = p_col; j < p_col + p_width; ++j) {
|
|
int in[2], out[2];
|
|
in[0] = j;
|
|
in[1] = i;
|
|
projectpoints((int16_t *)wm->wmmat, in, out, 1, 2, 2, subsampling_x,
|
|
subsampling_y);
|
|
out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4);
|
|
out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4);
|
|
gm_err = dst[(j - p_col) + (i - p_row) * p_stride] -
|
|
warp_interpolate(ref, out[0], out[1], width, height, stride);
|
|
no_gm_err = dst[(j - p_col) + (i - p_row) * p_stride] -
|
|
ref[(j - p_col) + (i - p_row) * stride];
|
|
gm_sumerr += gm_err * gm_err;
|
|
no_gm_sumerr += no_gm_err * no_gm_err;
|
|
}
|
|
}
|
|
return (double)gm_sumerr / no_gm_sumerr;
|
|
}
|
|
|
|
static void warp_plane(WarpedMotionParams *wm, uint8_t *ref, int width,
|
|
int height, int stride, uint8_t *pred, int p_col,
|
|
int p_row, int p_width, int p_height, int p_stride,
|
|
int subsampling_x, int subsampling_y, int x_scale,
|
|
int y_scale, int ref_frm) {
|
|
int i, j;
|
|
ProjectPointsFunc projectpoints = get_project_points_type(wm->wmtype);
|
|
if (projectpoints == NULL) return;
|
|
for (i = p_row; i < p_row + p_height; ++i) {
|
|
for (j = p_col; j < p_col + p_width; ++j) {
|
|
int in[2], out[2];
|
|
in[0] = j;
|
|
in[1] = i;
|
|
projectpoints((int16_t *)wm->wmmat, in, out, 1, 2, 2, subsampling_x,
|
|
subsampling_y);
|
|
out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4);
|
|
out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4);
|
|
if (ref_frm)
|
|
pred[(j - p_col) + (i - p_row) * p_stride] = ROUND_POWER_OF_TWO(
|
|
pred[(j - p_col) + (i - p_row) * p_stride] +
|
|
warp_interpolate(ref, out[0], out[1], width, height, stride),
|
|
1);
|
|
else
|
|
pred[(j - p_col) + (i - p_row) * p_stride] =
|
|
warp_interpolate(ref, out[0], out[1], width, height, stride);
|
|
}
|
|
}
|
|
}
|
|
|
|
double av1_warp_erroradv(WarpedMotionParams *wm,
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
int use_hbd, int bd,
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
uint8_t *ref, int width, int height, int stride,
|
|
uint8_t *dst, int p_col, int p_row, int p_width,
|
|
int p_height, int p_stride, int subsampling_x,
|
|
int subsampling_y, int x_scale, int y_scale) {
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (use_hbd)
|
|
return highbd_warp_erroradv(
|
|
wm, ref, width, height, stride, dst, p_col, p_row, p_width, p_height,
|
|
p_stride, subsampling_x, subsampling_y, x_scale, y_scale, bd);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
return warp_erroradv(wm, ref, width, height, stride, dst, p_col, p_row,
|
|
p_width, p_height, p_stride, subsampling_x,
|
|
subsampling_y, x_scale, y_scale);
|
|
}
|
|
|
|
void av1_warp_plane(WarpedMotionParams *wm,
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
