aom/vp9/encoder/vp9_rdopt.c

4882 строки
175 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <assert.h>
#include "vp9/common/vp9_pragmas.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/encoder/vp9_treewriter.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_modecosts.h"
#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_variance.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9_rtcd.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_common.h"
#define MAXF(a,b) (((a) > (b)) ? (a) : (b))
#define INVALID_MV 0x80008000
/* Factor to weigh the rate for switchable interp filters */
#define SWITCHABLE_INTERP_RATE_FACTOR 1
static const int auto_speed_thresh[17] = {
1000,
200,
150,
130,
150,
125,
120,
115,
115,
115,
115,
115,
115,
115,
115,
115,
105
};
const MODE_DEFINITION vp9_mode_order[MAX_MODES] = {
{ZEROMV, LAST_FRAME, NONE},
{DC_PRED, INTRA_FRAME, NONE},
{NEARESTMV, LAST_FRAME, NONE},
{NEARMV, LAST_FRAME, NONE},
{ZEROMV, GOLDEN_FRAME, NONE},
{NEARESTMV, GOLDEN_FRAME, NONE},
{ZEROMV, ALTREF_FRAME, NONE},
{NEARESTMV, ALTREF_FRAME, NONE},
{NEARMV, GOLDEN_FRAME, NONE},
{NEARMV, ALTREF_FRAME, NONE},
{V_PRED, INTRA_FRAME, NONE},
{H_PRED, INTRA_FRAME, NONE},
{D45_PRED, INTRA_FRAME, NONE},
{D135_PRED, INTRA_FRAME, NONE},
{D117_PRED, INTRA_FRAME, NONE},
{D153_PRED, INTRA_FRAME, NONE},
{D27_PRED, INTRA_FRAME, NONE},
{D63_PRED, INTRA_FRAME, NONE},
{TM_PRED, INTRA_FRAME, NONE},
{NEWMV, LAST_FRAME, NONE},
{NEWMV, GOLDEN_FRAME, NONE},
{NEWMV, ALTREF_FRAME, NONE},
{SPLITMV, LAST_FRAME, NONE},
{SPLITMV, GOLDEN_FRAME, NONE},
{SPLITMV, ALTREF_FRAME, NONE},
{I4X4_PRED, INTRA_FRAME, NONE},
{I8X8_PRED, INTRA_FRAME, NONE},
/* compound prediction modes */
{ZEROMV, LAST_FRAME, GOLDEN_FRAME},
{NEARESTMV, LAST_FRAME, GOLDEN_FRAME},
{NEARMV, LAST_FRAME, GOLDEN_FRAME},
{ZEROMV, ALTREF_FRAME, LAST_FRAME},
{NEARESTMV, ALTREF_FRAME, LAST_FRAME},
{NEARMV, ALTREF_FRAME, LAST_FRAME},
{ZEROMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEARMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEWMV, LAST_FRAME, GOLDEN_FRAME},
{NEWMV, ALTREF_FRAME, LAST_FRAME },
{NEWMV, GOLDEN_FRAME, ALTREF_FRAME},
{SPLITMV, LAST_FRAME, GOLDEN_FRAME},
{SPLITMV, ALTREF_FRAME, LAST_FRAME },
{SPLITMV, GOLDEN_FRAME, ALTREF_FRAME},
#if CONFIG_COMP_INTERINTRA_PRED
/* compound inter-intra prediction */
{ZEROMV, LAST_FRAME, INTRA_FRAME},
{NEARESTMV, LAST_FRAME, INTRA_FRAME},
{NEARMV, LAST_FRAME, INTRA_FRAME},
{NEWMV, LAST_FRAME, INTRA_FRAME},
{ZEROMV, GOLDEN_FRAME, INTRA_FRAME},
{NEARESTMV, GOLDEN_FRAME, INTRA_FRAME},
{NEARMV, GOLDEN_FRAME, INTRA_FRAME},
{NEWMV, GOLDEN_FRAME, INTRA_FRAME},
{ZEROMV, ALTREF_FRAME, INTRA_FRAME},
{NEARESTMV, ALTREF_FRAME, INTRA_FRAME},
{NEARMV, ALTREF_FRAME, INTRA_FRAME},
{NEWMV, ALTREF_FRAME, INTRA_FRAME},
#endif
};
static void fill_token_costs(vp9_coeff_count *c,
vp9_coeff_probs *p,
TX_SIZE tx_size) {
int i, j, k, l;
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < REF_TYPES; j++)
for (k = 0; k < COEF_BANDS; k++)
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
vp9_cost_tokens_skip((int *)(c[i][j][k][l]),
p[i][j][k][l],
vp9_coef_tree);
}
}
#if CONFIG_CODE_NONZEROCOUNT
static void fill_nzc_costs(VP9_COMP *cpi, TX_SIZE tx_size) {
int nzc_context, r, b, nzc, values;
int cost[16];
values = (16 << (2 * tx_size)) + 1;
for (nzc_context = 0; nzc_context < MAX_NZC_CONTEXTS; ++nzc_context) {
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < BLOCK_TYPES; ++b) {
unsigned int *nzc_costs;
if (tx_size == TX_4X4) {
vp9_cost_tokens(cost,
cpi->common.fc.nzc_probs_4x4[nzc_context][r][b],
vp9_nzc4x4_tree);
nzc_costs = cpi->mb.nzc_costs_4x4[nzc_context][r][b];
} else if (tx_size == TX_8X8) {
vp9_cost_tokens(cost,
cpi->common.fc.nzc_probs_8x8[nzc_context][r][b],
vp9_nzc8x8_tree);
nzc_costs = cpi->mb.nzc_costs_8x8[nzc_context][r][b];
} else if (tx_size == TX_16X16) {
vp9_cost_tokens(cost,
cpi->common.fc.nzc_probs_16x16[nzc_context][r][b],
vp9_nzc16x16_tree);
nzc_costs = cpi->mb.nzc_costs_16x16[nzc_context][r][b];
} else {
vp9_cost_tokens(cost,
cpi->common.fc.nzc_probs_32x32[nzc_context][r][b],
vp9_nzc32x32_tree);
nzc_costs = cpi->mb.nzc_costs_32x32[nzc_context][r][b];
}
for (nzc = 0; nzc < values; ++nzc) {
int e, c, totalcost = 0;
c = codenzc(nzc);
totalcost = cost[c];
if ((e = vp9_extranzcbits[c])) {
int x = nzc - vp9_basenzcvalue[c];
while (e--) {
totalcost += vp9_cost_bit(
cpi->common.fc.nzc_pcat_probs[nzc_context]
[c - NZC_TOKENS_NOEXTRA][e],
((x >> e) & 1));
}
}
nzc_costs[nzc] = totalcost;
}
}
}
}
}
#endif
static int rd_iifactor[32] = { 4, 4, 3, 2, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, };
// 3* dc_qlookup[Q]*dc_qlookup[Q];
/* values are now correlated to quantizer */
static int sad_per_bit16lut[QINDEX_RANGE];
static int sad_per_bit4lut[QINDEX_RANGE];
void vp9_init_me_luts() {
int i;
// Initialize the sad lut tables using a formulaic calculation for now
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < QINDEX_RANGE; i++) {
sad_per_bit16lut[i] =
(int)((0.0418 * vp9_convert_qindex_to_q(i)) + 2.4107);
sad_per_bit4lut[i] = (int)((0.063 * vp9_convert_qindex_to_q(i)) + 2.742);
}
}
static int compute_rd_mult(int qindex) {
int q = vp9_dc_quant(qindex, 0);
return (11 * q * q) >> 2;
}
void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex) {
cpi->mb.sadperbit16 = sad_per_bit16lut[qindex];
cpi->mb.sadperbit4 = sad_per_bit4lut[qindex];
}
void vp9_initialize_rd_consts(VP9_COMP *cpi, int qindex) {
int q, i;
vp9_clear_system_state(); // __asm emms;
// Further tests required to see if optimum is different
// for key frames, golden frames and arf frames.
// if (cpi->common.refresh_golden_frame ||
// cpi->common.refresh_alt_ref_frame)
qindex = (qindex < 0) ? 0 : ((qindex > MAXQ) ? MAXQ : qindex);
cpi->RDMULT = compute_rd_mult(qindex);
if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
if (cpi->twopass.next_iiratio > 31)
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4;
else
cpi->RDMULT +=
(cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4;
}
cpi->mb.errorperbit = cpi->RDMULT >> 6;
cpi->mb.errorperbit += (cpi->mb.errorperbit == 0);
vp9_set_speed_features(cpi);
q = (int)pow(vp9_dc_quant(qindex, 0) >> 2, 1.25);
q <<= 2;
if (q < 8)
q = 8;
if (cpi->RDMULT > 1000) {
cpi->RDDIV = 1;
cpi->RDMULT /= 100;
for (i = 0; i < MAX_MODES; i++) {
if (cpi->sf.thresh_mult[i] < INT_MAX) {
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100;
} else {
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
} else {
cpi->RDDIV = 100;
for (i = 0; i < MAX_MODES; i++) {
if (cpi->sf.thresh_mult[i] < (INT_MAX / q)) {
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q;
} else {
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
}
fill_token_costs(cpi->mb.token_costs[TX_4X4],
cpi->common.fc.coef_probs_4x4, TX_4X4);
fill_token_costs(cpi->mb.token_costs[TX_8X8],
cpi->common.fc.coef_probs_8x8, TX_8X8);
fill_token_costs(cpi->mb.token_costs[TX_16X16],
cpi->common.fc.coef_probs_16x16, TX_16X16);
fill_token_costs(cpi->mb.token_costs[TX_32X32],
cpi->common.fc.coef_probs_32x32, TX_32X32);
#if CONFIG_CODE_NONZEROCOUNT
fill_nzc_costs(cpi, TX_4X4);
fill_nzc_costs(cpi, TX_8X8);
fill_nzc_costs(cpi, TX_16X16);
fill_nzc_costs(cpi, TX_32X32);
#endif
for (i = 0; i < 2; i++)
vp9_cost_tokens(cpi->mb.partition_cost[i],
cpi->common.fc.partition_prob[i],
vp9_partition_tree);
/*rough estimate for costing*/
cpi->common.kf_ymode_probs_index = cpi->common.base_qindex >> 4;
vp9_init_mode_costs(cpi);
if (cpi->common.frame_type != KEY_FRAME) {
vp9_build_nmv_cost_table(
cpi->mb.nmvjointcost,
cpi->mb.e_mbd.allow_high_precision_mv ?
cpi->mb.nmvcost_hp : cpi->mb.nmvcost,
&cpi->common.fc.nmvc,
cpi->mb.e_mbd.allow_high_precision_mv, 1, 1);
}
}
int vp9_block_error_c(int16_t *coeff, int16_t *dqcoeff, int block_size) {
int i, error = 0;
for (i = 0; i < block_size; i++) {
int this_diff = coeff[i] - dqcoeff[i];
error += this_diff * this_diff;
}
return error;
}
static INLINE int cost_coeffs(VP9_COMMON *const cm, MACROBLOCK *mb,
int ib, PLANE_TYPE type,
ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l,
TX_SIZE tx_size,
int y_blocks) {
MACROBLOCKD *const xd = &mb->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
int pt;
int c = 0;
int cost = 0, pad;
const int *scan, *nb;
const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, ib);
const int eob = xd->plane[pb_idx.plane].eobs[pb_idx.block];
const int16_t *qcoeff_ptr = BLOCK_OFFSET(xd->plane[pb_idx.plane].qcoeff,
pb_idx.block, 16);
const int ref = mbmi->ref_frame != INTRA_FRAME;
unsigned int (*token_costs)[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] =
mb->token_costs[tx_size][type][ref];
ENTROPY_CONTEXT a_ec, l_ec;
ENTROPY_CONTEXT *const a1 = a +
sizeof(ENTROPY_CONTEXT_PLANES)/sizeof(ENTROPY_CONTEXT);
ENTROPY_CONTEXT *const l1 = l +
sizeof(ENTROPY_CONTEXT_PLANES)/sizeof(ENTROPY_CONTEXT);
#if CONFIG_CODE_NONZEROCOUNT
const int nzc_used = get_nzc_used(tx_size);
int nzc_context = vp9_get_nzc_context(cm, xd, ib);
unsigned int *nzc_cost;
#endif
const int segment_id = xd->mode_info_context->mbmi.segment_id;
vp9_prob (*coef_probs)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS]
[ENTROPY_NODES];
int seg_eob, default_eob;
uint8_t token_cache[1024];
// Check for consistency of tx_size with mode info
assert((!type && !pb_idx.plane) || (type && pb_idx.plane));
if (type == PLANE_TYPE_Y_WITH_DC) {
assert(xd->mode_info_context->mbmi.txfm_size == tx_size);
} else {
TX_SIZE tx_size_uv = get_uv_tx_size(xd);
assert(tx_size == tx_size_uv);
}
switch (tx_size) {
case TX_4X4: {
const TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ?
get_tx_type_4x4(xd, ib) : DCT_DCT;
a_ec = *a;
l_ec = *l;
#if CONFIG_CODE_NONZEROCOUNT
nzc_cost = mb->nzc_costs_4x4[nzc_context][ref][type];
#endif
coef_probs = cm->fc.coef_probs_4x4;
seg_eob = 16;
if (tx_type == ADST_DCT) {
scan = vp9_row_scan_4x4;
} else if (tx_type == DCT_ADST) {
scan = vp9_col_scan_4x4;
} else {
scan = vp9_default_zig_zag1d_4x4;
}
break;
}
case TX_8X8: {
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
const int sz = 3 + mb_width_log2(sb_type);
const int x = ib & ((1 << sz) - 1), y = ib - x;
const TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ?
get_tx_type_8x8(xd, y + (x >> 1)) : DCT_DCT;
a_ec = (a[0] + a[1]) != 0;
l_ec = (l[0] + l[1]) != 0;
if (tx_type == ADST_DCT) {
scan = vp9_row_scan_8x8;
} else if (tx_type == DCT_ADST) {
scan = vp9_col_scan_8x8;
} else {
scan = vp9_default_zig_zag1d_8x8;
}
#if CONFIG_CODE_NONZEROCOUNT
nzc_cost = mb->nzc_costs_8x8[nzc_context][ref][type];
#endif
coef_probs = cm->fc.coef_probs_8x8;
seg_eob = 64;
break;
}
case TX_16X16: {
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
const int sz = 4 + mb_width_log2(sb_type);
const int x = ib & ((1 << sz) - 1), y = ib - x;
const TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ?
get_tx_type_16x16(xd, y + (x >> 2)) : DCT_DCT;
if (tx_type == ADST_DCT) {
scan = vp9_row_scan_16x16;
} else if (tx_type == DCT_ADST) {
scan = vp9_col_scan_16x16;
} else {
scan = vp9_default_zig_zag1d_16x16;
}
#if CONFIG_CODE_NONZEROCOUNT
nzc_cost = mb->nzc_costs_16x16[nzc_context][ref][type];
#endif
coef_probs = cm->fc.coef_probs_16x16;
seg_eob = 256;
if (type == PLANE_TYPE_UV) {
a_ec = (a[0] + a[1] + a1[0] + a1[1]) != 0;
l_ec = (l[0] + l[1] + l1[0] + l1[1]) != 0;
} else {
a_ec = (a[0] + a[1] + a[2] + a[3]) != 0;
l_ec = (l[0] + l[1] + l[2] + l[3]) != 0;
}
break;
}
case TX_32X32:
scan = vp9_default_zig_zag1d_32x32;
#if CONFIG_CODE_NONZEROCOUNT
nzc_cost = mb->nzc_costs_32x32[nzc_context][ref][type];
#endif
coef_probs = cm->fc.coef_probs_32x32;
seg_eob = 1024;
if (type == PLANE_TYPE_UV) {
ENTROPY_CONTEXT *a2, *a3, *l2, *l3;
a2 = a1 + sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT);
a3 = a2 + sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT);
l2 = l1 + sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT);
l3 = l2 + sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT);
a_ec = (a[0] + a[1] + a1[0] + a1[1] +
a2[0] + a2[1] + a3[0] + a3[1]) != 0;
l_ec = (l[0] + l[1] + l1[0] + l1[1] +
l2[0] + l2[1] + l3[0] + l3[1]) != 0;
} else {
a_ec = (a[0] + a[1] + a[2] + a[3] +
a1[0] + a1[1] + a1[2] + a1[3]) != 0;
l_ec = (l[0] + l[1] + l[2] + l[3] +
l1[0] + l1[1] + l1[2] + l1[3]) != 0;
}
break;
default:
abort();
break;
}
assert(eob <= seg_eob);
pt = combine_entropy_contexts(a_ec, l_ec);
nb = vp9_get_coef_neighbors_handle(scan, &pad);
default_eob = seg_eob;
#if CONFIG_CODE_NONZEROCOUNT
if (!nzc_used)
#endif
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP))
seg_eob = 0;
/* sanity check to ensure that we do not have spurious non-zero q values */
if (eob < seg_eob)
assert(qcoeff_ptr[scan[eob]] == 0);
{
#if CONFIG_CODE_NONZEROCOUNT
int nzc = 0;
#endif
for (; c < eob; c++) {
int v = qcoeff_ptr[scan[c]];
int t = vp9_dct_value_tokens_ptr[v].token;
#if CONFIG_CODE_NONZEROCOUNT
nzc += (v != 0);
#endif
token_cache[c] = t;
cost += token_costs[get_coef_band(scan, tx_size, c)][pt][t];
cost += vp9_dct_value_cost_ptr[v];
#if !CONFIG_CODE_NONZEROCOUNT
if (!c || token_cache[c - 1])
cost += vp9_cost_bit(coef_probs[type][ref]
[get_coef_band(scan, tx_size, c)]
[pt][0], 1);
#endif
pt = vp9_get_coef_context(scan, nb, pad, token_cache, c + 1, default_eob);
}
#if CONFIG_CODE_NONZEROCOUNT
if (nzc_used)
cost += nzc_cost[nzc];
else
#endif
if (c < seg_eob)
cost += mb->token_costs[tx_size][type][ref]
[get_coef_band(scan, tx_size, c)]
[pt][DCT_EOB_TOKEN];
}
// is eob first coefficient;
pt = (c > 0);
*a = *l = pt;
if (tx_size >= TX_8X8) {
a[1] = l[1] = pt;
if (tx_size >= TX_16X16) {
if (type == PLANE_TYPE_UV) {
a1[0] = a1[1] = l1[0] = l1[1] = pt;
} else {
a[2] = a[3] = l[2] = l[3] = pt;
if (tx_size >= TX_32X32) {
a1[0] = a1[1] = a1[2] = a1[3] = pt;
l1[0] = l1[1] = l1[2] = l1[3] = pt;
}
}
}
}
return cost;
}
static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
int (*r)[2], int *rate,
int *d, int *distortion,
int *s, int *skip,
int64_t txfm_cache[NB_TXFM_MODES],
TX_SIZE max_txfm_size) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
vp9_prob skip_prob = vp9_get_pred_prob(cm, xd, PRED_MBSKIP);
int64_t rd[TX_SIZE_MAX_SB][2];
int n, m;
int s0, s1;
for (n = TX_4X4; n <= max_txfm_size; n++) {
r[n][1] = r[n][0];
for (m = 0; m <= n - (n == max_txfm_size); m++) {
if (m == n)
r[n][1] += vp9_cost_zero(cm->prob_tx[m]);
else
r[n][1] += vp9_cost_one(cm->prob_tx[m]);
}
}
assert(skip_prob > 0);
s0 = vp9_cost_bit(skip_prob, 0);
s1 = vp9_cost_bit(skip_prob, 1);
for (n = TX_4X4; n <= max_txfm_size; n++) {
if (s[n]) {
rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
} else {
rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
}
}
if (max_txfm_size == TX_32X32 &&
(cm->txfm_mode == ALLOW_32X32 ||
(cm->txfm_mode == TX_MODE_SELECT &&
rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
rd[TX_32X32][1] < rd[TX_4X4][1]))) {
mbmi->txfm_size = TX_32X32;
} else if ( cm->txfm_mode == ALLOW_16X16 ||
(max_txfm_size == TX_16X16 && cm->txfm_mode == ALLOW_32X32) ||
(cm->txfm_mode == TX_MODE_SELECT &&
rd[TX_16X16][1] < rd[TX_8X8][1] &&
rd[TX_16X16][1] < rd[TX_4X4][1])) {
mbmi->txfm_size = TX_16X16;
} else if (cm->txfm_mode == ALLOW_8X8 ||
(cm->txfm_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) {
mbmi->txfm_size = TX_8X8;
} else {
assert(cm->txfm_mode == ONLY_4X4 || cm->txfm_mode == TX_MODE_SELECT);
mbmi->txfm_size = TX_4X4;
}
*distortion = d[mbmi->txfm_size];
*rate = r[mbmi->txfm_size][cm->txfm_mode == TX_MODE_SELECT];
*skip = s[mbmi->txfm_size];
txfm_cache[ONLY_4X4] = rd[TX_4X4][0];
txfm_cache[ALLOW_8X8] = rd[TX_8X8][0];
txfm_cache[ALLOW_16X16] = rd[TX_16X16][0];
txfm_cache[ALLOW_32X32] = rd[max_txfm_size][0];
if (max_txfm_size == TX_32X32 &&
rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
rd[TX_32X32][1] < rd[TX_4X4][1])
txfm_cache[TX_MODE_SELECT] = rd[TX_32X32][1];
else if (rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1])
txfm_cache[TX_MODE_SELECT] = rd[TX_16X16][1];
else
txfm_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ?
