aom/av1/common/pred_common.h

162 строки
6.1 KiB
C

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AV1_COMMON_PRED_COMMON_H_
#define AV1_COMMON_PRED_COMMON_H_
#include "av1/common/blockd.h"
#include "av1/common/onyxc_int.h"
#include "aom_dsp/aom_dsp_common.h"
#ifdef __cplusplus
extern "C" {
#endif
static INLINE int get_segment_id(const AV1_COMMON *cm,
const uint8_t *segment_ids, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
const int mi_offset = mi_row * cm->mi_cols + mi_col;
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int xmis = AOMMIN(cm->mi_cols - mi_col, bw);
const int ymis = AOMMIN(cm->mi_rows - mi_row, bh);
int x, y, segment_id = MAX_SEGMENTS;
for (y = 0; y < ymis; ++y)
for (x = 0; x < xmis; ++x)
segment_id =
AOMMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]);
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
return segment_id;
}
static INLINE int av1_get_pred_context_seg_id(const MACROBLOCKD *xd) {
const MODE_INFO *const above_mi = xd->above_mi;
const MODE_INFO *const left_mi = xd->left_mi;
const int above_sip =
(above_mi != NULL) ? above_mi->mbmi.seg_id_predicted : 0;
const int left_sip = (left_mi != NULL) ? left_mi->mbmi.seg_id_predicted : 0;
return above_sip + left_sip;
}
static INLINE aom_prob av1_get_pred_prob_seg_id(
const struct segmentation_probs *segp, const MACROBLOCKD *xd) {
return segp->pred_probs[av1_get_pred_context_seg_id(xd)];
}
static INLINE int av1_get_skip_context(const MACROBLOCKD *xd) {
const MODE_INFO *const above_mi = xd->above_mi;
const MODE_INFO *const left_mi = xd->left_mi;
const int above_skip = (above_mi != NULL) ? above_mi->mbmi.skip : 0;
const int left_skip = (left_mi != NULL) ? left_mi->mbmi.skip : 0;
return above_skip + left_skip;
}
static INLINE aom_prob av1_get_skip_prob(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->skip_probs[av1_get_skip_context(xd)];
}
int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd);
int av1_get_intra_inter_context(const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_intra_inter_prob(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->intra_inter_prob[av1_get_intra_inter_context(xd)];
}
int av1_get_reference_mode_context(const AV1_COMMON *cm,
const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_reference_mode_prob(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->comp_inter_prob[av1_get_reference_mode_context(cm, xd)];
}
int av1_get_pred_context_comp_ref_p(const AV1_COMMON *cm,
const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_pred_prob_comp_ref_p(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
const int pred_context = av1_get_pred_context_comp_ref_p(cm, xd);
return cm->fc->comp_ref_prob[pred_context];
}
int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_pred_prob_single_ref_p1(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->single_ref_prob[av1_get_pred_context_single_ref_p1(xd)][0];
}
int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd);
static INLINE aom_prob av1_get_pred_prob_single_ref_p2(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
return cm->fc->single_ref_prob[av1_get_pred_context_single_ref_p2(xd)][1];
}
// Returns a context number for the given MB prediction signal
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real blocks.
// The prediction flags in these dummy entries are initialized to 0.
static INLINE int get_tx_size_context(const MACROBLOCKD *xd) {
const int max_tx_size = max_txsize_lookup[xd->mi[0]->mbmi.sb_type];
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
int above_ctx =
(has_above && !above_mbmi->skip) ? (int)above_mbmi->tx_size : max_tx_size;
int left_ctx =
(has_left && !left_mbmi->skip) ? (int)left_mbmi->tx_size : max_tx_size;
if (!has_left) left_ctx = above_ctx;
if (!has_above) above_ctx = left_ctx;
return (above_ctx + left_ctx) > max_tx_size;
}
static INLINE const aom_prob *get_tx_probs(TX_SIZE max_tx_size, int ctx,
const struct tx_probs *tx_probs) {
switch (max_tx_size) {
case TX_8X8: return tx_probs->p8x8[ctx];
case TX_16X16: return tx_probs->p16x16[ctx];
case TX_32X32: return tx_probs->p32x32[ctx];
default: assert(0 && "Invalid max_tx_size."); return NULL;
}
}
static INLINE const aom_prob *get_tx_probs2(TX_SIZE max_tx_size,
const MACROBLOCKD *xd,
const struct tx_probs *tx_probs) {
return get_tx_probs(max_tx_size, get_tx_size_context(xd), tx_probs);
}
static INLINE unsigned int *get_tx_counts(TX_SIZE max_tx_size, int ctx,
struct tx_counts *tx_counts) {
switch (max_tx_size) {
case TX_8X8: return tx_counts->p8x8[ctx];
case TX_16X16: return tx_counts->p16x16[ctx];
case TX_32X32: return tx_counts->p32x32[ctx];
default: assert(0 && "Invalid max_tx_size."); return NULL;
}
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AV1_COMMON_PRED_COMMON_H_