int use_hbd, int bd,
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
uint8_t *ref, int width, int height, int stride,
|
|
uint8_t *pred, int p_col, int p_row, int p_width,
|
|
int p_height, int p_stride, int subsampling_x,
|
|
int subsampling_y, int x_scale, int y_scale, int ref_frm) {
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (use_hbd)
|
|
highbd_warp_plane(wm, ref, width, height, stride, pred, p_col, p_row,
|
|
p_width, p_height, p_stride, subsampling_x, subsampling_y,
|
|
x_scale, y_scale, bd, ref_frm);
|
|
else
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width,
|
|
p_height, p_stride, subsampling_x, subsampling_y, x_scale,
|
|
y_scale, ref_frm);
|
|
}
|
|
|
|
void av1_integerize_model(const double *model, TransformationType wmtype,
|
|
WarpedMotionParams *wm) {
|
|
wm->wmtype = wmtype;
|
|
switch (wmtype) {
|
|
case HOMOGRAPHY:
|
|
assert(fabs(model[8] - 1.0) < 1e-12);
|
|
wm->wmmat[3].as_mv.row =
|
|
(int16_t)lrint(model[6] * (1 << WARPEDMODEL_ROW3HOMO_PREC_BITS));
|
|
wm->wmmat[3].as_mv.col =
|
|
(int16_t)lrint(model[7] * (1 << WARPEDMODEL_ROW3HOMO_PREC_BITS));
|
|
/* fallthrough intended */
|
|
case AFFINE:
|
|
wm->wmmat[2].as_mv.row =
|
|
(int16_t)lrint(model[4] * (1 << WARPEDMODEL_PREC_BITS));
|
|
wm->wmmat[2].as_mv.col =
|
|
(int16_t)lrint(model[5] * (1 << WARPEDMODEL_PREC_BITS));
|
|
/* fallthrough intended */
|
|
case ROTZOOM:
|
|
wm->wmmat[1].as_mv.row =
|
|
(int16_t)lrint(model[2] * (1 << WARPEDMODEL_PREC_BITS));
|
|
wm->wmmat[1].as_mv.col =
|
|
(int16_t)lrint(model[3] * (1 << WARPEDMODEL_PREC_BITS));
|
|
/* fallthrough intended */
|
|
case TRANSLATION:
|
|
wm->wmmat[0].as_mv.row =
|
|
(int16_t)lrint(model[0] * (1 << WARPEDMODEL_PREC_BITS));
|
|
wm->wmmat[0].as_mv.col =
|
|
(int16_t)lrint(model[1] * (1 << WARPEDMODEL_PREC_BITS));
|
|
break;
|
|
default: assert(0 && "Invalid TransformationType");
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// svdcmp
|
|
// Adopted from Numerical Recipes in C
|
|
|
|
static const double TINY_NEAR_ZERO = 1.0E-12;
|
|
|
|
static INLINE double sign(double a, double b) {
|
|
return ((b) >= 0 ? fabs(a) : -fabs(a));
|
|
}
|
|
|
|
static INLINE double pythag(double a, double b) {
|
|
double ct;
|
|
const double absa = fabs(a);
|
|
const double absb = fabs(b);
|
|
|
|
if (absa > absb) {
|
|
ct = absb / absa;
|
|
return absa * sqrt(1.0 + ct * ct);
|
|
} else {
|
|
ct = absa / absb;
|
|
return (absb == 0) ? 0 : absb * sqrt(1.0 + ct * ct);
|
|
}
|
|
}
|
|
|
|
static void multiply_mat(const double *m1, const double *m2, double *res,
|
|
const int m1_rows, const int inner_dim,
|
|
const int m2_cols) {
|
|
double sum;
|
|
|
|
int row, col, inner;
|
|
for (row = 0; row < m1_rows; ++row) {
|
|
for (col = 0; col < m2_cols; ++col) {