rd[TX_4X4][1] : rd[TX_8X8][1];
}
static int vp9_sb_block_error_c(int16_t *coeff, int16_t *dqcoeff,
int block_size, int shift) {
int i;
int64_t error = 0;
for (i = 0; i < block_size; i++) {
unsigned int this_diff = coeff[i] - dqcoeff[i];
error += this_diff * this_diff;
}
error >>= shift;
return error > INT_MAX ? INT_MAX : (int)error;
}
static int vp9_sb_uv_block_error_c(int16_t *coeff,
int16_t *dqcoeff0, int16_t *dqcoeff1,
int block_size, int shift) {
int i;
int64_t error = 0;
for (i = 0; i < block_size / 2; i++) {
unsigned int this_diff = coeff[i] - dqcoeff0[i];
error += this_diff * this_diff;
}
coeff += block_size / 2;
for (i = 0; i < block_size / 2; i++) {
unsigned int this_diff = coeff[i] - dqcoeff1[i];
error += this_diff * this_diff;
}
error >>= shift;
return error > INT_MAX ? INT_MAX : (int)error;
}
static int rdcost_sby_4x4(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 2, bw = 1 << bwl;
const int bh = 1 << (mb_height_log2(bsize) + 2);
int cost = 0, b;
MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT_PLANES t_above[4], t_left[4];
vpx_memcpy(&t_above, xd->above_context,
(sizeof(ENTROPY_CONTEXT_PLANES) * bw) >> 2);
vpx_memcpy(&t_left, xd->left_context,
(sizeof(ENTROPY_CONTEXT_PLANES) * bh) >> 2);
for (b = 0; b < bw * bh; b++) {
const int x_idx = b & (bw - 1), y_idx = b >> bwl;
cost += cost_coeffs(cm, x, b, PLANE_TYPE_Y_WITH_DC,
((ENTROPY_CONTEXT *) &t_above[x_idx >> 2]) + (x_idx & 3),
((ENTROPY_CONTEXT *) &t_left[y_idx >> 2]) + (y_idx & 3),
TX_4X4, bw * bh);
}
return cost;
}
static void super_block_yrd_4x4(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 2, bhl = mb_height_log2(bsize) + 2;
MACROBLOCKD *const xd = &x->e_mbd;
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
vp9_transform_sby_4x4(x, bsize);
vp9_quantize_sby_4x4(x, bsize);
*distortion = vp9_sb_block_error_c(x->coeff, xd->plane[0].dqcoeff,
16 << (bwl + bhl), 2);
*rate = rdcost_sby_4x4(cm, x, bsize);
*skippable = vp9_sby_is_skippable(xd, bsize);
}
static int rdcost_sby_8x8(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bw = 1 << bwl;
const int bh = 1 << (mb_height_log2(bsize) + 1);
int cost = 0, b;
MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT_PLANES t_above[4], t_left[4];
vpx_memcpy(&t_above, xd->above_context,
(sizeof(ENTROPY_CONTEXT_PLANES) * bw) >> 1);
vpx_memcpy(&t_left, xd->left_context,
(sizeof(ENTROPY_CONTEXT_PLANES) * bh) >> 1);
for (b = 0; b < bw * bh; b++) {
const int x_idx = b & (bw - 1), y_idx = b >> bwl;
cost += cost_coeffs(cm, x, b * 4, PLANE_TYPE_Y_WITH_DC,
((ENTROPY_CONTEXT *) &t_above[x_idx >> 1]) + ((x_idx & 1) << 1),
((ENTROPY_CONTEXT *) &t_left[y_idx >> 1]) + ((y_idx & 1) << 1),
TX_8X8, 4 * bw * bh);
}
return cost;
}
static void super_block_yrd_8x8(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bhl = mb_height_log2(bsize) + 1;
MACROBLOCKD *const xd = &x->e_mbd;
xd->mode_info_context->mbmi.txfm_size = TX_8X8;
vp9_transform_sby_8x8(x, bsize);
vp9_quantize_sby_8x8(x, bsize);
*distortion = vp9_sb_block_error_c(x->coeff, xd->plane[0].dqcoeff,
64 << (bhl + bwl), 2);
*rate = rdcost_sby_8x8(cm, x, bsize);
*skippable = vp9_sby_is_skippable(xd, bsize);
}
static int rdcost_sby_16x16(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
const int bh = 1 << mb_height_log2(bsize);
int cost = 0, b;
MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT_PLANES t_above[4], t_left[4];
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES) * bw);
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES) * bh);
for (b = 0; b < bw * bh; b++) {
const int x_idx = b & (bw - 1), y_idx = b >> bwl;
cost += cost_coeffs(cm, x, b * 16, PLANE_TYPE_Y_WITH_DC,
(ENTROPY_CONTEXT *) &t_above[x_idx],
(ENTROPY_CONTEXT *) &t_left[y_idx],
TX_16X16, bw * bh * 16);
}
return cost;
}
static void super_block_yrd_16x16(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bhl = mb_height_log2(bsize);
MACROBLOCKD *const xd = &x->e_mbd;
xd->mode_info_context->mbmi.txfm_size = TX_16X16;
vp9_transform_sby_16x16(x, bsize);
vp9_quantize_sby_16x16(x, bsize);
*distortion = vp9_sb_block_error_c(x->coeff, xd->plane[0].dqcoeff,
256 << (bwl + bhl), 2);
*rate = rdcost_sby_16x16(cm, x, bsize);
*skippable = vp9_sby_is_skippable(xd, bsize);
}
static int rdcost_sby_32x32(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 1, bw = 1 << bwl;
const int bh = 1 << (mb_height_log2(bsize) - 1);
int cost = 0, b;
MACROBLOCKD * const xd = &x->e_mbd;
ENTROPY_CONTEXT_PLANES t_above[4], t_left[4];
vpx_memcpy(&t_above, xd->above_context,
sizeof(ENTROPY_CONTEXT_PLANES) * bw * 2);
vpx_memcpy(&t_left, xd->left_context,
sizeof(ENTROPY_CONTEXT_PLANES) * bh * 2);
for (b = 0; b < bw * bh; b++) {
const int x_idx = b & (bw - 1), y_idx = b >> bwl;
cost += cost_coeffs(cm, x, b * 64, PLANE_TYPE_Y_WITH_DC,
(ENTROPY_CONTEXT *) &t_above[x_idx * 2],
(ENTROPY_CONTEXT *) &t_left[y_idx * 2],
TX_32X32, bw * bh * 64);
}
return cost;
}
static void super_block_yrd_32x32(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 1, bhl = mb_height_log2(bsize) - 1;
MACROBLOCKD *const xd = &x->e_mbd;
xd->mode_info_context->mbmi.txfm_size = TX_32X32;
vp9_transform_sby_32x32(x, bsize);
vp9_quantize_sby_32x32(x, bsize);
*distortion = vp9_sb_block_error_c(x->coeff, xd->plane[0].dqcoeff,
1024 << (bwl + bhl), 0);
*rate = rdcost_sby_32x32(cm, x, bsize);
*skippable = vp9_sby_is_skippable(xd, bsize);
}
static void super_block_yrd(VP9_COMP *cpi,
MACROBLOCK *x, int *rate, int *distortion,
int *skip, BLOCK_SIZE_TYPE bs,
int64_t txfm_cache[NB_TXFM_MODES]) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
int r[TX_SIZE_MAX_SB][2], d[TX_SIZE_MAX_SB], s[TX_SIZE_MAX_SB];
uint8_t *src = x->src.y_buffer, *dst = xd->plane[0].dst.buf;
int src_y_stride = x->src.y_stride, dst_y_stride = xd->plane[0].dst.stride;
vp9_subtract_sby_s_c(x->src_diff, src, src_y_stride, dst, dst_y_stride, bs);
if (bs >= BLOCK_SIZE_SB32X32)
super_block_yrd_32x32(cm, x, &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32],
bs);
super_block_yrd_16x16(cm, x, &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16], bs);
super_block_yrd_8x8(cm, x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8], bs);
super_block_yrd_4x4(cm, x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4], bs);
choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s, skip, txfm_cache,
TX_32X32 - (bs < BLOCK_SIZE_SB32X32));
}
static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib,
B_PREDICTION_MODE *best_mode,
int *bmode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int *bestdistortion) {
B_PREDICTION_MODE mode;
MACROBLOCKD *xd = &x->e_mbd;
int64_t best_rd = INT64_MAX;
int rate = 0;
int distortion;
VP9_COMMON *const cm = &cpi->common;
BLOCK *be = x->block + ib;
BLOCKD *b = xd->block + ib;
ENTROPY_CONTEXT ta = *a, tempa = *a;
ENTROPY_CONTEXT tl = *l, templ = *l;
TX_TYPE tx_type = DCT_DCT;
TX_TYPE best_tx_type = DCT_DCT;
/*
* The predictor buffer is a 2d buffer with a stride of 16. Create
* a temp buffer that meets the stride requirements, but we are only
* interested in the left 4x4 block
* */
DECLARE_ALIGNED_ARRAY(16, int16_t, best_dqcoeff, 16);
assert(ib < 16);
#if CONFIG_NEWBINTRAMODES
b->bmi.as_mode.context = vp9_find_bpred_context(xd, b);
#endif
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
for (mode = B_DC_PRED; mode < LEFT4X4; mode++) {
int64_t this_rd;
int ratey;
#if CONFIG_NEWBINTRAMODES
if (xd->frame_type == KEY_FRAME) {
if (mode == B_CONTEXT_PRED) continue;
} else {
if (mode >= B_CONTEXT_PRED - CONTEXT_PRED_REPLACEMENTS &&
mode < B_CONTEXT_PRED)
continue;
}
#endif
b->bmi.as_mode.first = mode;
#if CONFIG_NEWBINTRAMODES
rate = bmode_costs[
mode == B_CONTEXT_PRED ? mode - CONTEXT_PRED_REPLACEMENTS : mode];
#else
rate = bmode_costs[mode];
#endif
vp9_intra4x4_predict(xd, b, mode, *(b->base_dst) + b->dst, b->dst_stride);
vp9_subtract_b(be, b, 16);
b->bmi.as_mode.first = mode;
tx_type = get_tx_type_4x4(xd, be - x->block);
if (tx_type != DCT_DCT) {
vp9_short_fht4x4(be->src_diff, be->coeff, 16, tx_type);
vp9_ht_quantize_b_4x4(x, be - x->block, tx_type);
} else {
x->fwd_txm4x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4(x, be - x->block, 16);
}
tempa = ta;
templ = tl;
ratey = cost_coeffs(cm, x, b - xd->block,
PLANE_TYPE_Y_WITH_DC, &tempa, &templ, TX_4X4, 16);
rate += ratey;
distortion = vp9_block_error(be->coeff,
BLOCK_OFFSET(xd->plane[0].dqcoeff, ib, 16),
16) >> 2;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
best_tx_type = tx_type;
*a = tempa;
*l = templ;
vpx_memcpy(best_dqcoeff, BLOCK_OFFSET(xd->plane[0].dqcoeff, ib, 16), 32);
}
}
b->bmi.as_mode.first = (B_PREDICTION_MODE)(*best_mode);
// inverse transform
if (best_tx_type != DCT_DCT)
vp9_short_iht4x4(best_dqcoeff, b->diff, 16, best_tx_type);
else
xd->inv_txm4x4(best_dqcoeff, b->diff, 32);
vp9_intra4x4_predict(xd, b, *best_mode,
*(b->base_dst) + b->dst, b->dst_stride);
vp9_recon_b(*(b->base_dst) + b->dst, b->diff,
*(b->base_dst) + b->dst, b->dst_stride);
return best_rd;
}
static int64_t rd_pick_intra4x4mby_modes(VP9_COMP *cpi, MACROBLOCK *mb,
int *Rate, int *rate_y,
int *Distortion, int64_t best_rd) {
int i;
MACROBLOCKD *const xd = &mb->e_mbd;
int cost = mb->mbmode_cost[xd->frame_type][I4X4_PRED];
int distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
int *bmode_costs;
vpx_memcpy(&t_above, xd->above_context,
sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context,
sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
xd->mode_info_context->mbmi.mode = I4X4_PRED;
bmode_costs = mb->inter_bmode_costs;
for (i = 0; i < 16; i++) {
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d);
if (xd->frame_type == KEY_FRAME) {
const B_PREDICTION_MODE A = above_block_mode(mic, i, mis);
const B_PREDICTION_MODE L = left_block_mode(mic, i);
bmode_costs = mb->bmode_costs[A][L];
}
#if CONFIG_NEWBINTRAMODES
mic->bmi[i].as_mode.context = vp9_find_bpred_context(xd, xd->block + i);
#endif
total_rd += rd_pick_intra4x4block(
cpi, mb, i, &best_mode,
bmode_costs, ta + vp9_block2above[TX_4X4][i],
tl + vp9_block2left[TX_4X4][i], &r, &ry, &d);
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[i].as_mode.first = best_mode;
#if 0 // CONFIG_NEWBINTRAMODES
printf("%d %d\n", mic->bmi[i].as_mode.first, mic->bmi[i].as_mode.context);
#endif
if (total_rd >= best_rd)
break;
}
if (total_rd >= best_rd)
return INT64_MAX;
*Rate = cost;
*rate_y = tot_rate_y;
*Distortion = distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
}
static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize,
int64_t txfm_cache[NB_TXFM_MODES]) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int this_rate, this_rate_tokenonly;
int this_distortion, s;
int64_t best_rd = INT64_MAX, this_rd;
TX_SIZE UNINITIALIZED_IS_SAFE(best_tx);
int i;
for (i = 0; i < NB_TXFM_MODES; i++)
txfm_cache[i] = INT64_MAX;
/* Y Search for 32x32 intra prediction mode */
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
int64_t local_txfm_cache[NB_TXFM_MODES];
x->e_mbd.mode_info_context->mbmi.mode = mode;
vp9_build_intra_predictors_sby_s(&x->e_mbd, bsize);
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
bsize, local_txfm_cache);
this_rate = this_rate_tokenonly + x->mbmode_cost[x->e_mbd.frame_type][mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
best_tx = x->e_mbd.mode_info_context->mbmi.txfm_size;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t adj_rd = this_rd + local_txfm_cache[i] -
local_txfm_cache[cpi->common.txfm_mode];
if (adj_rd < txfm_cache[i]) {
txfm_cache[i] = adj_rd;
}
}
}
x->e_mbd.mode_info_context->mbmi.mode = mode_selected;
x->e_mbd.mode_info_context->mbmi.txfm_size = best_tx;
return best_rd;
}
static int64_t rd_pick_intra8x8block(VP9_COMP *cpi, MACROBLOCK *x, int ib,
B_PREDICTION_MODE *best_mode,
int *mode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int *bestdistortion) {
VP9_COMMON *const cm = &cpi->common;
MB_PREDICTION_MODE mode;
MACROBLOCKD *xd = &x->e_mbd;
int64_t best_rd = INT64_MAX;
int distortion = 0, rate = 0;
BLOCK *be = x->block + ib;
BLOCKD *b = xd->block + ib;
ENTROPY_CONTEXT_PLANES ta, tl;
ENTROPY_CONTEXT *ta0, *ta1, besta0 = 0, besta1 = 0;
ENTROPY_CONTEXT *tl0, *tl1, bestl0 = 0, bestl1 = 0;
// perform transformation of dimension 8x8
// note the input and output index mapping
int idx = (ib & 0x02) ? (ib + 2) : ib;
assert(ib < 16);
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
int64_t this_rd;
int rate_t = 0;
// FIXME rate for compound mode and second intrapred mode
rate = mode_costs[mode];
b->bmi.as_mode.first = mode;
vp9_intra8x8_predict(xd, b, mode, *(b->base_dst) + b->dst, b->dst_stride);
vp9_subtract_4b_c(be, b, 16);
if (xd->mode_info_context->mbmi.txfm_size == TX_8X8) {
TX_TYPE tx_type = get_tx_type_8x8(xd, ib);
if (tx_type != DCT_DCT)
vp9_short_fht8x8(be->src_diff, (x->block + idx)->coeff, 16, tx_type);
else
x->fwd_txm8x8(be->src_diff, (x->block + idx)->coeff, 32);
x->quantize_b_8x8(x, idx, tx_type, 16);
// compute quantization mse of 8x8 block
distortion = vp9_block_error_c((x->block + idx)->coeff,
BLOCK_OFFSET(xd->plane[0].dqcoeff, idx, 16), 64);
vpx_memcpy(&ta, a, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&tl, l, sizeof(ENTROPY_CONTEXT_PLANES));
ta0 = ((ENTROPY_CONTEXT*)&ta) + vp9_block2above[TX_8X8][idx];
tl0 = ((ENTROPY_CONTEXT*)&tl) + vp9_block2left[TX_8X8][idx];
ta1 = ta0 + 1;
tl1 = tl0 + 1;
rate_t = cost_coeffs(cm, x, idx, PLANE_TYPE_Y_WITH_DC,
ta0, tl0, TX_8X8, 16);
rate += rate_t;
} else {
static const int iblock[4] = {0, 1, 4, 5};
TX_TYPE tx_type;
int i;
vpx_memcpy(&ta, a, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&tl, l, sizeof(ENTROPY_CONTEXT_PLANES));
ta0 = ((ENTROPY_CONTEXT*)&ta) + vp9_block2above[TX_4X4][ib];
tl0 = ((ENTROPY_CONTEXT*)&tl) + vp9_block2left[TX_4X4][ib];
ta1 = ta0 + 1;
tl1 = tl0 + 1;
distortion = 0;
rate_t = 0;
for (i = 0; i < 4; ++i) {
int do_two = 0;
b = &xd->block[ib + iblock[i]];
be = &x->block[ib + iblock[i]];
tx_type = get_tx_type_4x4(xd, ib + iblock[i]);
if (tx_type != DCT_DCT) {
vp9_short_fht4x4(be->src_diff, be->coeff, 16, tx_type);
vp9_ht_quantize_b_4x4(x, ib + iblock[i], tx_type);
} else if (!(i & 1) &&
get_tx_type_4x4(xd, ib + iblock[i] + 1) == DCT_DCT) {
x->fwd_txm8x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4_pair(x, ib + iblock[i], ib + iblock[i] + 1, 16);
do_two = 1;
} else {
x->fwd_txm4x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4(x, ib + iblock[i], 16);
}
distortion += vp9_block_error_c(be->coeff,
BLOCK_OFFSET(xd->plane[0].dqcoeff, ib + iblock[i], 16),
16 << do_two);
rate_t += cost_coeffs(cm, x, ib + iblock[i], PLANE_TYPE_Y_WITH_DC,
i&1 ? ta1 : ta0, i&2 ? tl1 : tl0,
TX_4X4, 16);
if (do_two) {
i++;
rate_t += cost_coeffs(cm, x, ib + iblock[i], PLANE_TYPE_Y_WITH_DC,
i&1 ? ta1 : ta0, i&2 ? tl1 : tl0,
TX_4X4, 16);
}
}
b = &xd->block[ib];
be = &x->block[ib];
rate += rate_t;
}
distortion >>= 2;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = rate_t;
*bestdistortion = distortion;
besta0 = *ta0;
besta1 = *ta1;
bestl0 = *tl0;
bestl1 = *tl1;
best_rd = this_rd;
*best_mode = mode;
}
}
b->bmi.as_mode.first = (*best_mode);
vp9_encode_intra8x8(x, ib);
if (xd->mode_info_context->mbmi.txfm_size == TX_8X8) {
a[vp9_block2above[TX_8X8][idx]] = besta0;
a[vp9_block2above[TX_8X8][idx] + 1] = besta1;
l[vp9_block2left[TX_8X8][idx]] = bestl0;
l[vp9_block2left[TX_8X8][idx] + 1] = bestl1;
} else {
a[vp9_block2above[TX_4X4][ib]] = besta0;
a[vp9_block2above[TX_4X4][ib + 1]] = besta1;
l[vp9_block2left[TX_4X4][ib]] = bestl0;
l[vp9_block2left[TX_4X4][ib + 4]] = bestl1;
}
return best_rd;
}
static int64_t rd_pick_intra8x8mby_modes(VP9_COMP *cpi, MACROBLOCK *mb,
int *Rate, int *rate_y,
int *Distortion, int64_t best_rd) {
MACROBLOCKD *const xd = &mb->e_mbd;
int i, ib;
int cost = mb->mbmode_cost [xd->frame_type] [I8X8_PRED];
int distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
int *i8x8mode_costs;
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
xd->mode_info_context->mbmi.mode = I8X8_PRED;
i8x8mode_costs = mb->i8x8_mode_costs;
for (i = 0; i < 4; i++) {
MODE_INFO *const mic = xd->mode_info_context;
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d);
ib = vp9_i8x8_block[i];
total_rd += rd_pick_intra8x8block(
cpi, mb, ib, &best_mode,
i8x8mode_costs, ta, tl, &r, &ry, &d);
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[ib].as_mode.first = best_mode;
}
*Rate = cost;
*rate_y = tot_rate_y;
*Distortion = distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
}
static int64_t rd_pick_intra8x8mby_modes_and_txsz(VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_y,
int *distortion,
int *mode8x8,
int64_t best_yrd,
int64_t *txfm_cache) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
int cost0 = vp9_cost_bit(cm->prob_tx[0], 0);
int cost1 = vp9_cost_bit(cm->prob_tx[0], 1);
int64_t tmp_rd_4x4s, tmp_rd_8x8s;
int64_t tmp_rd_4x4, tmp_rd_8x8, tmp_rd;
int r4x4, tok4x4, d4x4, r8x8, tok8x8, d8x8;
mbmi->txfm_size = TX_4X4;
tmp_rd_4x4 = rd_pick_intra8x8mby_modes(cpi, x, &r4x4, &tok4x4,
&d4x4, best_yrd);
mode8x8[0] = xd->mode_info_context->bmi[0].as_mode.first;
mode8x8[1] = xd->mode_info_context->bmi[2].as_mode.first;
mode8x8[2] = xd->mode_info_context->bmi[8].as_mode.first;
mode8x8[3] = xd->mode_info_context->bmi[10].as_mode.first;
mbmi->txfm_size = TX_8X8;
tmp_rd_8x8 = rd_pick_intra8x8mby_modes(cpi, x, &r8x8, &tok8x8,
&d8x8, best_yrd);
txfm_cache[ONLY_4X4] = tmp_rd_4x4;
txfm_cache[ALLOW_8X8] = tmp_rd_8x8;
txfm_cache[ALLOW_16X16] = tmp_rd_8x8;
tmp_rd_4x4s = tmp_rd_4x4 + RDCOST(x->rdmult, x->rddiv, cost0, 0);
tmp_rd_8x8s = tmp_rd_8x8 + RDCOST(x->rdmult, x->rddiv, cost1, 0);
txfm_cache[TX_MODE_SELECT] = tmp_rd_4x4s < tmp_rd_8x8s ?