|
|
sum = 0;
|
|
for (inner = 0; inner < inner_dim; ++inner)
|
|
sum += m1[row * inner_dim + inner] * m2[inner * m2_cols + col];
|
|
*(res++) = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int svdcmp(double **u, int m, int n, double w[], double **v) {
|
|
const int max_its = 30;
|
|
int flag, i, its, j, jj, k, l, nm;
|
|
double anorm, c, f, g, h, s, scale, x, y, z;
|
|
double *rv1 = (double *)aom_malloc(sizeof(*rv1) * (n + 1));
|
|
g = scale = anorm = 0.0;
|
|
for (i = 0; i < n; i++) {
|
|
l = i + 1;
|
|
rv1[i] = scale * g;
|
|
g = s = scale = 0.0;
|
|
if (i < m) {
|
|
for (k = i; k < m; k++) scale += fabs(u[k][i]);
|
|
if (scale) {
|
|
for (k = i; k < m; k++) {
|
|
u[k][i] /= scale;
|
|
s += u[k][i] * u[k][i];
|
|
}
|
|
f = u[i][i];
|
|
g = -sign(sqrt(s), f);
|
|
h = f * g - s;
|
|
u[i][i] = f - g;
|
|
for (j = l; j < n; j++) {
|
|
for (s = 0.0, k = i; k < m; k++) s += u[k][i] * u[k][j];
|
|
f = s / h;
|
|
for (k = i; k < m; k++) u[k][j] += f * u[k][i];
|
|
}
|
|
for (k = i; k < m; k++) u[k][i] *= scale;
|
|
}
|
|
}
|
|
w[i] = scale * g;
|
|
g = s = scale = 0.0;
|
|
if (i < m && i != n - 1) {
|
|
for (k = l; k < n; k++) scale += fabs(u[i][k]);
|
|
if (scale) {
|
|
for (k = l; k < n; k++) {
|
|
u[i][k] /= scale;
|
|
s += u[i][k] * u[i][k];
|
|
}
|
|
f = u[i][l];
|
|
g = -sign(sqrt(s), f);
|
|
h = f * g - s;
|
|
u[i][l] = f - g;
|
|
for (k = l; k < n; k++) rv1[k] = u[i][k] / h;
|
|
for (j = l; j < m; j++) {
|
|
for (s = 0.0, k = l; k < n; k++) s += u[j][k] * u[i][k];
|
|
for (k = l; k < n; k++) u[j][k] += s * rv1[k];
|
|
}
|
|
for (k = l; k < n; k++) u[i][k] *= scale;
|
|
}
|
|
}
|
|
anorm = fmax(anorm, (fabs(w[i]) + fabs(rv1[i])));
|
|
}
|
|
|
|
for (i = n - 1; i >= 0; i--) {
|
|
if (i < n - 1) {
|
|
if (g) {
|
|
for (j = l; j < n; j++) v[j][i] = (u[i][j] / u[i][l]) / g;
|
|
for (j = l; j < n; j++) {
|
|
for (s = 0.0, k = l; k < n; k++) s += u[i][k] * v[k][j];
|
|
for (k = l; k < n; k++) v[k][j] += s * v[k][i];
|
|
}
|
|
}
|
|
for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0;
|
|
}
|
|
v[i][i] = 1.0;
|
|
g = rv1[i];
|
|
l = i;
|
|
}
|
|
for (i = AOMMIN(m, n) - 1; i >= 0; i--) {
|
|
l = i + 1;
|
|
g = w[i];
|
|
for (j = l; j < n; j++) u[i][j] = 0.0;
|
|
if (g) {
|
|
g = 1.0 / g;
|
|
for (j = l; j < n; j++) {
|
|
for (s = 0.0, k = l; k < m; k++) s += u[k][i] * u[k][j];
|
|
f = (s / u[i][i]) * g;
|
|
for (k = i; k < m; k++) u[k][j] += f * u[k][i];
|
|
}
|
|
for (j = i; j < m; j++) u[j][i] *= g;
|
|
} else {
|
|
for (j = i; j < m; j++) u[j][i] = 0.0;
|
|
}
|
|
++u[i][i];
|
|
}
|
|
for (k = n - 1; k >= 0; k--) {
|
|
for (its = 0; its < max_its; its++) {
|
|
flag = 1;
|
|
for (l = k; l >= 0; l--) {
|
|
nm = l - 1;
|
|
if ((double)(fabs(rv1[l]) + anorm) == anorm || nm < 0) {
|
|
flag = 0;
|
|
break;
|
|
}
|
|
if ((double)(fabs(w[nm]) + anorm) == anorm) break;
|
|
}
|
|
if (flag) {
|
|
c = 0.0;
|
|
s = 1.0;
|
|
for (i = l; i <= k; i++) {
|
|
f = s * rv1[i];
|
|
rv1[i] = c * rv1[i];
|
|
if ((double)(fabs(f) + anorm) == anorm) break;
|
|
g = w[i];
|
|
h = pythag(f, g);
|
|
w[i] = h;
|
|
h = 1.0 / h;
|
|
c = g * h;
|
|
s = -f * h;
|
|
for (j = 0; j < m; j++) {
|
|
y = u[j][nm];
|
|
z = u[j][i];
|
|
u[j][nm] = y * c + z * s;
|
|
u[j][i] = z * c - y * s;
|
|
}
|
|
}
|
|
}
|
|
z = w[k];
|
|
if (l == k) {
|
|
if (z < 0.0) {
|
|
w[k] = -z;
|
|
for (j = 0; j < n; j++) v[j][k] = -v[j][k];
|
|
}
|
|
break;
|
|
}
|
|
if (its == max_its - 1) {
|
|
return 1;
|
|
}
|
|
assert(k > 0);
|
|
x = w[l];
|
|
nm = k - 1;
|
|
y = w[nm];
|
|
g = rv1[nm];
|
|
h = rv1[k];
|
|
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
|
|
g = pythag(f, 1.0);
|
|
f = ((x - z) * (x + z) + h * ((y / (f + sign(g, f))) - h)) / x;
|
|
c = s = 1.0;
|
|
for (j = l; j <= nm; j++) {
|
|
i = j + 1;
|
|
g = rv1[i];
|
|
y = w[i];
|
|
h = s * g;
|
|
g = c * g;
|
|
z = pythag(f, h);
|
|
rv1[j] = z;
|
|
c = f / z;
|
|
s = h / z;
|
|
f = x * c + g * s;
|
|
g = g * c - x * s;
|
|
h = y * s;
|
|
y *= c;
|
|
for (jj = 0; jj < n; jj++) {
|
|
x = v[jj][j];
|
|
z = v[jj][i];
|
|
v[jj][j] = x * c + z * s;
|
|
v[jj][i] = z * c - x * s;
|
|
}
|
|
z = pythag(f, h);
|
|
w[j] = z;
|
|
if (z) {
|
|
z = 1.0 / z;
|
|
c = f * z;
|
|
s = h * z;
|
|
}
|
|
f = c * g + s * y;
|
|
x = c * y - s * g;
|
|
for (jj = 0; jj < m; jj++) {
|
|
y = u[jj][j];
|
|
z = u[jj][i];
|
|
u[jj][j] = y * c + z * s;
|
|
u[jj][i] = z * c - y * s;
|
|
}
|
|
}
|
|
rv1[l] = 0.0;
|
|
rv1[k] = f;
|
|
w[k] = x;
|
|
}
|
|
}
|
|
aom_free(rv1);
|
|
return 0;
|
|
}
|
|
|
|
static int SVD(double *U, double *W, double *V, double *matx, int M, int N) {
|
|
// Assumes allocation for U is MxN
|
|
double **nrU = (double **)aom_malloc((M) * sizeof(*nrU));
|
|
double **nrV = (double **)aom_malloc((N) * sizeof(*nrV));
|
|
int problem, i;
|
|
|
|
problem = !(nrU && nrV);
|
|
if (!problem) {
|
|
for (i = 0; i < M; i++) {
|
|
nrU[i] = &U[i * N];
|
|
}
|
|
for (i = 0; i < N; i++) {
|
|
nrV[i] = &V[i * N];
|
|
}
|
|
} else {
|
|
if (nrU) aom_free(nrU);
|
|
if (nrV) aom_free(nrV);
|
|
return 1;
|
|
}
|
|
|
|
/* copy from given matx into nrU */
|
|
for (i = 0; i < M; i++) {
|
|
memcpy(&(nrU[i][0]), matx + N * i, N * sizeof(*matx));
|
|
}
|
|
|
|
/* HERE IT IS: do SVD */
|
|
if (svdcmp(nrU, M, N, W, nrV)) {
|
|
aom_free(nrU);
|
|
aom_free(nrV);
|
|
return 1;
|
|
}
|
|
|
|
/* aom_free Numerical Recipes arrays */
|
|
aom_free(nrU);
|
|
aom_free(nrV);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pseudo_inverse(double *inv, double *matx, const int M, const int N) {
|
|
double ans;
|
|
int i, j, k;