tmp_rd_4x4s : tmp_rd_8x8s;
if (cm->txfm_mode == TX_MODE_SELECT) {
if (tmp_rd_4x4s < tmp_rd_8x8s) {
*rate = r4x4 + cost0;
*rate_y = tok4x4 + cost0;
*distortion = d4x4;
mbmi->txfm_size = TX_4X4;
tmp_rd = tmp_rd_4x4s;
} else {
*rate = r8x8 + cost1;
*rate_y = tok8x8 + cost1;
*distortion = d8x8;
mbmi->txfm_size = TX_8X8;
tmp_rd = tmp_rd_8x8s;
mode8x8[0] = xd->mode_info_context->bmi[0].as_mode.first;
mode8x8[1] = xd->mode_info_context->bmi[2].as_mode.first;
mode8x8[2] = xd->mode_info_context->bmi[8].as_mode.first;
mode8x8[3] = xd->mode_info_context->bmi[10].as_mode.first;
}
} else if (cm->txfm_mode == ONLY_4X4) {
*rate = r4x4;
*rate_y = tok4x4;
*distortion = d4x4;
mbmi->txfm_size = TX_4X4;
tmp_rd = tmp_rd_4x4;
} else {
*rate = r8x8;
*rate_y = tok8x8;
*distortion = d8x8;
mbmi->txfm_size = TX_8X8;
tmp_rd = tmp_rd_8x8;
mode8x8[0] = xd->mode_info_context->bmi[0].as_mode.first;
mode8x8[1] = xd->mode_info_context->bmi[2].as_mode.first;
mode8x8[2] = xd->mode_info_context->bmi[8].as_mode.first;
mode8x8[3] = xd->mode_info_context->bmi[10].as_mode.first;
}
return tmp_rd;
}
#define UVCTX(c, p) ((p) ? (c).v : (c).u)
static int rd_cost_sbuv_4x4(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bw = 1 << bwl;
const int bh = 1 << (mb_height_log2(bsize) + 1);
int yoff = 4 * bw * bh;
int p, b, cost = 0;
MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT_PLANES t_above[4], t_left[4];
vpx_memcpy(&t_above, xd->above_context,
(sizeof(ENTROPY_CONTEXT_PLANES) * bw) >> 1);
vpx_memcpy(&t_left, xd->left_context,
(sizeof(ENTROPY_CONTEXT_PLANES) * bh) >> 1);
for (p = 0; p < 2; p++) {
for (b = 0; b < bw * bh; b++) {
const int x_idx = b & (bw - 1), y_idx = b >> bwl;
cost += cost_coeffs(cm, x, yoff + b, PLANE_TYPE_UV,
UVCTX(t_above[x_idx >> 1], p) + (x_idx & 1),
UVCTX(t_left[y_idx >> 1], p) + (y_idx & 1),
TX_4X4, bw * bh * 4);
}
yoff = (yoff * 5) >> 2; // u -> v
}
return cost;
}
static void super_block_uvrd_4x4(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int *distortion, int *skip,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 2, bhl = mb_height_log2(bsize) + 2;
MACROBLOCKD *const xd = &x->e_mbd;
vp9_transform_sbuv_4x4(x, bsize);
vp9_quantize_sbuv_4x4(x, bsize);
*rate = rd_cost_sbuv_4x4(cm, x, bsize);
*distortion = vp9_sb_uv_block_error_c(x->coeff + (16 << (bwl + bhl)),
xd->plane[1].dqcoeff,
xd->plane[2].dqcoeff,
32 << (bwl + bhl - 2), 2);
*skip = vp9_sbuv_is_skippable(xd, bsize);
}
static int rd_cost_sbuv_8x8(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
const int bh = 1 << mb_height_log2(bsize);
int yoff = 16 * bw * bh;
int p, b, cost = 0;
MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT_PLANES t_above[4], t_left[4];
vpx_memcpy(&t_above, xd->above_context,
sizeof(ENTROPY_CONTEXT_PLANES) * bw);
vpx_memcpy(&t_left, xd->left_context,
sizeof(ENTROPY_CONTEXT_PLANES) * bh);
for (p = 0; p < 2; p++) {
for (b = 0; b < bw * bh; b++) {
const int x_idx = b & (bw - 1), y_idx = b >> bwl;
cost += cost_coeffs(cm, x, yoff + b * 4, PLANE_TYPE_UV,
UVCTX(t_above[x_idx], p),
UVCTX(t_left[y_idx], p),
TX_8X8, bw * bh * 16);
}
yoff = (yoff * 5) >> 2; // u -> v
}
return cost;
}
static void super_block_uvrd_8x8(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int *distortion, int *skip,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bhl = mb_height_log2(bsize) + 1;
MACROBLOCKD *const xd = &x->e_mbd;
vp9_transform_sbuv_8x8(x, bsize);
vp9_quantize_sbuv_8x8(x, bsize);
*rate = rd_cost_sbuv_8x8(cm, x, bsize);
*distortion = vp9_sb_uv_block_error_c(x->coeff + (64 << (bwl + bhl)),
xd->plane[1].dqcoeff,
xd->plane[2].dqcoeff,
128 << (bwl + bhl - 2), 2);
*skip = vp9_sbuv_is_skippable(xd, bsize);
}
static int rd_cost_sbuv_16x16(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 1, bw = 1 << bwl;
const int bh = 1 << (mb_height_log2(bsize) - 1);
int yoff = 64 * bw * bh;
int p, b, cost = 0;
MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT_PLANES t_above[4], t_left[4];
vpx_memcpy(&t_above, xd->above_context,
sizeof(ENTROPY_CONTEXT_PLANES) * 2 * bw);
vpx_memcpy(&t_left, xd->left_context,
sizeof(ENTROPY_CONTEXT_PLANES) * 2 * bh);
for (p = 0; p < 2; p++) {
for (b = 0; b < bw * bh; b++) {
const int x_idx = b & (bw - 1), y_idx = b >> bwl;
cost += cost_coeffs(cm, x, yoff + b * 16, PLANE_TYPE_UV,
UVCTX(t_above[x_idx * 2], p),
UVCTX(t_left[y_idx * 2], p),
TX_16X16, bw * bh * 64);
}
yoff = (yoff * 5) >> 2; // u -> v
}
return cost;
}
static void super_block_uvrd_16x16(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int *distortion, int *skip,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bhl = mb_height_log2(bsize);
MACROBLOCKD *const xd = &x->e_mbd;
vp9_transform_sbuv_16x16(x, bsize);
vp9_quantize_sbuv_16x16(x, bsize);
*rate = rd_cost_sbuv_16x16(cm, x, bsize);
*distortion = vp9_sb_uv_block_error_c(x->coeff + (256 << (bwl + bhl)),
xd->plane[1].dqcoeff,
xd->plane[2].dqcoeff,
512 << (bwl + bhl - 2), 2);
*skip = vp9_sbuv_is_skippable(xd, bsize);
}
static int rd_cost_sbuv_32x32(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 2, bw = 1 << bwl;
const int bh = 1 << (mb_height_log2(bsize) - 2);
int yoff = 256 * bh * bw;
int p, b, cost = 0;
MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT_PLANES t_above[4], t_left[4];
vpx_memcpy(&t_above, xd->above_context,
sizeof(ENTROPY_CONTEXT_PLANES) * 4 * bw);
vpx_memcpy(&t_left, xd->left_context,
sizeof(ENTROPY_CONTEXT_PLANES) * 4 * bh);
for (p = 0; p < 2; p++) {
for (b = 0; b < bw * bh; b++) {
const int x_idx = b * (bw - 1), y_idx = b >> bwl;
cost += cost_coeffs(cm, x, yoff + b * 64, PLANE_TYPE_UV,
UVCTX(t_above[x_idx * 4], p),
UVCTX(t_left[y_idx * 4], p),
TX_32X32, 256 * bh * bw);
}
yoff = (yoff * 5) >> 2; // u -> v
}
return cost;
}
#undef UVCTX
static void super_block_uvrd_32x32(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int *distortion, int *skip,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 1, bhl = mb_height_log2(bsize) - 1;
MACROBLOCKD *const xd = &x->e_mbd;
vp9_transform_sbuv_32x32(x, bsize);
vp9_quantize_sbuv_32x32(x, bsize);
*rate = rd_cost_sbuv_32x32(cm, x, bsize);
*distortion = vp9_sb_uv_block_error_c(x->coeff + (1024 << (bwl + bhl)),
xd->plane[1].dqcoeff,
xd->plane[2].dqcoeff,
2048 << (bwl + bhl - 2), 0);
*skip = vp9_sbuv_is_skippable(xd, bsize);
}
static void super_block_uvrd(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
uint8_t *usrc = x->src.u_buffer, *udst = xd->plane[1].dst.buf;
uint8_t *vsrc = x->src.v_buffer, *vdst = xd->plane[2].dst.buf;
int src_uv_stride = x->src.uv_stride, dst_uv_stride = xd->plane[1].dst.stride;
vp9_subtract_sbuv_s_c(x->src_diff, usrc, vsrc, src_uv_stride,
udst, vdst, dst_uv_stride, bsize);
if (mbmi->txfm_size >= TX_32X32 && bsize >= BLOCK_SIZE_SB64X64) {
super_block_uvrd_32x32(cm, x, rate, distortion, skippable, bsize);
} else if (mbmi->txfm_size >= TX_16X16 && bsize >= BLOCK_SIZE_SB32X32) {
super_block_uvrd_16x16(cm, x, rate, distortion, skippable, bsize);
} else if (mbmi->txfm_size >= TX_8X8) {
super_block_uvrd_8x8(cm, x, rate, distortion, skippable, bsize);
} else {
assert(mbmi->txfm_size == TX_4X4);
super_block_uvrd_4x4(cm, x, rate, distortion, skippable, bsize);
}
}
static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int64_t best_rd = INT64_MAX, this_rd;
int this_rate_tokenonly, this_rate;
int this_distortion, s;
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
x->e_mbd.mode_info_context->mbmi.uv_mode = mode;
vp9_build_intra_predictors_sbuv_s(&x->e_mbd, bsize);
super_block_uvrd(&cpi->common, x, &this_rate_tokenonly,
&this_distortion, &s, bsize);
this_rate = this_rate_tokenonly +
x->intra_uv_mode_cost[x->e_mbd.frame_type][mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected;
return best_rd;
}
int vp9_cost_mv_ref(VP9_COMP *cpi,
MB_PREDICTION_MODE m,
const int mode_context) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// Dont account for mode here if segment skip is enabled.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
VP9_COMMON *pc = &cpi->common;
vp9_prob p [VP9_MVREFS - 1];
assert(NEARESTMV <= m && m <= SPLITMV);
vp9_mv_ref_probs(pc, p, mode_context);
return cost_token(vp9_mv_ref_tree, p,
vp9_mv_ref_encoding_array - NEARESTMV + m);
} else
return 0;
}
void vp9_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) {
x->e_mbd.mode_info_context->mbmi.mode = mb;
x->e_mbd.mode_info_context->mbmi.mv[0].as_int = mv->as_int;
}
static int labels2mode(
MACROBLOCK *x,
int const *labelings, int which_label,
B_PREDICTION_MODE this_mode,
int_mv *this_mv, int_mv *this_second_mv,
int_mv seg_mvs[MAX_REF_FRAMES - 1],
int_mv *best_ref_mv,
int_mv *second_best_ref_mv,
int *mvjcost, int *mvcost[2]) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mode_info_context;
MB_MODE_INFO * mbmi = &mic->mbmi;
const int mis = xd->mode_info_stride;
int i, cost = 0, thismvcost = 0;
/* We have to be careful retrieving previously-encoded motion vectors.
Ones from this macroblock have to be pulled from the BLOCKD array
as they have not yet made it to the bmi array in our MB_MODE_INFO. */
for (i = 0; i < 16; ++i) {
BLOCKD *const d = xd->block + i;
const int row = i >> 2, col = i & 3;
B_PREDICTION_MODE m;
if (labelings[i] != which_label)
continue;
if (col && labelings[i] == labelings[i - 1])
m = LEFT4X4;
else if (row && labelings[i] == labelings[i - 4])
m = ABOVE4X4;
else {
// the only time we should do costing for new motion vector or mode
// is when we are on a new label (jbb May 08, 2007)
switch (m = this_mode) {
case NEW4X4 :
if (mbmi->second_ref_frame > 0) {
this_mv->as_int = seg_mvs[mbmi->ref_frame - 1].as_int;
this_second_mv->as_int =
seg_mvs[mbmi->second_ref_frame - 1].as_int;
}
thismvcost = vp9_mv_bit_cost(this_mv, best_ref_mv, mvjcost, mvcost,
102, xd->allow_high_precision_mv);
if (mbmi->second_ref_frame > 0) {
thismvcost += vp9_mv_bit_cost(this_second_mv, second_best_ref_mv,
mvjcost, mvcost, 102,
xd->allow_high_precision_mv);
}
break;
case LEFT4X4:
this_mv->as_int = col ? d[-1].bmi.as_mv[0].as_int :
left_block_mv(xd, mic, i);
if (mbmi->second_ref_frame > 0)
this_second_mv->as_int = col ? d[-1].bmi.as_mv[1].as_int :
left_block_second_mv(xd, mic, i);
break;
case ABOVE4X4:
this_mv->as_int = row ? d[-4].bmi.as_mv[0].as_int :
above_block_mv(mic, i, mis);
if (mbmi->second_ref_frame > 0)
this_second_mv->as_int = row ? d[-4].bmi.as_mv[1].as_int :
above_block_second_mv(mic, i, mis);
break;
case ZERO4X4:
this_mv->as_int = 0;
if (mbmi->second_ref_frame > 0)
this_second_mv->as_int = 0;
break;
default:
break;
}
if (m == ABOVE4X4) { // replace above with left if same
int_mv left_mv, left_second_mv;
left_second_mv.as_int = 0;
left_mv.as_int = col ? d[-1].bmi.as_mv[0].as_int :
left_block_mv(xd, mic, i);
if (mbmi->second_ref_frame > 0)
left_second_mv.as_int = col ? d[-1].bmi.as_mv[1].as_int :
left_block_second_mv(xd, mic, i);
if (left_mv.as_int == this_mv->as_int &&
(mbmi->second_ref_frame <= 0 ||
left_second_mv.as_int == this_second_mv->as_int))
m = LEFT4X4;
}
#if CONFIG_NEWBINTRAMODES
cost = x->inter_bmode_costs[
m == B_CONTEXT_PRED ? m - CONTEXT_PRED_REPLACEMENTS : m];
#else
cost = x->inter_bmode_costs[m];
#endif
}
d->bmi.as_mv[0].as_int = this_mv->as_int;
if (mbmi->second_ref_frame > 0)
d->bmi.as_mv[1].as_int = this_second_mv->as_int;
x->partition_info->bmi[i].mode = m;
x->partition_info->bmi[i].mv.as_int = this_mv->as_int;
if (mbmi->second_ref_frame > 0)
x->partition_info->bmi[i].second_mv.as_int = this_second_mv->as_int;
}
cost += thismvcost;
return cost;
}
static int64_t encode_inter_mb_segment(VP9_COMMON *const cm,
MACROBLOCK *x,
int const *labels,
int which_label,
int *labelyrate,
int *distortion,
ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
*labelyrate = 0;
*distortion = 0;
for (i = 0; i < 16; i++) {
if (labels[i] == which_label) {
BLOCKD *bd = &x->e_mbd.block[i];
BLOCK *be = &x->block[i];
int thisdistortion;
vp9_build_inter_predictor(*(bd->base_pre) + bd->pre,
bd->pre_stride,
*(bd->base_dst) + bd->dst,
bd->dst_stride,
&bd->bmi.as_mv[0],
&xd->scale_factor[0],
4, 4, 0 /* no avg */, &xd->subpix);
// TODO(debargha): Make this work properly with the
// implicit-compoundinter-weight experiment when implicit
// weighting for splitmv modes is turned on.
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
vp9_build_inter_predictor(
*(bd->base_second_pre) + bd->pre, bd->pre_stride,
*(bd->base_dst) + bd->dst, bd->dst_stride,
&bd->bmi.as_mv[1], &xd->scale_factor[1], 4, 4,
1 << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT) /* avg */,
&xd->subpix);
}
vp9_subtract_b(be, bd, 16);
x->fwd_txm4x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4(x, i, 16);
thisdistortion = vp9_block_error(be->coeff,
BLOCK_OFFSET(xd->plane[0].dqcoeff, i, 16), 16);
*distortion += thisdistortion;
*labelyrate += cost_coeffs(cm, x, i, PLANE_TYPE_Y_WITH_DC,
ta + vp9_block2above[TX_4X4][i],
tl + vp9_block2left[TX_4X4][i], TX_4X4, 16);
}
}
*distortion >>= 2;
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
}
static int64_t encode_inter_mb_segment_8x8(VP9_COMMON *const cm,
MACROBLOCK *x,
int const *labels,
int which_label,
int *labelyrate,
int *distortion,
int64_t *otherrd,
ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl) {
int i, j;
MACROBLOCKD *xd = &x->e_mbd;
const int iblock[4] = { 0, 1, 4, 5 };
int othercost = 0, otherdist = 0;
ENTROPY_CONTEXT_PLANES tac, tlc;
ENTROPY_CONTEXT *tacp = (ENTROPY_CONTEXT *) &tac,
*tlcp = (ENTROPY_CONTEXT *) &tlc;
if (otherrd) {
memcpy(&tac, ta, sizeof(ENTROPY_CONTEXT_PLANES));
memcpy(&tlc, tl, sizeof(ENTROPY_CONTEXT_PLANES));
}
*distortion = 0;
*labelyrate = 0;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
if (labels[ib] == which_label) {
const int use_second_ref =
xd->mode_info_context->mbmi.second_ref_frame > 0;
int which_mv;
const int idx = (ib & 8) + ((ib & 2) << 1);
BLOCKD *bd = &xd->block[ib];
BLOCK *be = &x->block[ib], *be2 = &x->block[idx];
int thisdistortion;
assert(idx < 16);
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
uint8_t **base_pre = which_mv ? bd->base_second_pre : bd->base_pre;
// TODO(debargha): Make this work properly with the
// implicit-compoundinter-weight experiment when implicit
// weighting for splitmv modes is turned on.
vp9_build_inter_predictor(
*base_pre + bd->pre, bd->pre_stride,
*(bd->base_dst) + bd->dst, bd->dst_stride,
&bd->bmi.as_mv[which_mv], &xd->scale_factor[which_mv], 8, 8,
which_mv << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT),
&xd->subpix);
}
vp9_subtract_4b_c(be, bd, 16);
if (xd->mode_info_context->mbmi.txfm_size == TX_4X4) {
if (otherrd) {
x->fwd_txm8x8(be->src_diff, be2->coeff, 32);
x->quantize_b_8x8(x, idx, DCT_DCT, 16);
thisdistortion = vp9_block_error_c(be2->coeff,
BLOCK_OFFSET(xd->plane[0].dqcoeff, idx, 16), 64);
otherdist += thisdistortion;
xd->mode_info_context->mbmi.txfm_size = TX_8X8;
othercost += cost_coeffs(cm, x, idx, PLANE_TYPE_Y_WITH_DC,
tacp + vp9_block2above[TX_8X8][idx],
tlcp + vp9_block2left[TX_8X8][idx],
TX_8X8, 16);
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
}
for (j = 0; j < 4; j += 2) {
bd = &xd->block[ib + iblock[j]];
be = &x->block[ib + iblock[j]];
x->fwd_txm8x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4_pair(x, ib + iblock[j], ib + iblock[j] + 1, 16);
thisdistortion = vp9_block_error_c(be->coeff,
BLOCK_OFFSET(xd->plane[0].dqcoeff, ib + iblock[j], 16), 32);
*distortion += thisdistortion;
*labelyrate +=
cost_coeffs(cm, x, ib + iblock[j], PLANE_TYPE_Y_WITH_DC,
ta + vp9_block2above[TX_4X4][ib + iblock[j]],
tl + vp9_block2left[TX_4X4][ib + iblock[j]],
TX_4X4, 16);
*labelyrate +=
cost_coeffs(cm, x, ib + iblock[j] + 1,
PLANE_TYPE_Y_WITH_DC,
ta + vp9_block2above[TX_4X4][ib + iblock[j] + 1],
tl + vp9_block2left[TX_4X4][ib + iblock[j]],
TX_4X4, 16);
}
} else /* 8x8 */ {
if (otherrd) {
for (j = 0; j < 4; j += 2) {
BLOCK *be = &x->block[ib + iblock[j]];
x->fwd_txm8x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4_pair(x, ib + iblock[j], ib + iblock[j] + 1, 16);
thisdistortion = vp9_block_error_c(be->coeff,
BLOCK_OFFSET(xd->plane[0].dqcoeff, ib + iblock[j], 16), 32);
otherdist += thisdistortion;
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
othercost +=
cost_coeffs(cm, x, ib + iblock[j], PLANE_TYPE_Y_WITH_DC,
tacp + vp9_block2above[TX_4X4][ib + iblock[j]],
tlcp + vp9_block2left[TX_4X4][ib + iblock[j]],
TX_4X4, 16);
othercost +=
cost_coeffs(cm, x, ib + iblock[j] + 1,
PLANE_TYPE_Y_WITH_DC,
tacp + vp9_block2above[TX_4X4][ib + iblock[j] + 1],
tlcp + vp9_block2left[TX_4X4][ib + iblock[j]],
TX_4X4, 16);
xd->mode_info_context->mbmi.txfm_size = TX_8X8;
}
}
x->fwd_txm8x8(be->src_diff, be2->coeff, 32);
x->quantize_b_8x8(x, idx, DCT_DCT, 16);
thisdistortion = vp9_block_error_c(be2->coeff,
BLOCK_OFFSET(xd->plane[0].dqcoeff, idx, 16), 64);
*distortion += thisdistortion;
*labelyrate += cost_coeffs(cm, x, idx, PLANE_TYPE_Y_WITH_DC,
ta + vp9_block2above[TX_8X8][idx],
tl + vp9_block2left[TX_8X8][idx], TX_8X8,
16);
}
}
}
*distortion >>= 2;
if (otherrd) {
otherdist >>= 2;
*otherrd = RDCOST(x->rdmult, x->rddiv, othercost, otherdist);
}
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
}
static const unsigned int segmentation_to_sseshift[4] = {3, 3, 2, 0};
typedef struct {
int_mv *ref_mv, *second_ref_mv;
int_mv mvp;
int64_t segment_rd;
SPLITMV_PARTITIONING_TYPE segment_num;
TX_SIZE txfm_size;
int r;
int d;
int segment_yrate;
B_PREDICTION_MODE modes[16];
int_mv mvs[16], second_mvs[16];
int eobs[16];
int mvthresh;
int *mdcounts;
int_mv sv_mvp[4]; // save 4 mvp from 8x8
int sv_istep[2]; // save 2 initial step_param for 16x8/8x16
} BEST_SEG_INFO;
static INLINE int mv_check_bounds(MACROBLOCK *x, int_mv *mv) {
int r = 0;
r |= (mv->as_mv.row >> 3) < x->mv_row_min;
r |= (mv->as_mv.row >> 3) > x->mv_row_max;
r |= (mv->as_mv.col >> 3) < x->mv_col_min;
r |= (mv->as_mv.col >> 3) > x->mv_col_max;
return r;
}
static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
BEST_SEG_INFO *bsi,
SPLITMV_PARTITIONING_TYPE segmentation,
TX_SIZE tx_size, int64_t *otherrds,
int64_t *rds, int *completed,
/* 16 = n_blocks */
int_mv seg_mvs[16 /* n_blocks */]
[MAX_REF_FRAMES - 1]) {
int i, j;
int const *labels;
int br = 0, bd = 0;
B_PREDICTION_MODE this_mode;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int label_count;
int64_t this_segment_rd = 0, other_segment_rd;
int label_mv_thresh;
int rate = 0;
int sbr = 0, sbd = 0;
int segmentyrate = 0;
int best_eobs[16] = { 0 };
vp9_variance_fn_ptr_t *v_fn_ptr;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
ENTROPY_CONTEXT_PLANES t_above_b, t_left_b;
ENTROPY_CONTEXT *ta_b, *tl_b;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
ta_b = (ENTROPY_CONTEXT *)&t_above_b;
tl_b = (ENTROPY_CONTEXT *)&t_left_b;
v_fn_ptr = &cpi->fn_ptr[segmentation];
labels = vp9_mbsplits[segmentation];
label_count = vp9_mbsplit_count[segmentation];
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count;
// Segmentation method overheads
rate = cost_token(vp9_mbsplit_tree, vp9_mbsplit_probs,
vp9_mbsplit_encodings + segmentation);
rate += vp9_cost_mv_ref(cpi, SPLITMV,
mbmi->mb_mode_context[mbmi->ref_frame]);
this_segment_rd += RDCOST(x->rdmult, x->rddiv, rate, 0);
br += rate;
other_segment_rd = this_segment_rd;
mbmi->txfm_size = tx_size;
for (i = 0; i < label_count && this_segment_rd < bsi->segment_rd; i++) {
int_mv mode_mv[B_MODE_COUNT], second_mode_mv[B_MODE_COUNT];
int64_t best_label_rd = INT64_MAX, best_other_rd = INT64_MAX;
B_PREDICTION_MODE mode_selected = ZERO4X4;
int bestlabelyrate = 0;
// search for the best motion vector on this segment
for (this_mode = LEFT4X4; this_mode <= NEW4X4; this_mode ++) {
int64_t this_rd, other_rd;
int distortion;
int labelyrate;
ENTROPY_CONTEXT_PLANES t_above_s, t_left_s;
ENTROPY_CONTEXT *ta_s;
ENTROPY_CONTEXT *tl_s;
vpx_memcpy(&t_above_s, &t_above, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left_s, &t_left, sizeof(ENTROPY_CONTEXT_PLANES));
ta_s = (ENTROPY_CONTEXT *)&t_above_s;
tl_s = (ENTROPY_CONTEXT *)&t_left_s;
// motion search for newmv (single predictor case only)
if (mbmi->second_ref_frame <= 0 && this_mode == NEW4X4) {
int sseshift, n;
int step_param = 0;
int further_steps;
int thissme, bestsme = INT_MAX;
BLOCK *c;
BLOCKD *e;
/* Is the best so far sufficiently good that we cant justify doing
* and new motion search. */
if (best_label_rd < label_mv_thresh)
break;
if (cpi->compressor_speed) {
if (segmentation == PARTITIONING_8X16 ||
segmentation == PARTITIONING_16X8) {
bsi->mvp.as_int = bsi->sv_mvp[i].as_int;
if (i == 1 && segmentation == PARTITIONING_16X8)
bsi->mvp.as_int = bsi->sv_mvp[2].as_int;
step_param = bsi->sv_istep[i];
}
// use previous block's result as next block's MV predictor.
if (segmentation == PARTITIONING_4X4 && i > 0) {
bsi->mvp.as_int = x->e_mbd.block[i - 1].bmi.as_mv[0].as_int;
if (i == 4 || i == 8 || i == 12)
bsi->mvp.as_int = x->e_mbd.block[i - 4].bmi.as_mv[0].as_int;
step_param = 2;
}
}
further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
{
int sadpb = x->sadperbit4;
int_mv mvp_full;
mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3;
mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3;
// find first label
n = vp9_mbsplit_offset[segmentation][i];
c = &x->block[n];
e = &x->e_mbd.block[n];
bestsme = vp9_full_pixel_diamond(cpi, x, c, e, &mvp_full, step_param,
sadpb, further_steps, 0, v_fn_ptr,
bsi->ref_mv, &mode_mv[NEW4X4]);
sseshift = segmentation_to_sseshift[segmentation];
// Should we do a full search (best quality only)
if ((cpi->compressor_speed == 0) && (bestsme >> sseshift) > 4000) {
/* Check if mvp_full is within the range. */
clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max,
x->mv_row_min, x->mv_row_max);
thissme = cpi->full_search_sad(x, c, e, &mvp_full,
sadpb, 16, v_fn_ptr,
x->nmvjointcost, x->mvcost,
bsi->ref_mv);
if (thissme < bestsme) {
bestsme = thissme;
mode_mv[NEW4X4].as_int = e->bmi.as_mv[0].as_int;
} else {
/* The full search result is actually worse so re-instate the
* previous best vector */
e->bmi.as_mv[0].as_int = mode_mv[NEW4X4].as_int;
}
}
}
if (bestsme < INT_MAX) {
int distortion;
unsigned int sse;
cpi->find_fractional_mv_step(x, c, e, &mode_mv[NEW4X4],
bsi->ref_mv, x->errorperbit, v_fn_ptr,
x->nmvjointcost, x->mvcost,
&distortion, &sse);
// safe motion search result for use in compound prediction
seg_mvs[i][mbmi->ref_frame - 1].as_int = mode_mv[NEW4X4].as_int;
}
} else if (mbmi->second_ref_frame > 0 && this_mode == NEW4X4) {
/* NEW4X4 */
/* motion search not completed? Then skip newmv for this block with
* comppred */
if (seg_mvs[i][mbmi->second_ref_frame - 1].as_int == INVALID_MV ||
seg_mvs[i][mbmi->ref_frame - 1].as_int == INVALID_MV) {
continue;
}
}
rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode],
&second_mode_mv[this_mode], seg_mvs[i],
bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost,
x->mvcost);
// Trap vectors that reach beyond the UMV borders
if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) ||
((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) ||
((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) {
continue;
}
if (mbmi->second_ref_frame > 0 &&
mv_check_bounds(x, &second_mode_mv[this_mode]))
continue;
if (segmentation == PARTITIONING_4X4) {
this_rd = encode_inter_mb_segment(&cpi->common,
x, labels, i, &labelyrate,
&distortion, ta_s, tl_s);
other_rd = this_rd;
} else {
this_rd = encode_inter_mb_segment_8x8(&cpi->common,
x, labels, i, &labelyrate,
&distortion, &other_rd,
ta_s, tl_s);
}
this_rd += RDCOST(x->rdmult, x->rddiv, rate, 0);
rate += labelyrate;
if (this_rd < best_label_rd) {
sbr = rate;
sbd = distortion;
bestlabelyrate = labelyrate;
mode_selected = this_mode;
best_label_rd = this_rd;
if (x->e_mbd.mode_info_context->mbmi.txfm_size == TX_4X4) {
for (j = 0; j < 16; j++)
if (labels[j] == i)
best_eobs[j] = x->e_mbd.plane[0].eobs[j];
} else {
for (j = 0; j < 4; j++) {
int ib = vp9_i8x8_block[j], idx = j * 4;
if (labels[ib] == i)
best_eobs[idx] = x->e_mbd.plane[0].eobs[idx];
}
}
if (other_rd < best_other_rd)
best_other_rd = other_rd;
vpx_memcpy(ta_b, ta_s, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl_b, tl_s, sizeof(ENTROPY_CONTEXT_PLANES));
}
} /*for each 4x4 mode*/
vpx_memcpy(ta, ta_b, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl, tl_b, sizeof(ENTROPY_CONTEXT_PLANES));
labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected],
&second_mode_mv[mode_selected], seg_mvs[i],
bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost, x->mvcost);
br += sbr;
bd += sbd;
segmentyrate += bestlabelyrate;
this_segment_rd += best_label_rd;
other_segment_rd += best_other_rd;
if (rds)
rds[i] = this_segment_rd;
if (otherrds)
otherrds[i] = other_segment_rd;
} /* for each label */
if (this_segment_rd < bsi->segment_rd) {
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
bsi->segment_num = segmentation;
bsi->txfm_size = mbmi->txfm_size;
// store everything needed to come back to this!!
for (i = 0; i < 16; i++) {
bsi->mvs[i].as_mv = x->partition_info->bmi[i].mv.as_mv;
if (mbmi->second_ref_frame > 0)
bsi->second_mvs[i].as_mv = x->partition_info->bmi[i].second_mv.as_mv;
bsi->modes[i] = x->partition_info->bmi[i].mode;
bsi->eobs[i] = best_eobs[i];
}
}
if (completed) {
*completed = i;
}
}
static void rd_check_segment(VP9_COMP *cpi, MACROBLOCK *x,
BEST_SEG_INFO *bsi,
unsigned int segmentation,
/* 16 = n_blocks */
int_mv seg_mvs[16][MAX_REF_FRAMES - 1],
int64_t txfm_cache[NB_TXFM_MODES]) {
int i, n, c = vp9_mbsplit_count[segmentation];
if (segmentation == PARTITIONING_4X4) {
int64_t rd[16];
rd_check_segment_txsize(cpi, x, bsi, segmentation, TX_4X4, NULL,
rd, &n, seg_mvs);
if (n == c) {
for (i = 0; i < NB_TXFM_MODES; i++) {
if (rd[c - 1] < txfm_cache[i])
txfm_cache[i] = rd[c - 1];
}
}
} else {
int64_t diff, base_rd;
int cost4x4 = vp9_cost_bit(cpi->common.prob_tx[0], 0);
int cost8x8 = vp9_cost_bit(cpi->common.prob_tx[0], 1);
if (cpi->common.txfm_mode == TX_MODE_SELECT) {
int64_t rd4x4[4], rd8x8[4];
int n4x4, n8x8, nmin;
BEST_SEG_INFO bsi4x4, bsi8x8;
/* factor in cost of cost4x4/8x8 in decision */
vpx_memcpy(&bsi4x4, bsi, sizeof(*bsi));
vpx_memcpy(&bsi8x8, bsi, sizeof(*bsi));
rd_check_segment_txsize(cpi, x, &bsi4x4, segmentation,
TX_4X4, NULL, rd4x4, &n4x4, seg_mvs);
rd_check_segment_txsize(cpi, x, &bsi8x8, segmentation,
TX_8X8, NULL, rd8x8, &n8x8, seg_mvs);
if (bsi4x4.segment_num == segmentation) {
bsi4x4.segment_rd += RDCOST(x->rdmult, x->rddiv, cost4x4, 0);
if (bsi4x4.segment_rd < bsi->segment_rd)
vpx_memcpy(bsi, &bsi4x4, sizeof(*bsi));
}
if (bsi8x8.segment_num == segmentation) {
bsi8x8.segment_rd += RDCOST(x->rdmult, x->rddiv, cost8x8, 0);
if (bsi8x8.segment_rd < bsi->segment_rd)
vpx_memcpy(bsi, &bsi8x8, sizeof(*bsi));
}
n = n4x4 > n8x8 ? n4x4 : n8x8;
if (n == c) {
nmin = n4x4 < n8x8 ? n4x4 : n8x8;
diff = rd8x8[nmin - 1] - rd4x4[nmin - 1];
if (n == n4x4) {
base_rd = rd4x4[c - 1];
} else {
base_rd = rd8x8[c - 1] - diff;
}
}
} else {
int64_t rd[4], otherrd[4];
if (cpi->common.txfm_mode == ONLY_4X4) {
rd_check_segment_txsize(cpi, x, bsi, segmentation, TX_4X4, otherrd,
rd, &n, seg_mvs);
if (n == c) {
base_rd = rd[c - 1];
diff = otherrd[c - 1] - rd[c - 1];
}
} else /* use 8x8 transform */ {
rd_check_segment_txsize(cpi, x, bsi, segmentation, TX_8X8, otherrd,
rd, &n, seg_mvs);
if (n == c) {
diff = rd[c - 1] - otherrd[c - 1];
base_rd = otherrd[c - 1];
}
}
}
if (n == c) {
if (base_rd < txfm_cache[ONLY_4X4]) {
txfm_cache[ONLY_4X4] = base_rd;
}
if (base_rd + diff < txfm_cache[ALLOW_8X8]) {
txfm_cache[ALLOW_8X8] = txfm_cache[ALLOW_16X16] =
txfm_cache[ALLOW_32X32] = base_rd + diff;
}
if (diff < 0) {
base_rd += diff + RDCOST(x->rdmult, x->rddiv, cost8x8, 0);
} else {
base_rd += RDCOST(x->rdmult, x->rddiv, cost4x4, 0);
}
if (base_rd < txfm_cache[TX_MODE_SELECT]) {
txfm_cache[TX_MODE_SELECT] = base_rd;
}
}
}
}
static INLINE void cal_step_param(int sr, int *sp) {
int step = 0;
if (sr > MAX_FIRST_STEP) sr = MAX_FIRST_STEP;
else if (sr < 1) sr = 1;
while (sr >>= 1)
step++;
*sp = MAX_MVSEARCH_STEPS - 1 - step;
}
static int rd_pick_best_mbsegmentation(VP9_COMP *cpi, MACROBLOCK *x,
int_mv *best_ref_mv,
int_mv *second_best_ref_mv,
int64_t best_rd,
int *mdcounts,
int *returntotrate,
int *returnyrate,
int *returndistortion,
int *skippable, int mvthresh,
int_mv seg_mvs[NB_PARTITIONINGS]
[16 /* n_blocks */]
[MAX_REF_FRAMES - 1],
int64_t txfm_cache[NB_TXFM_MODES]) {
int i;
BEST_SEG_INFO bsi;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
vpx_memset(&bsi, 0, sizeof(bsi));
for (i = 0; i < NB_TXFM_MODES; i++)
txfm_cache[i] = INT64_MAX;
bsi.segment_rd = best_rd;
bsi.ref_mv = best_ref_mv;
bsi.second_ref_mv = second_best_ref_mv;
bsi.mvp.as_int = best_ref_mv->as_int;
bsi.mvthresh = mvthresh;
bsi.mdcounts = mdcounts;
bsi.txfm_size = TX_4X4;
for (i = 0; i < 16; i++)
bsi.modes[i] = ZERO4X4;
if (cpi->compressor_speed == 0) {
/* for now, we will keep the original segmentation order
when in best quality mode */
rd_check_segment(cpi, x, &bsi, PARTITIONING_16X8,
seg_mvs[PARTITIONING_16X8], txfm_cache);
rd_check_segment(cpi, x, &bsi, PARTITIONING_8X16,
seg_mvs[PARTITIONING_8X16], txfm_cache);
rd_check_segment(cpi, x, &bsi, PARTITIONING_8X8,
seg_mvs[PARTITIONING_8X8], txfm_cache);
rd_check_segment(cpi, x, &bsi, PARTITIONING_4X4,
seg_mvs[PARTITIONING_4X4], txfm_cache);
} else {
int sr;
rd_check_segment(cpi, x, &bsi, PARTITIONING_8X8,
seg_mvs[PARTITIONING_8X8], txfm_cache);
if (bsi.segment_rd < best_rd) {
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
vp9_clamp_mv_min_max(x, best_ref_mv);
/* Get 8x8 result */
bsi.sv_mvp[0].as_int = bsi.mvs[0].as_int;
bsi.sv_mvp[1].as_int = bsi.mvs[2].as_int;
bsi.sv_mvp[2].as_int = bsi.mvs[8].as_int;
bsi.sv_mvp[3].as_int = bsi.mvs[10].as_int;
/* Use 8x8 result as 16x8/8x16's predictor MV. Adjust search range
* according to the closeness of 2 MV. */
/* block 8X16 */
sr = MAXF((abs(bsi.sv_mvp[0].as_mv.row - bsi.sv_mvp[2].as_mv.row)) >> 3,
(abs(bsi.sv_mvp[0].as_mv.col - bsi.sv_mvp[2].as_mv.col)) >> 3);
cal_step_param(sr, &bsi.sv_istep[0]);
sr = MAXF((abs(bsi.sv_mvp[1].as_mv.row - bsi.sv_mvp[3].as_mv.row)) >> 3,
(abs(bsi.sv_mvp[1].as_mv.col - bsi.sv_mvp[3].as_mv.col)) >> 3);
cal_step_param(sr, &bsi.sv_istep[1]);
rd_check_segment(cpi, x, &bsi, PARTITIONING_8X16,
seg_mvs[PARTITIONING_8X16], txfm_cache);
/* block 16X8 */
sr = MAXF((abs(bsi.sv_mvp[0].as_mv.row - bsi.sv_mvp[1].as_mv.row)) >> 3,
(abs(bsi.sv_mvp[0].as_mv.col - bsi.sv_mvp[1].as_mv.col)) >> 3);
cal_step_param(sr, &bsi.sv_istep[0]);
sr = MAXF((abs(bsi.sv_mvp[2].as_mv.row - bsi.sv_mvp[3].as_mv.row)) >> 3,
(abs(bsi.sv_mvp[2].as_mv.col - bsi.sv_mvp[3].as_mv.col)) >> 3);
cal_step_param(sr, &bsi.sv_istep[1]);
rd_check_segment(cpi, x, &bsi, PARTITIONING_16X8,
seg_mvs[PARTITIONING_16X8], txfm_cache);
/* If 8x8 is better than 16x8/8x16, then do 4x4 search */
/* Not skip 4x4 if speed=0 (good quality) */
if (cpi->sf.no_skip_block4x4_search ||
bsi.segment_num == PARTITIONING_8X8) {
/* || (sv_segment_rd8x8-bsi.segment_rd) < sv_segment_rd8x8>>5) */
bsi.mvp.as_int = bsi.sv_mvp[0].as_int;
rd_check_segment(cpi, x, &bsi, PARTITIONING_4X4,
seg_mvs[PARTITIONING_4X4], txfm_cache);
}
/* restore UMV window */
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
}
}
/* set it to the best */
for (i = 0; i < 16; i++) {
BLOCKD *bd = &x->e_mbd.block[i];
bd->bmi.as_mv[0].as_int = bsi.mvs[i].as_int;
if (mbmi->second_ref_frame > 0)
bd->bmi.as_mv[1].as_int = bsi.second_mvs[i].as_int;
x->e_mbd.plane[0].eobs[i] = bsi.eobs[i];
}
/* save partitions */
mbmi->txfm_size = bsi.txfm_size;
mbmi->partitioning = bsi.segment_num;
x->partition_info->count = vp9_mbsplit_count[bsi.segment_num];
for (i = 0; i < x->partition_info->count; i++) {
int j;
j = vp9_mbsplit_offset[bsi.segment_num][i];
x->partition_info->bmi[i].mode = bsi.modes[j];
x->partition_info->bmi[i].mv.as_mv = bsi.mvs[j].as_mv;
if (mbmi->second_ref_frame > 0)
x->partition_info->bmi[i].second_mv.as_mv = bsi.second_mvs[j].as_mv;
}
/*
* used to set mbmi->mv.as_int
*/
x->partition_info->bmi[15].mv.as_int = bsi.mvs[15].as_int;
if (mbmi->second_ref_frame > 0)
x->partition_info->bmi[15].second_mv.as_int = bsi.second_mvs[15].as_int;
*returntotrate = bsi.r;
*returndistortion = bsi.d;
*returnyrate = bsi.segment_yrate;
*skippable = vp9_sby_is_skippable(&x->e_mbd, BLOCK_SIZE_MB16X16);
return (int)(bsi.segment_rd);
}
static void mv_pred(VP9_COMP *cpi, MACROBLOCK *x,
uint8_t *ref_y_buffer, int ref_y_stride,
int ref_frame, enum BlockSize block_size ) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
int_mv this_mv;
int i;
int zero_seen = 0;
int best_index = 0;
int best_sad = INT_MAX;
int this_sad = INT_MAX;
BLOCK *b = &x->block[0];
uint8_t *src_y_ptr = *(b->base_src);
uint8_t *ref_y_ptr;
int row_offset, col_offset;
// Get the sad for each candidate reference mv
for (i = 0; i < MAX_MV_REF_CANDIDATES; i++) {
this_mv.as_int = mbmi->ref_mvs[ref_frame][i].as_int;
// The list is at an end if we see 0 for a second time.