|
|
double *const U = (double *)aom_malloc(M * N * sizeof(*matx));
|
|
double *const W = (double *)aom_malloc(N * sizeof(*matx));
|
|
double *const V = (double *)aom_malloc(N * N * sizeof(*matx));
|
|
|
|
if (!(U && W && V)) {
|
|
return 1;
|
|
}
|
|
if (SVD(U, W, V, matx, M, N)) {
|
|
return 1;
|
|
}
|
|
for (i = 0; i < N; i++) {
|
|
if (fabs(W[i]) < TINY_NEAR_ZERO) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < N; i++) {
|
|
for (j = 0; j < M; j++) {
|
|
ans = 0;
|
|
for (k = 0; k < N; k++) {
|
|
ans += V[k + N * i] * U[k + N * j] / W[k];
|
|
}
|
|
inv[j + M * i] = ans;
|
|
}
|
|
}
|
|
aom_free(U);
|
|
aom_free(W);
|
|
aom_free(V);
|
|
return 0;
|
|
}
|
|
|
|
static void normalize_homography(double *pts, int n, double *T) {
|
|
// Assume the points are 2d coordinates with scale = 1
|
|
double *p = pts;
|
|
double mean[2] = { 0, 0 };
|
|
double msqe = 0;
|
|
double scale;
|
|
int i;
|
|
for (i = 0; i < n; ++i, p += 2) {
|
|
mean[0] += p[0];
|
|
mean[1] += p[1];
|
|
}
|
|
mean[0] /= n;
|
|
mean[1] /= n;
|
|
for (p = pts, i = 0; i < n; ++i, p += 2) {
|
|
p[0] -= mean[0];
|
|
p[1] -= mean[1];
|
|
msqe += sqrt(p[0] * p[0] + p[1] * p[1]);
|
|
}
|
|
msqe /= n;
|
|
scale = sqrt(2) / msqe;
|
|
T[0] = scale;
|
|
T[1] = 0;
|
|
T[2] = -scale * mean[0];
|
|
T[3] = 0;
|
|
T[4] = scale;
|
|
T[5] = -scale * mean[1];
|
|
T[6] = 0;
|
|
T[7] = 0;
|
|
T[8] = 1;
|
|
for (p = pts, i = 0; i < n; ++i, p += 2) {
|
|
p[0] *= scale;
|
|
p[1] *= scale;
|
|
}
|
|
}
|
|
|
|
static void invnormalize_mat(double *T, double *iT) {
|
|
double is = 1.0 / T[0];
|
|
double m0 = -T[2] * is;
|
|
double m1 = -T[5] * is;
|
|
iT[0] = is;
|
|
iT[1] = 0;
|
|
iT[2] = m0;
|
|
iT[3] = 0;
|
|
iT[4] = is;
|
|
iT[5] = m1;
|
|
iT[6] = 0;
|
|
iT[7] = 0;
|
|
iT[8] = 1;
|
|
}
|
|
|
|
static void denormalize_homography(double *params, double *T1, double *T2) {
|
|
double iT2[9];
|
|
double params2[9];
|
|
invnormalize_mat(T2, iT2);
|
|
multiply_mat(params, T1, params2, 3, 3, 3);
|
|
multiply_mat(iT2, params2, params, 3, 3, 3);
|
|
}
|
|
|
|
static void denormalize_affine(double *params, double *T1, double *T2) {
|
|
double params_denorm[MAX_PARAMDIM];
|
|
params_denorm[0] = params[0];
|
|
params_denorm[1] = params[1];
|
|
params_denorm[2] = params[4];
|
|
params_denorm[3] = params[2];
|
|
params_denorm[4] = params[3];
|
|
params_denorm[5] = params[5];
|
|
params_denorm[6] = params_denorm[7] = 0;
|
|
params_denorm[8] = 1;
|
|
denormalize_homography(params_denorm, T1, T2);
|
|
params[0] = params_denorm[5];
|
|
params[1] = params_denorm[2];
|
|
params[2] = params_denorm[1];
|
|
params[3] = params_denorm[0];
|
|
params[4] = params_denorm[3];
|
|
params[5] = params_denorm[4];
|
|
}
|
|
|
|
static void denormalize_rotzoom(double *params, double *T1, double *T2) {