if (!this_mv.as_int && zero_seen)
break;
zero_seen = zero_seen || !this_mv.as_int;
row_offset = this_mv.as_mv.row >> 3;
col_offset = this_mv.as_mv.col >> 3;
ref_y_ptr = ref_y_buffer + (ref_y_stride * row_offset) + col_offset;
// Find sad for current vector.
this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, b->src_stride,
ref_y_ptr, ref_y_stride,
0x7fffffff);
// Note if it is the best so far.
if (this_sad < best_sad) {
best_sad = this_sad;
best_index = i;
}
}
// Note the index of the mv that worked best in the reference list.
x->mv_best_ref_index[ref_frame] = best_index;
}
static void set_i8x8_block_modes(MACROBLOCK *x, int modes[4]) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
xd->mode_info_context->bmi[ib + 0].as_mode.first = modes[i];
xd->mode_info_context->bmi[ib + 1].as_mode.first = modes[i];
xd->mode_info_context->bmi[ib + 4].as_mode.first = modes[i];
xd->mode_info_context->bmi[ib + 5].as_mode.first = modes[i];
// printf("%d,%d,%d,%d\n",
// modes[0], modes[1], modes[2], modes[3]);
}
for (i = 0; i < 16; i++) {
xd->block[i].bmi = xd->mode_info_context->bmi[i];
}
}
extern void vp9_calc_ref_probs(int *count, vp9_prob *probs);
static void estimate_curframe_refprobs(VP9_COMP *cpi, vp9_prob mod_refprobs[3], int pred_ref) {
int norm_cnt[MAX_REF_FRAMES];
const int *const rfct = cpi->count_mb_ref_frame_usage;
int intra_count = rfct[INTRA_FRAME];
int last_count = rfct[LAST_FRAME];
int gf_count = rfct[GOLDEN_FRAME];
int arf_count = rfct[ALTREF_FRAME];
// Work out modified reference frame probabilities to use where prediction
// of the reference frame fails
if (pred_ref == INTRA_FRAME) {
norm_cnt[0] = 0;
norm_cnt[1] = last_count;
norm_cnt[2] = gf_count;
norm_cnt[3] = arf_count;
vp9_calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[0] = 0; // This branch implicit
} else if (pred_ref == LAST_FRAME) {
norm_cnt[0] = intra_count;
norm_cnt[1] = 0;
norm_cnt[2] = gf_count;
norm_cnt[3] = arf_count;
vp9_calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[1] = 0; // This branch implicit
} else if (pred_ref == GOLDEN_FRAME) {
norm_cnt[0] = intra_count;
norm_cnt[1] = last_count;
norm_cnt[2] = 0;
norm_cnt[3] = arf_count;
vp9_calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[2] = 0; // This branch implicit
} else {
norm_cnt[0] = intra_count;
norm_cnt[1] = last_count;
norm_cnt[2] = gf_count;
norm_cnt[3] = 0;
vp9_calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[2] = 0; // This branch implicit
}
}
static INLINE unsigned weighted_cost(vp9_prob *tab0, vp9_prob *tab1,
int idx, int val, int weight) {
unsigned cost0 = tab0[idx] ? vp9_cost_bit(tab0[idx], val) : 0;
unsigned cost1 = tab1[idx] ? vp9_cost_bit(tab1[idx], val) : 0;
// weight is 16-bit fixed point, so this basically calculates:
// 0.5 + weight * cost1 + (1.0 - weight) * cost0
return (0x8000 + weight * cost1 + (0x10000 - weight) * cost0) >> 16;
}
static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id, unsigned int *ref_costs) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
vp9_prob *mod_refprobs;
unsigned int cost;
int pred_ref;
int pred_flag;
int pred_ctx;
int i;
vp9_prob pred_prob, new_pred_prob;
int seg_ref_active;
int seg_ref_count = 0;
seg_ref_active = vp9_segfeature_active(xd,
segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) +
vp9_check_segref(xd, segment_id, LAST_FRAME) +
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, segment_id, ALTREF_FRAME);
}
// Get the predicted reference for this mb
pred_ref = vp9_get_pred_ref(cm, xd);
// Get the context probability for the prediction flag (based on last frame)
pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF);
// Predict probability for current frame based on stats so far
pred_ctx = vp9_get_pred_context(cm, xd, PRED_REF);
new_pred_prob = get_binary_prob(cpi->ref_pred_count[pred_ctx][0],
cpi->ref_pred_count[pred_ctx][1]);
// Get the set of probabilities to use if prediction fails
mod_refprobs = cm->mod_refprobs[pred_ref];
// For each possible selected reference frame work out a cost.
for (i = 0; i < MAX_REF_FRAMES; i++) {
if (seg_ref_active && seg_ref_count == 1) {
cost = 0;
} else {
pred_flag = (i == pred_ref);
// Get the prediction for the current mb
cost = weighted_cost(&pred_prob, &new_pred_prob, 0,
pred_flag, cpi->seg0_progress);
if (cost > 1024) cost = 768; // i.e. account for 4 bits max.
// for incorrectly predicted cases
if (! pred_flag) {
vp9_prob curframe_mod_refprobs[3];
if (cpi->seg0_progress) {
estimate_curframe_refprobs(cpi, curframe_mod_refprobs, pred_ref);
} else {
vpx_memset(curframe_mod_refprobs, 0, sizeof(curframe_mod_refprobs));
}
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 0,
(i != INTRA_FRAME), cpi->seg0_progress);
if (i != INTRA_FRAME) {
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 1,
(i != LAST_FRAME), cpi->seg0_progress);
if (i != LAST_FRAME) {
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 2,
(i != GOLDEN_FRAME), cpi->seg0_progress);
}
}
}
}
ref_costs[i] = cost;
}
}
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index,
PARTITION_INFO *partition,
int_mv *ref_mv,
int_mv *second_ref_mv,
int64_t comp_pred_diff[NB_PREDICTION_TYPES],
int64_t txfm_size_diff[NB_TXFM_MODES]) {
MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->skip = x->skip;
ctx->best_mode_index = mode_index;
vpx_memcpy(&ctx->mic, xd->mode_info_context,
sizeof(MODE_INFO));
if (partition)
vpx_memcpy(&ctx->partition_info, partition,
sizeof(PARTITION_INFO));
ctx->best_ref_mv.as_int = ref_mv->as_int;
ctx->second_best_ref_mv.as_int = second_ref_mv->as_int;
ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_PREDICTION_ONLY];
ctx->comp_pred_diff = (int)comp_pred_diff[COMP_PREDICTION_ONLY];
ctx->hybrid_pred_diff = (int)comp_pred_diff[HYBRID_PREDICTION];
memcpy(ctx->txfm_rd_diff, txfm_size_diff, sizeof(ctx->txfm_rd_diff));
}
static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
int idx, MV_REFERENCE_FRAME frame_type,
enum BlockSize block_size,
int mb_row, int mb_col,
int_mv frame_nearest_mv[MAX_REF_FRAMES],
int_mv frame_near_mv[MAX_REF_FRAMES],
int frame_mdcounts[4][4],
YV12_BUFFER_CONFIG yv12_mb[4],
struct scale_factors scale[MAX_REF_FRAMES]) {
VP9_COMMON *cm = &cpi->common;
YV12_BUFFER_CONFIG *yv12 = &cm->yv12_fb[cpi->common.ref_frame_map[idx]];
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
int use_prev_in_find_mv_refs;
// set up scaling factors
scale[frame_type] = cpi->common.active_ref_scale[frame_type - 1];
scale[frame_type].x_offset_q4 =
(mb_col * 16 * scale[frame_type].x_num / scale[frame_type].x_den) & 0xf;
scale[frame_type].y_offset_q4 =
(mb_row * 16 * scale[frame_type].y_num / scale[frame_type].y_den) & 0xf;
// TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
// use the UV scaling factors.
setup_pred_block(&yv12_mb[frame_type], yv12, mb_row, mb_col,
&scale[frame_type], &scale[frame_type]);
// Gets an initial list of candidate vectors from neighbours and orders them
use_prev_in_find_mv_refs = cm->width == cm->last_width &&
cm->height == cm->last_height &&
!cpi->common.error_resilient_mode;
vp9_find_mv_refs(&cpi->common, xd, xd->mode_info_context,
use_prev_in_find_mv_refs ? xd->prev_mode_info_context : NULL,
frame_type,
mbmi->ref_mvs[frame_type],
cpi->common.ref_frame_sign_bias);
// Candidate refinement carried out at encoder and decoder
vp9_find_best_ref_mvs(xd,
mbmi->ref_mvs[frame_type],
&frame_nearest_mv[frame_type],
&frame_near_mv[frame_type]);
// Further refinement that is encode side only to test the top few candidates
// in full and choose the best as the centre point for subsequent searches.
// The current implementation doesn't support scaling.
if (scale[frame_type].x_num == scale[frame_type].x_den &&
scale[frame_type].y_num == scale[frame_type].y_den)
mv_pred(cpi, x, yv12_mb[frame_type].y_buffer, yv12->y_stride,
frame_type, block_size);
}
static void model_rd_from_var_lapndz(int var, int n, int qstep,
int *rate, int *dist) {
// This function models the rate and distortion for a Laplacian
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expressions are in:
// Hang and Chen, "Source Model for transform video coder and its
// application - Part I: Fundamental Theory", IEEE Trans. Circ.
// Sys. for Video Tech., April 1997.
// The function is implemented as piecewise approximation to the
// exact computation.
// TODO(debargha): Implement the functions by interpolating from a
// look-up table
vp9_clear_system_state();
{
double D, R;
double s2 = (double) var / n;
double s = sqrt(s2);
double x = qstep / s;
if (x > 1.0) {
double y = exp(-x / 2);
double y2 = y * y;
D = 2.069981728764738 * y2 - 2.764286806516079 * y + 1.003956960819275;
R = 0.924056758535089 * y2 + 2.738636469814024 * y - 0.005169662030017;
} else {
double x2 = x * x;
D = 0.075303187668830 * x2 + 0.004296954321112 * x - 0.000413209252807;
if (x > 0.125)
R = 1 / (-0.03459733614226 * x2 + 0.36561675733603 * x +
0.1626989668625);
else
R = -1.442252874826093 * log(x) + 1.944647760719664;
}
if (R < 0) {
*rate = 0;
*dist = var;
} else {
*rate = (n * R * 256 + 0.5);
*dist = (n * D * s2 + 0.5);
}
}
vp9_clear_system_state();
}
static enum BlockSize y_to_uv_block_size(enum BlockSize bs) {
switch (bs) {
case BLOCK_64X64: return BLOCK_32X32;
#if CONFIG_SBSEGMENT
case BLOCK_64X32: return BLOCK_32X16;
case BLOCK_32X64: return BLOCK_16X32;
#endif
case BLOCK_32X32: return BLOCK_16X16;
#if CONFIG_SBSEGMENT
case BLOCK_32X16: return BLOCK_16X8;
case BLOCK_16X32: return BLOCK_8X16;
#endif
case BLOCK_16X16: return BLOCK_8X8;
default:
assert(0);
return -1;
}
}
static enum BlockSize y_bsizet_to_block_size(BLOCK_SIZE_TYPE bs) {
switch (bs) {
case BLOCK_SIZE_SB64X64: return BLOCK_64X64;
#if CONFIG_SBSEGMENT
case BLOCK_SIZE_SB64X32: return BLOCK_64X32;
case BLOCK_SIZE_SB32X64: return BLOCK_32X64;
#endif
case BLOCK_SIZE_SB32X32: return BLOCK_32X32;
#if CONFIG_SBSEGMENT
case BLOCK_SIZE_SB32X16: return BLOCK_32X16;
case BLOCK_SIZE_SB16X32: return BLOCK_16X32;
#endif
case BLOCK_SIZE_MB16X16: return BLOCK_16X16;
default:
assert(0);
return -1;
}
}
static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int mdcounts[4], int64_t txfm_cache[],
int *rate2, int *distortion, int *skippable,
int *compmode_cost,
#if CONFIG_COMP_INTERINTRA_PRED
int *compmode_interintra_cost,
#endif
int *rate_y, int *distortion_y,
int *rate_uv, int *distortion_uv,
int *mode_excluded, int *disable_skip,
int mode_index,
INTERPOLATIONFILTERTYPE *best_filter,
int_mv frame_mv[MB_MODE_COUNT]
[MAX_REF_FRAMES],
YV12_BUFFER_CONFIG *scaled_ref_frame,
int mb_row, int mb_col) {
const int bw = 1 << mb_width_log2(bsize), bh = 1 << mb_height_log2(bsize);
const enum BlockSize block_size = y_bsizet_to_block_size(bsize);
const enum BlockSize uv_block_size = y_to_uv_block_size(block_size);
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
BLOCK *b = &x->block[0];
BLOCKD *d = &xd->block[0];
const int is_comp_pred = (mbmi->second_ref_frame > 0);
#if CONFIG_COMP_INTERINTRA_PRED
const int is_comp_interintra_pred = (mbmi->second_ref_frame == INTRA_FRAME);
#endif
const int num_refs = is_comp_pred ? 2 : 1;
const int this_mode = mbmi->mode;
int i;
int refs[2] = { mbmi->ref_frame,
(mbmi->second_ref_frame < 0 ? 0 : mbmi->second_ref_frame) };
int_mv cur_mv[2];
int_mv ref_mv[2];
int64_t this_rd = 0;
unsigned char tmp_ybuf[64 * 64];
unsigned char tmp_ubuf[32 * 32];
unsigned char tmp_vbuf[32 * 32];
int pred_exists = 0;
int interpolating_intpel_seen = 0;
int intpel_mv;
int64_t rd, best_rd = INT64_MAX;
switch (this_mode) {
case NEWMV:
ref_mv[0] = mbmi->ref_mvs[refs[0]][0];
ref_mv[1] = mbmi->ref_mvs[refs[1]][0];
if (is_comp_pred) {
if (frame_mv[NEWMV][refs[0]].as_int == INVALID_MV ||
frame_mv[NEWMV][refs[1]].as_int == INVALID_MV)
return INT64_MAX;
*rate2 += vp9_mv_bit_cost(&frame_mv[NEWMV][refs[0]],
&ref_mv[0],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
*rate2 += vp9_mv_bit_cost(&frame_mv[NEWMV][refs[1]],
&ref_mv[1],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
} else {
YV12_BUFFER_CONFIG backup_yv12 = xd->pre;
int bestsme = INT_MAX;
int further_steps, step_param = cpi->sf.first_step;
int sadpb = x->sadperbit16;
int_mv mvp_full, tmp_mv;
int sr = 0;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
if (scaled_ref_frame) {
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
xd->pre = *scaled_ref_frame;
xd->pre.y_buffer += mb_row * 16 * xd->pre.y_stride + mb_col * 16;
xd->pre.u_buffer += mb_row * 8 * xd->pre.uv_stride + mb_col * 8;
xd->pre.v_buffer += mb_row * 8 * xd->pre.uv_stride + mb_col * 8;
}
vp9_clamp_mv_min_max(x, &ref_mv[0]);
sr = vp9_init_search_range(cpi->common.width, cpi->common.height);
// mvp_full.as_int = ref_mv[0].as_int;
mvp_full.as_int =
mbmi->ref_mvs[refs[0]][x->mv_best_ref_index[refs[0]]].as_int;
mvp_full.as_mv.col >>= 3;
mvp_full.as_mv.row >>= 3;
// adjust search range according to sr from mv prediction
step_param = MAX(step_param, sr);
// Further step/diamond searches as necessary
further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
bestsme = vp9_full_pixel_diamond(cpi, x, b, d, &mvp_full, step_param,
sadpb, further_steps, 1,
&cpi->fn_ptr[block_size],
&ref_mv[0], &tmp_mv);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
cpi->find_fractional_mv_step(x, b, d, &tmp_mv,
&ref_mv[0],
x->errorperbit,
&cpi->fn_ptr[block_size],
x->nmvjointcost, x->mvcost,
&dis, &sse);
}
d->bmi.as_mv[0].as_int = tmp_mv.as_int;
frame_mv[NEWMV][refs[0]].as_int = d->bmi.as_mv[0].as_int;
// Add the new motion vector cost to our rolling cost variable
*rate2 += vp9_mv_bit_cost(&tmp_mv, &ref_mv[0],
x->nmvjointcost, x->mvcost,
96, xd->allow_high_precision_mv);
// restore the predictor, if required
if (scaled_ref_frame) {
xd->pre = backup_yv12;
}
}
break;
case NEARMV:
case NEARESTMV:
case ZEROMV:
default:
break;
}
for (i = 0; i < num_refs; ++i) {
cur_mv[i] = frame_mv[this_mode][refs[i]];
// Clip "next_nearest" so that it does not extend to far out of image
if (this_mode == NEWMV)
assert(!clamp_mv2(&cur_mv[i], xd));
else
clamp_mv2(&cur_mv[i], xd);
if (mv_check_bounds(x, &cur_mv[i]))
return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
/* We don't include the cost of the second reference here, because there
* are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
* words if you present them in that order, the second one is always known
* if the first is known */
*compmode_cost = vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_COMP),
is_comp_pred);
*rate2 += vp9_cost_mv_ref(cpi, this_mode,
mbmi->mb_mode_context[mbmi->ref_frame]);
#if CONFIG_COMP_INTERINTRA_PRED
if (!is_comp_pred) {
*compmode_interintra_cost = vp9_cost_bit(cm->fc.interintra_prob,
is_comp_interintra_pred);
if (is_comp_interintra_pred) {
*compmode_interintra_cost +=
x->mbmode_cost[xd->frame_type][mbmi->interintra_mode];
#if SEPARATE_INTERINTRA_UV
*compmode_interintra_cost +=
x->intra_uv_mode_cost[xd->frame_type][mbmi->interintra_uv_mode];
#endif
}
}
#endif
pred_exists = 0;
interpolating_intpel_seen = 0;
// Are all MVs integer pel for Y and UV
intpel_mv = (mbmi->mv[0].as_mv.row & 15) == 0 &&
(mbmi->mv[0].as_mv.col & 15) == 0;
if (is_comp_pred)
intpel_mv &= (mbmi->mv[1].as_mv.row & 15) == 0 &&
(mbmi->mv[1].as_mv.col & 15) == 0;
// Search for best switchable filter by checking the variance of
// pred error irrespective of whether the filter will be used
if (bsize != BLOCK_SIZE_MB16X16) {
int switchable_filter_index, newbest;
int tmp_rate_y_i = 0, tmp_rate_u_i = 0, tmp_rate_v_i = 0;
int tmp_dist_y_i = 0, tmp_dist_u_i = 0, tmp_dist_v_i = 0;
for (switchable_filter_index = 0;
switchable_filter_index < VP9_SWITCHABLE_FILTERS;
++switchable_filter_index) {
int rs = 0;
mbmi->interp_filter = vp9_switchable_interp[switchable_filter_index];
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
const int c = vp9_get_pred_context(cm, xd, PRED_SWITCHABLE_INTERP);
const int m = vp9_switchable_interp_map[mbmi->interp_filter];
rs = SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs[c][m];
}
if (interpolating_intpel_seen && intpel_mv &&
vp9_is_interpolating_filter[mbmi->interp_filter]) {
rd = RDCOST(x->rdmult, x->rddiv,
rs + tmp_rate_y_i + tmp_rate_u_i + tmp_rate_v_i,
tmp_dist_y_i + tmp_dist_u_i + tmp_dist_v_i);
} else {
unsigned int sse, var;
int tmp_rate_y, tmp_rate_u, tmp_rate_v;
int tmp_dist_y, tmp_dist_u, tmp_dist_v;
vp9_build_inter_predictors_sb(xd, mb_row, mb_col, bsize);
var = cpi->fn_ptr[block_size].vf(*(b->base_src), b->src_stride,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride,
&sse);
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
model_rd_from_var_lapndz(var, 16 * bw * 16 * bh,
xd->block[0].dequant[1] >> 3,
&tmp_rate_y, &tmp_dist_y);
var = cpi->fn_ptr[uv_block_size].vf(x->src.u_buffer, x->src.uv_stride,
xd->plane[1].dst.buf,
xd->plane[1].dst.stride,
&sse);
model_rd_from_var_lapndz(var, 8 * bw * 8 * bh,
xd->block[16].dequant[1] >> 3,
&tmp_rate_u, &tmp_dist_u);
var = cpi->fn_ptr[uv_block_size].vf(x->src.v_buffer, x->src.uv_stride,
xd->plane[2].dst.buf,
xd->plane[1].dst.stride,
&sse);
model_rd_from_var_lapndz(var, 8 * bw * 8 * bh,
xd->block[20].dequant[1] >> 3,
&tmp_rate_v, &tmp_dist_v);
rd = RDCOST(x->rdmult, x->rddiv,
rs + tmp_rate_y + tmp_rate_u + tmp_rate_v,
tmp_dist_y + tmp_dist_u + tmp_dist_v);
if (!interpolating_intpel_seen && intpel_mv &&
vp9_is_interpolating_filter[mbmi->interp_filter]) {
tmp_rate_y_i = tmp_rate_y;
tmp_rate_u_i = tmp_rate_u;
tmp_rate_v_i = tmp_rate_v;
tmp_dist_y_i = tmp_dist_y;
tmp_dist_u_i = tmp_dist_u;
tmp_dist_v_i = tmp_dist_v;
}
}
newbest = (switchable_filter_index == 0 || rd < best_rd);
if (newbest) {
best_rd = rd;
*best_filter = mbmi->interp_filter;
}
if ((cm->mcomp_filter_type == SWITCHABLE && newbest) ||
(cm->mcomp_filter_type != SWITCHABLE &&
cm->mcomp_filter_type == mbmi->interp_filter)) {
int i;
for (i = 0; i < 16 * bh; ++i)
vpx_memcpy(tmp_ybuf + i * 16 * bw,
xd->plane[0].dst.buf + i * xd->plane[0].dst.stride,
sizeof(unsigned char) * 16 * bw);
for (i = 0; i < 8 * bh; ++i)
vpx_memcpy(tmp_ubuf + i * 8 * bw,
xd->plane[1].dst.buf + i * xd->plane[1].dst.stride,
sizeof(unsigned char) * 8 * bw);
for (i = 0; i < 8 * bh; ++i)
vpx_memcpy(tmp_vbuf + i * 8 * bw,
xd->plane[2].dst.buf + i * xd->plane[1].dst.stride,
sizeof(unsigned char) * 8 * bw);
pred_exists = 1;
}
interpolating_intpel_seen |=
intpel_mv && vp9_is_interpolating_filter[mbmi->interp_filter];
}
} else {
int switchable_filter_index, newbest;
int tmp_rate_y_i = 0, tmp_rate_u_i = 0, tmp_rate_v_i = 0;
int tmp_dist_y_i = 0, tmp_dist_u_i = 0, tmp_dist_v_i = 0;
for (switchable_filter_index = 0;
switchable_filter_index < VP9_SWITCHABLE_FILTERS;
++switchable_filter_index) {
int rs = 0;
mbmi->interp_filter = vp9_switchable_interp[switchable_filter_index];
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
const int c = vp9_get_pred_context(cm, xd, PRED_SWITCHABLE_INTERP);
const int m = vp9_switchable_interp_map[mbmi->interp_filter];
rs = SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs[c][m];
}
if (interpolating_intpel_seen && intpel_mv &&
vp9_is_interpolating_filter[mbmi->interp_filter]) {
rd = RDCOST(x->rdmult, x->rddiv,
rs + tmp_rate_y_i + tmp_rate_u_i + tmp_rate_v_i,
tmp_dist_y_i + tmp_dist_u_i + tmp_dist_v_i);
} else {
unsigned int sse, var;
int tmp_rate_y, tmp_rate_u, tmp_rate_v;
int tmp_dist_y, tmp_dist_u, tmp_dist_v;
vp9_build_inter_predictors_sb(xd, mb_row, mb_col, BLOCK_SIZE_MB16X16);
var = vp9_variance16x16(*(b->base_src), b->src_stride,
xd->plane[0].dst.buf, xd->plane[0].dst.stride,
&sse);
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
model_rd_from_var_lapndz(var, 16 * 16, xd->block[0].dequant[1] >> 3,
&tmp_rate_y, &tmp_dist_y);
var = vp9_variance8x8(x->src.u_buffer, x->src.uv_stride,
xd->plane[1].dst.buf, xd->plane[1].dst.stride,
&sse);
model_rd_from_var_lapndz(var, 8 * 8, xd->block[16].dequant[1] >> 3,
&tmp_rate_u, &tmp_dist_u);
var = vp9_variance8x8(x->src.v_buffer, x->src.uv_stride,
xd->plane[2].dst.buf, xd->plane[1].dst.stride,
&sse);
model_rd_from_var_lapndz(var, 8 * 8, xd->block[20].dequant[1] >> 3,
&tmp_rate_v, &tmp_dist_v);
rd = RDCOST(x->rdmult, x->rddiv,
rs + tmp_rate_y + tmp_rate_u + tmp_rate_v,
tmp_dist_y + tmp_dist_u + tmp_dist_v);
if (!interpolating_intpel_seen && intpel_mv &&
vp9_is_interpolating_filter[mbmi->interp_filter]) {
tmp_rate_y_i = tmp_rate_y;
tmp_rate_u_i = tmp_rate_u;
tmp_rate_v_i = tmp_rate_v;
tmp_dist_y_i = tmp_dist_y;
tmp_dist_u_i = tmp_dist_u;
tmp_dist_v_i = tmp_dist_v;
}
}
newbest = (switchable_filter_index == 0 || rd < best_rd);
if (newbest) {
best_rd = rd;
*best_filter = mbmi->interp_filter;
}
if ((cm->mcomp_filter_type == SWITCHABLE && newbest) ||
(cm->mcomp_filter_type != SWITCHABLE &&
cm->mcomp_filter_type == mbmi->interp_filter)) {
int i;
for (i = 0; i < 16 * bh; ++i)
vpx_memcpy(tmp_ybuf + i * 16 * bw,
xd->plane[0].dst.buf + i * xd->plane[0].dst.stride,
sizeof(unsigned char) * 16 * bw);
for (i = 0; i < 8 * bh; ++i)
vpx_memcpy(tmp_ubuf + i * 8 * bw,
xd->plane[1].dst.buf + i * xd->plane[1].dst.stride,
sizeof(unsigned char) * 8 * bw);
for (i = 0; i < 8 * bh; ++i)
vpx_memcpy(tmp_vbuf + i * 8 * bw,
xd->plane[2].dst.buf + i * xd->plane[1].dst.stride,
sizeof(unsigned char) * 8 * bw);
pred_exists = 1;
}
interpolating_intpel_seen |=
intpel_mv && vp9_is_interpolating_filter[mbmi->interp_filter];
}
}
// Set the appripriate filter
if (cm->mcomp_filter_type != SWITCHABLE)
mbmi->interp_filter = cm->mcomp_filter_type;
else
mbmi->interp_filter = *best_filter;
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
if (pred_exists) {
// FIXME(rbultje): mb code still predicts into xd->predictor
for (i = 0; i < bh * 16; ++i)
vpx_memcpy(xd->plane[0].dst.buf + i * xd->plane[0].dst.stride,
tmp_ybuf + i * bw * 16, sizeof(unsigned char) * bw * 16);
for (i = 0; i < bh * 8; ++i)
vpx_memcpy(xd->plane[1].dst.buf + i * xd->plane[1].dst.stride,
tmp_ubuf + i * bw * 8, sizeof(unsigned char) * bw * 8);
for (i = 0; i < bh * 8; ++i)
vpx_memcpy(xd->plane[2].dst.buf + i * xd->plane[1].dst.stride,
tmp_vbuf + i * bw * 8, sizeof(unsigned char) * bw * 8);
} else {
// Handles the special case when a filter that is not in the
// switchable list (ex. bilinear, 6-tap) is indicated at the frame level
vp9_build_inter_predictors_sb(xd, mb_row, mb_col, bsize);
}
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
const int c = vp9_get_pred_context(cm, xd, PRED_SWITCHABLE_INTERP);
const int m = vp9_switchable_interp_map[mbmi->interp_filter];
*rate2 += SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs[c][m];
}
if (cpi->active_map_enabled && x->active_ptr[0] == 0)
x->skip = 1;
else if (x->encode_breakout) {
unsigned int var, sse;
int threshold = (xd->block[0].dequant[1]
* xd->block[0].dequant[1] >> 4);
if (threshold < x->encode_breakout)
threshold = x->encode_breakout;
if (bsize != BLOCK_SIZE_MB16X16) {
var = cpi->fn_ptr[block_size].vf(*(b->base_src), b->src_stride,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride,
&sse);
} else {
var = vp9_variance16x16(*(b->base_src), b->src_stride,
xd->plane[0].dst.buf, xd->plane[0].dst.stride,
&sse);
}
if ((int)sse < threshold) {
unsigned int q2dc = xd->block[0].dequant[0];
/* If there is no codeable 2nd order dc
or a very small uniform pixel change change */
if ((sse - var < q2dc * q2dc >> 4) ||
(sse / 2 > var && sse - var < 64)) {
// Check u and v to make sure skip is ok
int sse2;
if (bsize != BLOCK_SIZE_MB16X16) {
unsigned int sse2u, sse2v;
// FIXME(rbultje): mb predictors predict into xd->predictor
var = cpi->fn_ptr[uv_block_size].vf(x->src.u_buffer, x->src.uv_stride,
xd->plane[1].dst.buf,
xd->plane[1].dst.stride, &sse2u);
var = cpi->fn_ptr[uv_block_size].vf(x->src.v_buffer, x->src.uv_stride,
xd->plane[2].dst.buf,
xd->plane[1].dst.stride, &sse2v);
sse2 = sse2u + sse2v;
} else {
unsigned int sse2u, sse2v;
var = vp9_variance8x8(x->src.u_buffer, x->src.uv_stride,
xd->plane[1].dst.buf, xd->plane[1].dst.stride,
&sse2u);
var = vp9_variance8x8(x->src.v_buffer, x->src.uv_stride,
xd->plane[2].dst.buf, xd->plane[1].dst.stride,
&sse2v);
sse2 = sse2u + sse2v;
}
if (sse2 * 2 < threshold) {
x->skip = 1;
*distortion = sse + sse2;
*rate2 = 500;
/* for best_yrd calculation */
*rate_uv = 0;
*distortion_uv = sse2;
*disable_skip = 1;
this_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
}
}
}
}
if (!x->skip) {
int skippable_y, skippable_uv;
// Y cost and distortion
super_block_yrd(cpi, x, rate_y, distortion_y, &skippable_y,
bsize, txfm_cache);
*rate2 += *rate_y;
*distortion += *distortion_y;
super_block_uvrd(cm, x, rate_uv, distortion_uv,
&skippable_uv, bsize);
*rate2 += *rate_uv;
*distortion += *distortion_uv;
*skippable = skippable_y && skippable_uv;
}
if (!(*mode_excluded)) {
if (is_comp_pred) {
*mode_excluded = (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY);
} else {
*mode_excluded = (cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY);
}
#if CONFIG_COMP_INTERINTRA_PRED
if (is_comp_interintra_pred && !cm->use_interintra) *mode_excluded = 1;
#endif
}
return this_rd; // if 0, this will be re-calculated by caller
}
static void rd_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
int mb_row, int mb_col,
int *returnrate, int *returndistortion,
int64_t *returnintra) {
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
union b_mode_info best_bmodes[16];
MB_MODE_INFO best_mbmode;
PARTITION_INFO best_partition;
int_mv best_ref_mv, second_best_ref_mv;
MB_PREDICTION_MODE this_mode;
MB_PREDICTION_MODE best_mode = DC_PRED;
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
int i, best_mode_index = 0;
int mode8x8[4];
unsigned char segment_id = mbmi->segment_id;
int mode_index;
int mdcounts[4];
int rate, distortion;
int rate2, distortion2;
int64_t best_txfm_rd[NB_TXFM_MODES];
int64_t best_txfm_diff[NB_TXFM_MODES];
int64_t best_pred_diff[NB_PREDICTION_TYPES];
int64_t best_pred_rd[NB_PREDICTION_TYPES];
int64_t best_rd = INT64_MAX, best_intra_rd = INT64_MAX;
#if CONFIG_COMP_INTERINTRA_PRED
int is_best_interintra = 0;
int64_t best_intra16_rd = INT64_MAX;
int best_intra16_mode = DC_PRED;
#if SEPARATE_INTERINTRA_UV
int best_intra16_uv_mode = DC_PRED;
#endif
#endif
int64_t best_overall_rd = INT64_MAX;
INTERPOLATIONFILTERTYPE best_filter = SWITCHABLE;
INTERPOLATIONFILTERTYPE tmp_best_filter = SWITCHABLE;
int uv_intra_rate[2], uv_intra_distortion[2], uv_intra_rate_tokenonly[2];
int uv_intra_skippable[2];
MB_PREDICTION_MODE uv_intra_mode[2];
int rate_y, UNINITIALIZED_IS_SAFE(rate_uv);
int distortion_uv = INT_MAX;
int64_t best_yrd = INT64_MAX;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
int frame_mdcounts[4][4];
YV12_BUFFER_CONFIG yv12_mb[4];
unsigned int ref_costs[MAX_REF_FRAMES];
int_mv seg_mvs[NB_PARTITIONINGS][16 /* n_blocks */][MAX_REF_FRAMES - 1];
int intra_cost_penalty = 20 * vp9_dc_quant(cpi->common.base_qindex,
cpi->common.y_dc_delta_q);
struct scale_factors scale_factor[4];
vpx_memset(mode8x8, 0, sizeof(mode8x8));
vpx_memset(&frame_mv, 0, sizeof(frame_mv));
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode));
vpx_memset(&best_bmodes, 0, sizeof(best_bmodes));
vpx_memset(&x->mb_context[xd->sb_index][xd->mb_index], 0,
sizeof(PICK_MODE_CONTEXT));
for (i = 0; i < MAX_REF_FRAMES; i++)
frame_mv[NEWMV][i].as_int = INVALID_MV;
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = INT64_MAX;
for (i = 0; i < NB_TXFM_MODES; i++)
best_txfm_rd[i] = INT64_MAX;
for (i = 0; i < NB_PARTITIONINGS; i++) {
int j, k;
for (j = 0; j < 16; j++)
for (k = 0; k < MAX_REF_FRAMES - 1; k++)
seg_mvs[i][j][k].as_int = INVALID_MV;
}
if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
setup_buffer_inter(cpi, x, cpi->lst_fb_idx,
LAST_FRAME, BLOCK_16X16, mb_row, mb_col,
frame_mv[NEARESTMV], frame_mv[NEARMV],
frame_mdcounts, yv12_mb, scale_factor);
}
if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
setup_buffer_inter(cpi, x, cpi->gld_fb_idx,
GOLDEN_FRAME, BLOCK_16X16, mb_row, mb_col,
frame_mv[NEARESTMV], frame_mv[NEARMV],
frame_mdcounts, yv12_mb, scale_factor);
}
if (cpi->ref_frame_flags & VP9_ALT_FLAG) {
setup_buffer_inter(cpi, x, cpi->alt_fb_idx,
ALTREF_FRAME, BLOCK_16X16, mb_row, mb_col,
frame_mv[NEARESTMV], frame_mv[NEARMV],
frame_mdcounts, yv12_mb, scale_factor);
}
*returnintra = INT64_MAX;
mbmi->ref_frame = INTRA_FRAME;
/* Initialize zbin mode boost for uv costing */
cpi->zbin_mode_boost = 0;
vp9_update_zbin_extra(cpi, x);
xd->mode_info_context->mbmi.mode = DC_PRED;
for (i = 0; i <= TX_8X8; i++) {
mbmi->txfm_size = i;
rd_pick_intra_sbuv_mode(cpi, x, &uv_intra_rate[i],
&uv_intra_rate_tokenonly[i],
&uv_intra_distortion[i],
&uv_intra_skippable[i],
BLOCK_SIZE_MB16X16);
uv_intra_mode[i] = mbmi->uv_mode;
}
// Get estimates of reference frame costs for each reference frame
// that depend on the current prediction etc.
estimate_ref_frame_costs(cpi, segment_id, ref_costs);
for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
int64_t this_rd = INT64_MAX;
int disable_skip = 0, skippable = 0;
int other_cost = 0;
int compmode_cost = 0;
#if CONFIG_COMP_INTERINTRA_PRED
int compmode_interintra_cost = 0;
#endif
int mode_excluded = 0;
int64_t txfm_cache[NB_TXFM_MODES] = { 0 };
YV12_BUFFER_CONFIG *scaled_ref_frame;
// These variables hold are rolling total cost and distortion for this mode
rate2 = 0;
distortion2 = 0;
rate_y = 0;
rate_uv = 0;
x->skip = 0;
this_mode = vp9_mode_order[mode_index].mode;
mbmi->mode = this_mode;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame = vp9_mode_order[mode_index].ref_frame;
mbmi->second_ref_frame = vp9_mode_order[mode_index].second_ref_frame;
mbmi->interp_filter = cm->mcomp_filter_type;
set_scale_factors(xd, mbmi->ref_frame, mbmi->second_ref_frame,
scale_factor);
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
// Test best rd so far against threshold for trying this mode.
if (best_rd <= cpi->rd_threshes[mode_index])
continue;
// Ensure that the references used by this mode are available.
if (mbmi->ref_frame &&
!(cpi->ref_frame_flags & flag_list[mbmi->ref_frame]))
continue;
if (mbmi->second_ref_frame > 0 &&
!(cpi->ref_frame_flags & flag_list[mbmi->second_ref_frame]))
continue;
// only scale on zeromv.
if (mbmi->ref_frame > 0 &&
(yv12_mb[mbmi->ref_frame].y_width != cm->mb_cols * 16 ||
yv12_mb[mbmi->ref_frame].y_height != cm->mb_rows * 16) &&
this_mode != ZEROMV)
continue;
if (mbmi->second_ref_frame > 0 &&
(yv12_mb[mbmi->second_ref_frame].y_width != cm->mb_cols * 16 ||
yv12_mb[mbmi->second_ref_frame].y_height != cm->mb_rows * 16) &&
this_mode != ZEROMV)
continue;
// current coding mode under rate-distortion optimization test loop
#if CONFIG_COMP_INTERINTRA_PRED
mbmi->interintra_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
mbmi->interintra_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!vp9_check_segref(xd, segment_id, mbmi->ref_frame)) {
continue;
// If the segment skip feature is enabled....
// then do nothing if the current mode is not allowed..
} else if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP) &&
(this_mode != ZEROMV)) {
continue;
// Disable this drop out case if the ref frame segment
// level feature is enabled for this segment. This is to
// prevent the possibility that the we end up unable to pick any mode.