|
|
double params_denorm[MAX_PARAMDIM];
|
|
params_denorm[0] = params[0];
|
|
params_denorm[1] = params[1];
|
|
params_denorm[2] = params[2];
|
|
params_denorm[3] = -params[1];
|
|
params_denorm[4] = params[0];
|
|
params_denorm[5] = params[3];
|
|
params_denorm[6] = params_denorm[7] = 0;
|
|
params_denorm[8] = 1;
|
|
denormalize_homography(params_denorm, T1, T2);
|
|
params[0] = params_denorm[5];
|
|
params[1] = params_denorm[2];
|
|
params[2] = params_denorm[1];
|
|
params[3] = params_denorm[0];
|
|
}
|
|
|
|
static void denormalize_translation(double *params, double *T1, double *T2) {
|
|
double params_denorm[MAX_PARAMDIM];
|
|
params_denorm[0] = 1;
|
|
params_denorm[1] = 0;
|
|
params_denorm[2] = params[0];
|
|
params_denorm[3] = 0;
|
|
params_denorm[4] = 1;
|
|
params_denorm[5] = params[1];
|
|
params_denorm[6] = params_denorm[7] = 0;
|
|
params_denorm[8] = 1;
|
|
denormalize_homography(params_denorm, T1, T2);
|
|
params[0] = params_denorm[5];
|
|
params[1] = params_denorm[2];
|
|
}
|
|
|
|
int find_translation(const int np, double *pts1, double *pts2, double *mat) {
|
|
int i;
|
|
double sx, sy, dx, dy;
|
|
double sumx, sumy;
|
|
|
|
double T1[9], T2[9];
|
|
normalize_homography(pts1, np, T1);
|
|
normalize_homography(pts2, np, T2);
|
|
|
|
sumx = 0;
|
|
sumy = 0;
|
|
for (i = 0; i < np; ++i) {
|
|
dx = *(pts2++);
|
|
dy = *(pts2++);
|
|
sx = *(pts1++);
|
|
sy = *(pts1++);
|
|
|
|
sumx += dx - sx;
|
|
sumy += dy - sy;
|
|
}
|
|
mat[0] = sumx / np;
|
|
mat[1] = sumy / np;
|
|
denormalize_translation(mat, T1, T2);
|
|
return 0;
|
|
}
|
|
|
|
int find_rotzoom(const int np, double *pts1, double *pts2, double *mat) {
|
|
const int np2 = np * 2;
|
|
double *a = (double *)aom_malloc(sizeof(*a) * np2 * 9);
|
|
double *b = a + np2 * 4;
|
|
double *temp = b + np2;
|
|
int i;
|
|
double sx, sy, dx, dy;
|
|
|
|
double T1[9], T2[9];
|
|
normalize_homography(pts1, np, T1);
|
|
normalize_homography(pts2, np, T2);
|
|
|
|
for (i = 0; i < np; ++i) {
|
|
dx = *(pts2++);
|
|
dy = *(pts2++);
|
|
sx = *(pts1++);
|
|
sy = *(pts1++);
|
|
|
|
a[i * 2 * 4 + 0] = sx;
|
|
a[i * 2 * 4 + 1] = sy;
|
|
a[i * 2 * 4 + 2] = 1;
|
|
a[i * 2 * 4 + 3] = 0;
|
|
a[(i * 2 + 1) * 4 + 0] = sy;
|
|
a[(i * 2 + 1) * 4 + 1] = -sx;
|
|
a[(i * 2 + 1) * 4 + 2] = 0;
|
|
a[(i * 2 + 1) * 4 + 3] = 1;
|
|
|
|
b[2 * i] = dx;
|
|
b[2 * i + 1] = dy;
|
|
}
|
|
if (pseudo_inverse(temp, a, np2, 4)) {
|
|
aom_free(a);
|
|
return 1;
|
|
}
|
|
multiply_mat(temp, b, mat, 4, np2, 1);
|
|
denormalize_rotzoom(mat, T1, T2);
|
|
aom_free(a);
|
|
return 0;
|
|
}
|
|
|
|
int find_affine(const int np, double *pts1, double *pts2, double *mat) {
|
|
const int np2 = np * 2;
|
|
double *a = (double *)aom_malloc(sizeof(*a) * np2 * 13);
|
|
double *b = a + np2 * 6;