} else if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame overlay,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative
if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
if (this_mode != ZEROMV ||
mbmi->ref_frame != ALTREF_FRAME) {
continue;
}
}
}
/* everything but intra */
scaled_ref_frame = NULL;
if (mbmi->ref_frame) {
int ref = mbmi->ref_frame;
int fb;
xd->pre = yv12_mb[ref];
best_ref_mv = mbmi->ref_mvs[ref][0];
vpx_memcpy(mdcounts, frame_mdcounts[ref], sizeof(mdcounts));
if (mbmi->ref_frame == LAST_FRAME) {
fb = cpi->lst_fb_idx;
} else if (mbmi->ref_frame == GOLDEN_FRAME) {
fb = cpi->gld_fb_idx;
} else {
fb = cpi->alt_fb_idx;
}
if (cpi->scaled_ref_idx[fb] != cm->ref_frame_map[fb])
scaled_ref_frame = &cm->yv12_fb[cpi->scaled_ref_idx[fb]];
}
if (mbmi->second_ref_frame > 0) {
int ref = mbmi->second_ref_frame;
xd->second_pre = yv12_mb[ref];
second_best_ref_mv = mbmi->ref_mvs[ref][0];
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
if (cpi->zbin_mode_boost_enabled) {
if (vp9_mode_order[mode_index].ref_frame == INTRA_FRAME)
cpi->zbin_mode_boost = 0;
else {
if (vp9_mode_order[mode_index].mode == ZEROMV) {
if (vp9_mode_order[mode_index].ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
} else if (vp9_mode_order[mode_index].mode == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
vp9_update_zbin_extra(cpi, x);
}
// Intra
if (!mbmi->ref_frame) {
switch (this_mode) {
default:
case V_PRED:
case H_PRED:
case D45_PRED:
case D135_PRED:
case D117_PRED:
case D153_PRED:
case D27_PRED:
case D63_PRED:
rate2 += intra_cost_penalty;
case DC_PRED:
case TM_PRED:
mbmi->ref_frame = INTRA_FRAME;
// FIXME compound intra prediction
vp9_build_intra_predictors_sby_s(&x->e_mbd, BLOCK_SIZE_MB16X16);
// vp9_build_intra_predictors_mby(&x->e_mbd);
super_block_yrd(cpi, x, &rate_y, &distortion, &skippable,
BLOCK_SIZE_MB16X16, txfm_cache);
rate2 += rate_y;
distortion2 += distortion;
rate2 += x->mbmode_cost[xd->frame_type][mbmi->mode];
rate2 += uv_intra_rate[mbmi->txfm_size != TX_4X4];
rate_uv = uv_intra_rate_tokenonly[mbmi->txfm_size != TX_4X4];
distortion2 += uv_intra_distortion[mbmi->txfm_size != TX_4X4];
distortion_uv = uv_intra_distortion[mbmi->txfm_size != TX_4X4];
skippable = skippable &&
uv_intra_skippable[mbmi->txfm_size != TX_4X4];
break;
case I4X4_PRED: {
int64_t tmp_rd;
// Note the rate value returned here includes the cost of coding
// the I4X4_PRED mode : x->mbmode_cost[xd->frame_type][I4X4_PRED];
mbmi->txfm_size = TX_4X4;
tmp_rd = rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y,
&distortion, best_yrd);
rate2 += rate;
rate2 += intra_cost_penalty;
distortion2 += distortion;
if (tmp_rd < best_yrd) {
rate2 += uv_intra_rate[TX_4X4];
rate_uv = uv_intra_rate_tokenonly[TX_4X4];
distortion2 += uv_intra_distortion[TX_4X4];
distortion_uv = uv_intra_distortion[TX_4X4];
} else {
this_rd = INT64_MAX;
disable_skip = 1;
}
}
break;
case I8X8_PRED: {
int64_t tmp_rd;
tmp_rd = rd_pick_intra8x8mby_modes_and_txsz(cpi, x, &rate, &rate_y,
&distortion, mode8x8,
best_yrd, txfm_cache);
rate2 += rate;
rate2 += intra_cost_penalty;
distortion2 += distortion;
/* TODO: uv rate maybe over-estimated here since there is UV intra
mode coded in I8X8_PRED prediction */
if (tmp_rd < best_yrd) {
rate2 += uv_intra_rate[TX_4X4];
rate_uv = uv_intra_rate_tokenonly[TX_4X4];
distortion2 += uv_intra_distortion[TX_4X4];
distortion_uv = uv_intra_distortion[TX_4X4];
} else {
this_rd = INT64_MAX;
disable_skip = 1;
}
}
break;
}
}
// Split MV. The code is very different from the other inter modes so
// special case it.
else if (this_mode == SPLITMV) {
const int is_comp_pred = mbmi->second_ref_frame > 0;
int64_t this_rd_thresh;
int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
int tmp_best_distortion = INT_MAX, tmp_best_skippable = 0;
int switchable_filter_index;
int_mv *second_ref = is_comp_pred ? &second_best_ref_mv : NULL;
union b_mode_info tmp_best_bmodes[16];
MB_MODE_INFO tmp_best_mbmode;
PARTITION_INFO tmp_best_partition;
int pred_exists = 0;
this_rd_thresh =
(mbmi->ref_frame == LAST_FRAME) ?
cpi->rd_threshes[THR_NEWMV] : cpi->rd_threshes[THR_NEWA];
this_rd_thresh =
(mbmi->ref_frame == GOLDEN_FRAME) ?
cpi->rd_threshes[THR_NEWG] : this_rd_thresh;
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
for (switchable_filter_index = 0;
switchable_filter_index < VP9_SWITCHABLE_FILTERS;
++switchable_filter_index) {
int newbest;
mbmi->interp_filter =
vp9_switchable_interp[switchable_filter_index];
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
tmp_rd = rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv,
second_ref, best_yrd, mdcounts,
&rate, &rate_y, &distortion,
&skippable,
(int)this_rd_thresh, seg_mvs,
txfm_cache);
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
int rs = SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs
[vp9_get_pred_context(&cpi->common, xd,
PRED_SWITCHABLE_INTERP)]
[vp9_switchable_interp_map[mbmi->interp_filter]];
tmp_rd += RDCOST(x->rdmult, x->rddiv, rs, 0);
}
newbest = (tmp_rd < tmp_best_rd);
if (newbest) {
tmp_best_filter = mbmi->interp_filter;
tmp_best_rd = tmp_rd;
}
if ((newbest && cm->mcomp_filter_type == SWITCHABLE) ||
(mbmi->interp_filter == cm->mcomp_filter_type &&
cm->mcomp_filter_type != SWITCHABLE)) {
tmp_best_rdu = tmp_rd;
tmp_best_rate = rate;
tmp_best_ratey = rate_y;
tmp_best_distortion = distortion;
tmp_best_skippable = skippable;
vpx_memcpy(&tmp_best_mbmode, mbmi, sizeof(MB_MODE_INFO));
vpx_memcpy(&tmp_best_partition, x->partition_info,
sizeof(PARTITION_INFO));
for (i = 0; i < 16; i++) {
tmp_best_bmodes[i] = xd->block[i].bmi;
}
pred_exists = 1;
}
} // switchable_filter_index loop
mbmi->interp_filter = (cm->mcomp_filter_type == SWITCHABLE ?
tmp_best_filter : cm->mcomp_filter_type);
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
if (!pred_exists) {
// Handles the special case when a filter that is not in the
// switchable list (bilinear, 6-tap) is indicated at the frame level
tmp_rd = rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv,
second_ref, best_yrd, mdcounts,
&rate, &rate_y, &distortion,
&skippable,
(int)this_rd_thresh, seg_mvs,
txfm_cache);
} else {
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
int rs = SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs
[vp9_get_pred_context(&cpi->common, xd,
PRED_SWITCHABLE_INTERP)]
[vp9_switchable_interp_map[mbmi->interp_filter]];
tmp_best_rdu -= RDCOST(x->rdmult, x->rddiv, rs, 0);
}
tmp_rd = tmp_best_rdu;
rate = tmp_best_rate;
rate_y = tmp_best_ratey;
distortion = tmp_best_distortion;
skippable = tmp_best_skippable;
vpx_memcpy(mbmi, &tmp_best_mbmode, sizeof(MB_MODE_INFO));
vpx_memcpy(x->partition_info, &tmp_best_partition,
sizeof(PARTITION_INFO));
for (i = 0; i < 16; i++) {
xd->block[i].bmi = xd->mode_info_context->bmi[i] = tmp_best_bmodes[i];
}
}
rate2 += rate;
distortion2 += distortion;
if (cpi->common.mcomp_filter_type == SWITCHABLE)
rate2 += SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs
[vp9_get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)]
[vp9_switchable_interp_map[mbmi->interp_filter]];
// If even the 'Y' rd value of split is higher than best so far
// then dont bother looking at UV
if (tmp_rd < best_yrd) {
int uv_skippable;
vp9_build_inter4x4_predictors_mbuv(&x->e_mbd, mb_row, mb_col);
vp9_subtract_sbuv_s_c(x->src_diff,
x->src.u_buffer,
x->src.v_buffer, x->src.uv_stride,
xd->plane[1].dst.buf,
xd->plane[2].dst.buf, xd->plane[1].dst.stride,
BLOCK_SIZE_MB16X16);
super_block_uvrd_4x4(cm, x, &rate_uv, &distortion_uv,
&uv_skippable, BLOCK_SIZE_MB16X16);
rate2 += rate_uv;
distortion2 += distortion_uv;
skippable = skippable && uv_skippable;
} else {
this_rd = INT64_MAX;
disable_skip = 1;
}
if (!mode_excluded) {
if (is_comp_pred)
mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY;
else
mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY;
}
compmode_cost =
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_COMP), is_comp_pred);
mbmi->mode = this_mode;
}
else {
#if CONFIG_COMP_INTERINTRA_PRED
if (mbmi->second_ref_frame == INTRA_FRAME) {
if (best_intra16_mode == DC_PRED - 1) continue;
mbmi->interintra_mode = best_intra16_mode;
#if SEPARATE_INTERINTRA_UV
mbmi->interintra_uv_mode = best_intra16_uv_mode;
#else
mbmi->interintra_uv_mode = best_intra16_mode;
#endif
}
#endif
this_rd = handle_inter_mode(cpi, x, BLOCK_SIZE_MB16X16,
mdcounts, txfm_cache,
&rate2, &distortion2, &skippable,
&compmode_cost,
#if CONFIG_COMP_INTERINTRA_PRED
&compmode_interintra_cost,
#endif
&rate_y, &distortion,
&rate_uv, &distortion_uv,
&mode_excluded, &disable_skip,
mode_index, &tmp_best_filter, frame_mv,
scaled_ref_frame, mb_row, mb_col);
if (this_rd == INT64_MAX)
continue;
}
#if CONFIG_COMP_INTERINTRA_PRED
if (cpi->common.use_interintra)
rate2 += compmode_interintra_cost;
#endif
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION)
rate2 += compmode_cost;
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs[mbmi->ref_frame];
if (!disable_skip) {
// Test for the condition where skip block will be activated
// because there are no non zero coefficients and make any
// necessary adjustment for rate. Ignore if skip is coded at
// segment level as the cost wont have been added in.
int mb_skip_allowed;
// Is Mb level skip allowed (i.e. not coded at segment level).
mb_skip_allowed = !vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP);
if (skippable) {
mbmi->mb_skip_coeff = 1;
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
// for best_yrd calculation
rate_uv = 0;
if (mb_skip_allowed) {
int prob_skip_cost;
// Cost the skip mb case
vp9_prob skip_prob =
vp9_get_pred_prob(cm, &x->e_mbd, PRED_MBSKIP);
if (skip_prob) {
prob_skip_cost = vp9_cost_bit(skip_prob, 1);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
} else {
// Add in the cost of the no skip flag.
mbmi->mb_skip_coeff = 0;
if (mb_skip_allowed) {
int prob_skip_cost = vp9_cost_bit(
vp9_get_pred_prob(cm, &x->e_mbd, PRED_MBSKIP), 0);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
// Keep record of best intra distortion
if ((mbmi->ref_frame == INTRA_FRAME) &&
(this_rd < best_intra_rd)) {
best_intra_rd = this_rd;
*returnintra = distortion2;
}
#if CONFIG_COMP_INTERINTRA_PRED
if ((mbmi->ref_frame == INTRA_FRAME) &&
(this_mode <= TM_PRED) &&
(this_rd < best_intra16_rd)) {
best_intra16_rd = this_rd;
best_intra16_mode = this_mode;
#if SEPARATE_INTERINTRA_UV
best_intra16_uv_mode = uv_intra_mode[mbmi->txfm_size != TX_4X4];
#endif
}
#endif
if (!disable_skip && mbmi->ref_frame == INTRA_FRAME)
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
if (this_rd < best_overall_rd) {
best_overall_rd = this_rd;
best_filter = tmp_best_filter;
best_mode = this_mode;
#if CONFIG_COMP_INTERINTRA_PRED
is_best_interintra = (mbmi->second_ref_frame == INTRA_FRAME);
#endif
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
/*
if (mbmi->second_ref_frame == INTRA_FRAME) {
printf("rd %d best %d bestintra16 %d\n", this_rd, best_rd, best_intra16_rd);
}
*/
// Note index of best mode so far
best_mode_index = mode_index;
if (this_mode <= I4X4_PRED) {
if (mbmi->txfm_size != TX_4X4
&& this_mode != I4X4_PRED
&& this_mode != I8X8_PRED)
mbmi->uv_mode = uv_intra_mode[TX_8X8];
else
mbmi->uv_mode = uv_intra_mode[TX_4X4];
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
}
other_cost += ref_costs[mbmi->ref_frame];
/* Calculate the final y RD estimate for this mode */
best_yrd = RDCOST(x->rdmult, x->rddiv, (rate2 - rate_uv - other_cost),
(distortion2 - distortion_uv));
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
vpx_memcpy(&best_mbmode, mbmi, sizeof(MB_MODE_INFO));
vpx_memcpy(&best_partition, x->partition_info, sizeof(PARTITION_INFO));
if ((this_mode == I4X4_PRED)
|| (this_mode == I8X8_PRED)
|| (this_mode == SPLITMV))
for (i = 0; i < 16; i++) {
best_bmodes[i] = xd->block[i].bmi;
}
}
// Testing this mode gave rise to an improvement in best error score.
// Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] =
(cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ?
cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7) *
cpi->rd_thresh_mult[mode_index];
} else {
// If the mode did not help improve the best error case then raise the
// threshold for testing that mode next time around.
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7)
* cpi->rd_thresh_mult[mode_index];
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && mbmi->ref_frame != INTRA_FRAME) {
int64_t single_rd, hybrid_rd;
int single_rate, hybrid_rate;
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (mbmi->second_ref_frame <= INTRA_FRAME &&
single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) {
best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd;
} else if (mbmi->second_ref_frame > INTRA_FRAME &&
single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) {
best_pred_rd[COMP_PREDICTION_ONLY] = single_rd;
}
if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION])
best_pred_rd[HYBRID_PREDICTION] = hybrid_rd;
}
/* keep record of best txfm size */
if (!mode_excluded && this_rd != INT64_MAX) {
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t adj_rd;
if (this_mode != I4X4_PRED) {
const int64_t txfm_mode_diff =
txfm_cache[i] - txfm_cache[cm->txfm_mode];
adj_rd = this_rd + txfm_mode_diff;
} else {
adj_rd = this_rd;
}
if (adj_rd < best_txfm_rd[i])
best_txfm_rd[i] = adj_rd;
}
}
if (x->skip && !mode_excluded)
break;
}
assert((cm->mcomp_filter_type == SWITCHABLE) ||
(cm->mcomp_filter_type == best_mbmode.interp_filter) ||
(best_mbmode.mode <= I4X4_PRED));
#if CONFIG_COMP_INTERINTRA_PRED
++cpi->interintra_select_count[is_best_interintra];
#endif
// Accumulate filter usage stats
// TODO(agrange): Use RD criteria to select interpolation filter mode.
if ((best_mode >= NEARESTMV) && (best_mode <= SPLITMV))
++cpi->best_switchable_interp_count[vp9_switchable_interp_map[best_filter]];
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) &&
(cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) {
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] =
(cpi->rd_thresh_mult[best_mode_index] >=
(MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] =
(cpi->rd_baseline_thresh[best_mode_index] >> 7) *
cpi->rd_thresh_mult[best_mode_index];
}
// This code forces Altref,0,0 and skip for the frame that overlays a
// an alrtef unless Altref is filtered. However, this is unsafe if
// segment level coding of ref frame is enabled for this
// segment.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
cpi->is_src_frame_alt_ref &&
(cpi->oxcf.arnr_max_frames == 0) &&
(best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) {
mbmi->mode = ZEROMV;
if (cm->txfm_mode <= ALLOW_8X8)
mbmi->txfm_size = cm->txfm_mode;
else
mbmi->txfm_size = TX_16X16;
mbmi->ref_frame = ALTREF_FRAME;
mbmi->mv[0].as_int = 0;
mbmi->uv_mode = DC_PRED;
mbmi->mb_skip_coeff = 1;
mbmi->partitioning = 0;
set_scale_factors(xd, mbmi->ref_frame, mbmi->second_ref_frame,
scale_factor);
vpx_memset(best_pred_diff, 0, sizeof(best_pred_diff));
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
goto end;
}
// macroblock modes
vpx_memcpy(mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
if (best_mbmode.mode == I4X4_PRED) {
for (i = 0; i < 16; i++) {
xd->mode_info_context->bmi[i].as_mode = best_bmodes[i].as_mode;
xd->block[i].bmi.as_mode = xd->mode_info_context->bmi[i].as_mode;
}
}
if (best_mbmode.mode == I8X8_PRED)
set_i8x8_block_modes(x, mode8x8);
if (best_mbmode.mode == SPLITMV) {
for (i = 0; i < 16; i++)
xd->mode_info_context->bmi[i].as_mv[0].as_int =
best_bmodes[i].as_mv[0].as_int;
if (mbmi->second_ref_frame > 0)
for (i = 0; i < 16; i++)
xd->mode_info_context->bmi[i].as_mv[1].as_int =
best_bmodes[i].as_mv[1].as_int;
vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO));
mbmi->mv[0].as_int = x->partition_info->bmi[15].mv.as_int;
mbmi->mv[1].as_int = x->partition_info->bmi[15].second_mv.as_int;
}
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
if (!x->skip) {
for (i = 0; i < NB_TXFM_MODES; i++) {
if (best_txfm_rd[i] == INT64_MAX)
best_txfm_diff[i] = 0;
else
best_txfm_diff[i] = best_rd - best_txfm_rd[i];
}
} else {
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
}
end:
set_scale_factors(xd, mbmi->ref_frame, mbmi->second_ref_frame,
scale_factor);
store_coding_context(x, &x->mb_context[xd->sb_index][xd->mb_index],
best_mode_index, &best_partition,
&mbmi->ref_mvs[mbmi->ref_frame][0],
&mbmi->ref_mvs[mbmi->second_ref_frame < 0 ? 0 :
mbmi->second_ref_frame][0],
best_pred_diff, best_txfm_diff);
}
void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int *returnrate, int *returndist,
BLOCK_SIZE_TYPE bsize,
PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
int rate_y = 0, rate_uv;
int rate_y_tokenonly = 0, rate_uv_tokenonly;
int dist_y = 0, dist_uv;
int y_skip = 0, uv_skip;
int64_t txfm_cache[NB_TXFM_MODES], err;
int i;
ctx->skip = 0;
xd->mode_info_context->mbmi.mode = DC_PRED;
err = rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, &y_skip, bsize, txfm_cache);
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
&dist_uv, &uv_skip, bsize);
if (y_skip && uv_skip) {
*returnrate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 1);
*returndist = dist_y + (dist_uv >> 2);
memset(ctx->txfm_rd_diff, 0,
sizeof(x->sb32_context[xd->sb_index].txfm_rd_diff));
} else {
*returnrate = rate_y + rate_uv +
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
*returndist = dist_y + (dist_uv >> 2);
for (i = 0; i < NB_TXFM_MODES; i++) {
ctx->txfm_rd_diff[i] = err - txfm_cache[i];
}
}
vpx_memcpy(&ctx->mic, xd->mode_info_context, sizeof(MODE_INFO));
}
void vp9_rd_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x,
int *returnrate, int *returndist) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int64_t error4x4, error16x16;
int rate4x4, rate16x16 = 0, rateuv[2];
int dist4x4 = 0, dist16x16 = 0, distuv[2];
int rate;
int rate4x4_tokenonly = 0;
int rate16x16_tokenonly = 0;
int rateuv_tokenonly[2];
int64_t error8x8;
int rate8x8_tokenonly=0;
int rate8x8, dist8x8;
int mode16x16;
int mode8x8[4];
int dist;
int modeuv[2], uv_intra_skippable[2];
int y_intra16x16_skippable = 0;
int64_t txfm_cache[2][NB_TXFM_MODES];
TX_SIZE txfm_size_16x16, txfm_size_8x8;
int i;
x->mb_context[xd->sb_index][xd->mb_index].skip = 0;
mbmi->ref_frame = INTRA_FRAME;
mbmi->mode = DC_PRED;
for (i = 0; i <= TX_8X8; i++) {
mbmi->txfm_size = i;
rd_pick_intra_sbuv_mode(cpi, x, &rateuv[i], &rateuv_tokenonly[i],
&distuv[i], &uv_intra_skippable[i],
BLOCK_SIZE_MB16X16);
modeuv[i] = mbmi->uv_mode;
}
// current macroblock under rate-distortion optimization test loop
error16x16 = rd_pick_intra_sby_mode(cpi, x, &rate16x16,
&rate16x16_tokenonly, &dist16x16,
&y_intra16x16_skippable,
BLOCK_SIZE_MB16X16, txfm_cache[1]);
mode16x16 = mbmi->mode;
txfm_size_16x16 = mbmi->txfm_size;
if (y_intra16x16_skippable &&
((cm->txfm_mode == ONLY_4X4 && uv_intra_skippable[TX_4X4]) ||
(cm->txfm_mode != ONLY_4X4 && uv_intra_skippable[TX_8X8]))) {
error16x16 -= RDCOST(x->rdmult, x->rddiv, rate16x16_tokenonly, 0);
rate16x16 -= rate16x16_tokenonly;
}
for (i = 0; i < NB_TXFM_MODES; i++) {
txfm_cache[0][i] = error16x16 - txfm_cache[1][cm->txfm_mode] +
txfm_cache[1][i];
}
error8x8 = rd_pick_intra8x8mby_modes_and_txsz(cpi, x, &rate8x8,
&rate8x8_tokenonly,
&dist8x8, mode8x8,
error16x16, txfm_cache[1]);
txfm_size_8x8 = mbmi->txfm_size;
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t tmp_rd = error8x8 - txfm_cache[1][cm->txfm_mode] + txfm_cache[1][i];
if (tmp_rd < txfm_cache[0][i])
txfm_cache[0][i] = tmp_rd;
}
mbmi->txfm_size = TX_4X4;
error4x4 = rd_pick_intra4x4mby_modes(cpi, x,
&rate4x4, &rate4x4_tokenonly,
&dist4x4, error16x16);
for (i = 0; i < NB_TXFM_MODES; i++) {
if (error4x4 < txfm_cache[0][i])
txfm_cache[0][i] = error4x4;
}
mbmi->mb_skip_coeff = 0;
if (y_intra16x16_skippable &&
((cm->txfm_mode == ONLY_4X4 && uv_intra_skippable[TX_4X4]) ||
(cm->txfm_mode != ONLY_4X4 && uv_intra_skippable[TX_8X8]))) {
mbmi->mb_skip_coeff = 1;
mbmi->mode = mode16x16;
mbmi->uv_mode = modeuv[cm->txfm_mode != ONLY_4X4];
rate = rate16x16 + vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 1);
dist = dist16x16;
rate += rateuv[cm->txfm_mode != ONLY_4X4] -
rateuv_tokenonly[cm->txfm_mode != ONLY_4X4];
dist += (distuv[cm->txfm_mode != ONLY_4X4] >> 2);
mbmi->txfm_size = txfm_size_16x16;
} else if (error8x8 > error16x16) {
if (error4x4 < error16x16) {
rate = rateuv[TX_4X4] + rate4x4;
mbmi->mode = I4X4_PRED;
mbmi->txfm_size = TX_4X4;
dist = dist4x4 + (distuv[TX_4X4] >> 2);
mbmi->uv_mode = modeuv[TX_4X4];
} else {
mbmi->txfm_size = txfm_size_16x16;
mbmi->mode = mode16x16;
rate = rate16x16 + rateuv[mbmi->txfm_size != TX_4X4];
dist = dist16x16 + (distuv[mbmi->txfm_size != TX_4X4] >> 2);
mbmi->uv_mode = modeuv[mbmi->txfm_size != TX_4X4];
}
rate += vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
} else {
if (error4x4 < error8x8) {
rate = rateuv[TX_4X4] + rate4x4;
mbmi->mode = I4X4_PRED;
mbmi->txfm_size = TX_4X4;
dist = dist4x4 + (distuv[TX_4X4] >> 2);
mbmi->uv_mode = modeuv[TX_4X4];
} else {
mbmi->mode = I8X8_PRED;
mbmi->txfm_size = txfm_size_8x8;
set_i8x8_block_modes(x, mode8x8);
rate = rate8x8 + rateuv[TX_4X4];
dist = dist8x8 + (distuv[TX_4X4] >> 2);
}
rate += vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
}
for (i = 0; i < NB_TXFM_MODES; i++) {
x->mb_context[xd->sb_index][xd->mb_index].txfm_rd_diff[i] =
txfm_cache[0][cm->txfm_mode] - txfm_cache[0][i];
}
*returnrate = rate;
*returndist = dist;
}
int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int mb_row, int mb_col,
int *returnrate,
int *returndistortion,
BLOCK_SIZE_TYPE bsize,
PICK_MODE_CONTEXT *ctx) {
const enum BlockSize block_size = y_bsizet_to_block_size(bsize);
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
MB_PREDICTION_MODE this_mode;
MB_PREDICTION_MODE best_mode = DC_PRED;
MV_REFERENCE_FRAME ref_frame;
unsigned char segment_id = xd->mode_info_context->mbmi.segment_id;
int comp_pred, i;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
int frame_mdcounts[4][4];
YV12_BUFFER_CONFIG yv12_mb[4];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
int idx_list[4] = {0,
cpi->lst_fb_idx,
cpi->gld_fb_idx,
cpi->alt_fb_idx};
int mdcounts[4];
int64_t best_rd = INT64_MAX;
int64_t best_txfm_rd[NB_TXFM_MODES];
int64_t best_txfm_diff[NB_TXFM_MODES];
int64_t best_pred_diff[NB_PREDICTION_TYPES];
int64_t best_pred_rd[NB_PREDICTION_TYPES];
MB_MODE_INFO best_mbmode;
int j;
int mode_index, best_mode_index = 0;
unsigned int ref_costs[MAX_REF_FRAMES];
#if CONFIG_COMP_INTERINTRA_PRED
int is_best_interintra = 0;
int64_t best_intra16_rd = INT64_MAX;
int best_intra16_mode = DC_PRED;
#if SEPARATE_INTERINTRA_UV
int best_intra16_uv_mode = DC_PRED;
#endif
#endif
int64_t best_overall_rd = INT64_MAX;
INTERPOLATIONFILTERTYPE best_filter = SWITCHABLE;
INTERPOLATIONFILTERTYPE tmp_best_filter = SWITCHABLE;
int rate_uv_intra[TX_SIZE_MAX_SB], rate_uv_tokenonly[TX_SIZE_MAX_SB];
int dist_uv[TX_SIZE_MAX_SB], skip_uv[TX_SIZE_MAX_SB];
MB_PREDICTION_MODE mode_uv[TX_SIZE_MAX_SB];
struct scale_factors scale_factor[4];
unsigned int ref_frame_mask = 0;
unsigned int mode_mask = 0;
xd->mode_info_context->mbmi.segment_id = segment_id;
estimate_ref_frame_costs(cpi, segment_id, ref_costs);
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode));
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = INT64_MAX;
for (i = 0; i < NB_TXFM_MODES; i++)
best_txfm_rd[i] = INT64_MAX;
// Create a mask set to 1 for each frame used by a smaller resolution.p
if (cpi->Speed > 0) {
switch (block_size) {
case BLOCK_64X64:
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
ref_frame_mask |= (1 << x->mb_context[i][j].mic.mbmi.ref_frame);
mode_mask |= (1 << x->mb_context[i][j].mic.mbmi.mode);
}
}
for (i = 0; i < 4; i++) {
ref_frame_mask |= (1 << x->sb32_context[i].mic.mbmi.ref_frame);
mode_mask |= (1 << x->sb32_context[i].mic.mbmi.mode);
}
break;
case BLOCK_32X32:
for (i = 0; i < 4; i++) {
ref_frame_mask |= (1
<< x->mb_context[xd->sb_index][i].mic.mbmi.ref_frame);
mode_mask |= (1 << x->mb_context[xd->sb_index][i].mic.mbmi.mode);
}
break;
default:
// Until we handle all block sizes set it to present;
ref_frame_mask = 0xff;
mode_mask = 0xff;
break;
}
}
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
setup_buffer_inter(cpi, x, idx_list[ref_frame], ref_frame, block_size,
mb_row, mb_col, frame_mv[NEARESTMV], frame_mv[NEARMV],
frame_mdcounts, yv12_mb, scale_factor);
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
if (cpi->Speed == 0
|| (cpi->Speed > 0 && (ref_frame_mask & (1 << INTRA_FRAME)))) {
mbmi->mode = DC_PRED;
for (i = 0; i <= ((bsize < BLOCK_SIZE_SB64X64) ? TX_16X16 : TX_32X32);
i++) {
mbmi->txfm_size = i;
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra[i], &rate_uv_tokenonly[i],
&dist_uv[i], &skip_uv[i], bsize);
mode_uv[i] = mbmi->uv_mode;
}
}
for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int other_cost = 0;
int compmode_cost = 0;
int rate2 = 0, rate_y = 0, rate_uv = 0;
int distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable;
int64_t txfm_cache[NB_TXFM_MODES];
#if CONFIG_COMP_INTERINTRA_PRED
int compmode_interintra_cost = 0;
#endif
// Test best rd so far against threshold for trying this mode.
if (best_rd <= cpi->rd_threshes[mode_index] ||
cpi->rd_threshes[mode_index] == INT_MAX) {
continue;
}
x->skip = 0;
this_mode = vp9_mode_order[mode_index].mode;
ref_frame = vp9_mode_order[mode_index].ref_frame;
if (!(ref_frame == INTRA_FRAME
|| (cpi->ref_frame_flags & flag_list[ref_frame]))) {
continue;
}
if (cpi->Speed > 0) {
if (!(ref_frame_mask & (1 << ref_frame))) {
continue;
}
if (vp9_mode_order[mode_index].second_ref_frame != NONE
&& !(ref_frame_mask
& (1 << vp9_mode_order[mode_index].second_ref_frame))) {
continue;
}
}
mbmi->ref_frame = ref_frame;
mbmi->second_ref_frame = vp9_mode_order[mode_index].second_ref_frame;
set_scale_factors(xd, mbmi->ref_frame, mbmi->second_ref_frame,
scale_factor);
comp_pred = mbmi->second_ref_frame > INTRA_FRAME;
mbmi->mode = this_mode;
mbmi->uv_mode = DC_PRED;
#if CONFIG_COMP_INTERINTRA_PRED
mbmi->interintra_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
mbmi->interintra_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
mbmi->interp_filter = cm->mcomp_filter_type;
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
// if (!(cpi->ref_frame_flags & flag_list[ref_frame]))
// continue;
if (this_mode == I8X8_PRED ||
this_mode == I4X4_PRED ||
this_mode == SPLITMV)
continue;
// if (vp9_mode_order[mode_index].second_ref_frame == INTRA_FRAME)
// continue;
if (comp_pred) {
int second_ref;
if (ref_frame == ALTREF_FRAME) {
second_ref = LAST_FRAME;
} else {
second_ref = ref_frame + 1;
}
if (!(cpi->ref_frame_flags & flag_list[second_ref]))
continue;
mbmi->second_ref_frame = second_ref;
set_scale_factors(xd, mbmi->ref_frame, mbmi->second_ref_frame,
scale_factor);
xd->second_pre = yv12_mb[second_ref];
mode_excluded =
mode_excluded ?
mode_excluded : cm->comp_pred_mode == SINGLE_PREDICTION_ONLY;
} else {
// mbmi->second_ref_frame = vp9_mode_order[mode_index].second_ref_frame;
if (ref_frame != INTRA_FRAME) {
if (mbmi->second_ref_frame != INTRA_FRAME)
mode_excluded =
mode_excluded ?
mode_excluded : cm->comp_pred_mode == COMP_PREDICTION_ONLY;
#if CONFIG_COMP_INTERINTRA_PRED
else
mode_excluded = mode_excluded ? mode_excluded : !cm->use_interintra;
#endif
}
}
xd->pre = yv12_mb[ref_frame];
vpx_memcpy(mdcounts, frame_mdcounts[ref_frame], sizeof(mdcounts));
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!vp9_check_segref(xd, segment_id, ref_frame)) {
continue;
// If the segment skip feature is enabled....
// then do nothing if the current mode is not allowed..
} else if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP) &&
(this_mode != ZEROMV)) {
continue;
// Disable this drop out case if the ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
} else if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative
if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
if (this_mode != ZEROMV || ref_frame != ALTREF_FRAME) {
continue;
}
}
}
if (ref_frame == INTRA_FRAME) {
TX_SIZE uv_tx;
vp9_build_intra_predictors_sby_s(xd, bsize);
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable,
bsize, txfm_cache);
uv_tx = mbmi->txfm_size;
if (bsize < BLOCK_SIZE_SB32X32 && uv_tx == TX_16X16)
uv_tx = TX_8X8;
else if (bsize < BLOCK_SIZE_SB64X64 && uv_tx == TX_32X32)
uv_tx = TX_16X16;
rate_uv = rate_uv_intra[uv_tx];
distortion_uv = dist_uv[uv_tx];
skippable = skippable && skip_uv[uv_tx];
mbmi->uv_mode = mode_uv[uv_tx];
rate2 = rate_y + x->mbmode_cost[cm->frame_type][mbmi->mode] + rate_uv;
distortion2 = distortion_y + distortion_uv;
} else {
YV12_BUFFER_CONFIG *scaled_ref_frame = NULL;
int fb;
if (mbmi->ref_frame == LAST_FRAME) {
fb = cpi->lst_fb_idx;
} else if (mbmi->ref_frame == GOLDEN_FRAME) {
fb = cpi->gld_fb_idx;
} else {
fb = cpi->alt_fb_idx;
}
if (cpi->scaled_ref_idx[fb] != cm->ref_frame_map[fb])
scaled_ref_frame = &cm->yv12_fb[cpi->scaled_ref_idx[fb]];
#if CONFIG_COMP_INTERINTRA_PRED
if (mbmi->second_ref_frame == INTRA_FRAME) {
if (best_intra16_mode == DC_PRED - 1) continue;
mbmi->interintra_mode = best_intra16_mode;
#if SEPARATE_INTERINTRA_UV
mbmi->interintra_uv_mode = best_intra16_uv_mode;
#else
mbmi->interintra_uv_mode = best_intra16_mode;
#endif
}
#endif
this_rd = handle_inter_mode(cpi, x, bsize,
mdcounts, txfm_cache,
&rate2, &distortion2, &skippable,
&compmode_cost,
#if CONFIG_COMP_INTERINTRA_PRED
&compmode_interintra_cost,
#endif
&rate_y, &distortion_y,
&rate_uv, &distortion_uv,
&mode_excluded, &disable_skip,
mode_index, &tmp_best_filter, frame_mv,
scaled_ref_frame, mb_row, mb_col);
if (this_rd == INT64_MAX)
continue;
}
#if CONFIG_COMP_INTERINTRA_PRED
if (cpi->common.use_interintra) {
rate2 += compmode_interintra_cost;
}
#endif
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
rate2 += compmode_cost;
}
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs[xd->mode_info_context->mbmi.ref_frame];
if (!disable_skip) {
// Test for the condition where skip block will be activated
// because there are no non zero coefficients and make any
// necessary adjustment for rate. Ignore if skip is coded at
// segment level as the cost wont have been added in.
int mb_skip_allowed;
// Is Mb level skip allowed (i.e. not coded at segment level).
mb_skip_allowed = !vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP);
if (skippable) {
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
// for best_yrd calculation
rate_uv = 0;
if (mb_skip_allowed) {
int prob_skip_cost;
// Cost the skip mb case
vp9_prob skip_prob =
vp9_get_pred_prob(cm, xd, PRED_MBSKIP);
if (skip_prob) {
prob_skip_cost = vp9_cost_bit(skip_prob, 1);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
} else if (mb_skip_allowed) {
// Add in the cost of the no skip flag.
int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob(cm, xd,
PRED_MBSKIP), 0);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
#if 0
// Keep record of best intra distortion
if ((xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) &&
(this_rd < best_intra_rd)) {
best_intra_rd = this_rd;
*returnintra = distortion2;
}
#endif
#if CONFIG_COMP_INTERINTRA_PRED
if ((mbmi->ref_frame == INTRA_FRAME) &&
(this_mode <= TM_PRED) &&
(this_rd < best_intra16_rd)) {
best_intra16_rd = this_rd;
best_intra16_mode = this_mode;
#if SEPARATE_INTERINTRA_UV
best_intra16_uv_mode = (mbmi->txfm_size != TX_4X4 ?
mode_uv_8x8 : mode_uv_4x4);
#endif
}
#endif
if (!disable_skip && mbmi->ref_frame == INTRA_FRAME)
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
if (this_rd < best_overall_rd) {
best_overall_rd = this_rd;
best_filter = tmp_best_filter;
best_mode = this_mode;
#if CONFIG_COMP_INTERINTRA_PRED
is_best_interintra = (mbmi->second_ref_frame == INTRA_FRAME);
#endif
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
// Note index of best mode so far
best_mode_index = mode_index;
if (this_mode <= I4X4_PRED) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
}
other_cost += ref_costs[xd->mode_info_context->mbmi.ref_frame];
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
vpx_memcpy(&best_mbmode, mbmi, sizeof(MB_MODE_INFO));
}
#if 0
// Testing this mode gave rise to an improvement in best error score.
// Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] =
(cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ?
cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7)
* cpi->rd_thresh_mult[mode_index];
#endif
} else {
// If the mode did not help improve the best error case then
// raise the threshold for testing that mode next time around.
#if 0
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7)
* cpi->rd_thresh_mult[mode_index];
#endif
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && mbmi->ref_frame != INTRA_FRAME) {
int single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (mbmi->second_ref_frame <= INTRA_FRAME &&
single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) {
best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd;
} else if (mbmi->second_ref_frame > INTRA_FRAME &&
single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) {
best_pred_rd[COMP_PREDICTION_ONLY] = single_rd;
}
if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION])
best_pred_rd[HYBRID_PREDICTION] = hybrid_rd;
}
/* keep record of best txfm size */
if (!mode_excluded && this_rd != INT64_MAX) {
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t adj_rd;
if (this_mode != I4X4_PRED) {
adj_rd = this_rd + txfm_cache[i] - txfm_cache[cm->txfm_mode];
} else {
adj_rd = this_rd;
}
if (adj_rd < best_txfm_rd[i])
best_txfm_rd[i] = adj_rd;
}
}
if (x->skip && !mode_excluded)
break;
}
assert((cm->mcomp_filter_type == SWITCHABLE) ||
(cm->mcomp_filter_type == best_mbmode.interp_filter) ||
(best_mbmode.mode <= I4X4_PRED));
#if CONFIG_COMP_INTERINTRA_PRED
++cpi->interintra_select_count[is_best_interintra];
// if (is_best_interintra) printf("best_interintra\n");
#endif
// Accumulate filter usage stats
// TODO(agrange): Use RD criteria to select interpolation filter mode.
if ((best_mode >= NEARESTMV) && (best_mode <= SPLITMV))
++cpi->best_switchable_interp_count[vp9_switchable_interp_map[best_filter]];
// TODO(rbultje) integrate with RD thresholding
#if 0
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) &&
(cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) {
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] =
(cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] =
(cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index];
}
#endif
// This code forces Altref,0,0 and skip for the frame that overlays a
// an alrtef unless Altref is filtered. However, this is unsafe if
// segment level coding of ref frame is enabled for this segment.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
cpi->is_src_frame_alt_ref &&
(cpi->oxcf.arnr_max_frames == 0) &&
(best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) {
mbmi->mode = ZEROMV;
mbmi->ref_frame = ALTREF_FRAME;
mbmi->second_ref_frame = INTRA_FRAME;
mbmi->mv[0].as_int = 0;
mbmi->uv_mode = DC_PRED;
mbmi->mb_skip_coeff = 1;
mbmi->partitioning = 0;
mbmi->txfm_size = cm->txfm_mode == TX_MODE_SELECT ?
TX_32X32 : cm->txfm_mode;
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
vpx_memset(best_pred_diff, 0, sizeof(best_pred_diff));
goto end;
}
// macroblock modes
vpx_memcpy(mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
if (!x->skip) {
for (i = 0; i < NB_TXFM_MODES; i++) {
if (best_txfm_rd[i] == INT64_MAX)
best_txfm_diff[i] = 0;
else
best_txfm_diff[i] = best_rd - best_txfm_rd[i];
}
} else {
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
}
end:
set_scale_factors(xd, mbmi->ref_frame, mbmi->second_ref_frame,
scale_factor);
store_coding_context(x, ctx, best_mode_index, NULL,
&mbmi->ref_mvs[mbmi->ref_frame][0],
&mbmi->ref_mvs[mbmi->second_ref_frame < 0 ? 0 :
mbmi->second_ref_frame][0],
best_pred_diff, best_txfm_diff);
return best_rd;
}
void vp9_pick_mode_inter_macroblock(VP9_COMP *cpi, MACROBLOCK *x,
int mb_row, int mb_col,
int *totalrate, int *totaldist) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int rate, distortion;
int64_t intra_error = 0;
unsigned char *segment_id = &mbmi->segment_id;
if (xd->segmentation_enabled)
x->encode_breakout = cpi->segment_encode_breakout[*segment_id];
else
x->encode_breakout = cpi->oxcf.encode_breakout;
// if (cpi->sf.RD)
// For now this codebase is limited to a single rd encode path
{
int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled;
rd_pick_inter_mode(cpi, x, mb_row, mb_col, &rate,
&distortion, &intra_error);
/* restore cpi->zbin_mode_boost_enabled */
cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled;
}
// else
// The non rd encode path has been deleted from this code base
// to simplify development
// vp9_pick_inter_mode
// Store metrics so they can be added in to totals if this mode is picked
x->mb_context[xd->sb_index][xd->mb_index].distortion = distortion;
x->mb_context[xd->sb_index][xd->mb_index].intra_error = intra_error;
*totalrate = rate;
*totaldist = distortion;
}