|
|
double *temp = b + np2;
|
|
int i;
|
|
double sx, sy, dx, dy;
|
|
|
|
double T1[9], T2[9];
|
|
normalize_homography(pts1, np, T1);
|
|
normalize_homography(pts2, np, T2);
|
|
|
|
for (i = 0; i < np; ++i) {
|
|
dx = *(pts2++);
|
|
dy = *(pts2++);
|
|
sx = *(pts1++);
|
|
sy = *(pts1++);
|
|
|
|
a[i * 2 * 6 + 0] = sx;
|
|
a[i * 2 * 6 + 1] = sy;
|
|
a[i * 2 * 6 + 2] = 0;
|
|
a[i * 2 * 6 + 3] = 0;
|
|
a[i * 2 * 6 + 4] = 1;
|
|
a[i * 2 * 6 + 5] = 0;
|
|
a[(i * 2 + 1) * 6 + 0] = 0;
|
|
a[(i * 2 + 1) * 6 + 1] = 0;
|
|
a[(i * 2 + 1) * 6 + 2] = sx;
|
|
a[(i * 2 + 1) * 6 + 3] = sy;
|
|
a[(i * 2 + 1) * 6 + 4] = 0;
|
|
a[(i * 2 + 1) * 6 + 5] = 1;
|
|
|
|
b[2 * i] = dx;
|
|
b[2 * i + 1] = dy;
|
|
}
|
|
if (pseudo_inverse(temp, a, np2, 6)) {
|
|
aom_free(a);
|
|
return 1;
|
|
}
|
|
multiply_mat(temp, b, mat, 6, np2, 1);
|
|
denormalize_affine(mat, T1, T2);
|
|
aom_free(a);
|
|
return 0;
|
|
}
|
|
|
|
int find_homography(const int np, double *pts1, double *pts2, double *mat) {
|
|
// Implemented from Peter Kovesi's normalized implementation
|
|
const int np3 = np * 3;
|
|
double *a = (double *)aom_malloc(sizeof(*a) * np3 * 18);
|
|
double *U = a + np3 * 9;
|
|
double S[9], V[9 * 9];
|
|
int i, mini;
|
|
double sx, sy, dx, dy;
|
|
double T1[9], T2[9];
|
|
|
|
normalize_homography(pts1, np, T1);
|
|
normalize_homography(pts2, np, T2);
|
|
|
|
for (i = 0; i < np; ++i) {
|
|
dx = *(pts2++);
|
|
dy = *(pts2++);
|
|
sx = *(pts1++);
|
|
sy = *(pts1++);
|
|
|
|
a[i * 3 * 9 + 0] = a[i * 3 * 9 + 1] = a[i * 3 * 9 + 2] = 0;
|
|
a[i * 3 * 9 + 3] = -sx;
|
|
a[i * 3 * 9 + 4] = -sy;
|
|
a[i * 3 * 9 + 5] = -1;
|
|
a[i * 3 * 9 + 6] = dy * sx;
|
|
a[i * 3 * 9 + 7] = dy * sy;
|
|
a[i * 3 * 9 + 8] = dy;
|
|
|
|
a[(i * 3 + 1) * 9 + 0] = sx;
|
|
a[(i * 3 + 1) * 9 + 1] = sy;
|
|
a[(i * 3 + 1) * 9 + 2] = 1;
|
|
a[(i * 3 + 1) * 9 + 3] = a[(i * 3 + 1) * 9 + 4] = a[(i * 3 + 1) * 9 + 5] =
|
|
0;
|
|
a[(i * 3 + 1) * 9 + 6] = -dx * sx;
|
|
a[(i * 3 + 1) * 9 + 7] = -dx * sy;
|
|
a[(i * 3 + 1) * 9 + 8] = -dx;
|
|
|
|
a[(i * 3 + 2) * 9 + 0] = -dy * sx;
|
|
a[(i * 3 + 2) * 9 + 1] = -dy * sy;
|
|
a[(i * 3 + 2) * 9 + 2] = -dy;
|
|
a[(i * 3 + 2) * 9 + 3] = dx * sx;
|
|
a[(i * 3 + 2) * 9 + 4] = dx * sy;
|
|
a[(i * 3 + 2) * 9 + 5] = dx;
|
|
a[(i * 3 + 2) * 9 + 6] = a[(i * 3 + 2) * 9 + 7] = a[(i * 3 + 2) * 9 + 8] =
|
|
0;
|
|
}
|
|
|
|
if (SVD(U, S, V, a, np3, 9)) {
|
|
aom_free(a);
|
|
return 1;
|
|
} else {
|
|
double minS = 1e12;
|
|
mini = -1;
|
|
for (i = 0; i < 9; ++i) {
|
|
if (S[i] < minS) {
|
|
minS = S[i];
|
|
mini = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 9; i++) mat[i] = V[i * 9 + mini];
|
|
denormalize_homography(mat, T1, T2);
|
|
aom_free(a);
|
|
if (mat[8] == 0.0) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|