aom/vp10/common/idct.c

1501 строка
46 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include "./vp10_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "vp10/common/blockd.h"
#include "vp10/common/enums.h"
#include "vp10/common/idct.h"
#include "vp10/common/vp10_inv_txfm2d_cfg.h"
#include "vpx_dsp/inv_txfm.h"
#include "vpx_ports/mem.h"
int get_tx_scale(const MACROBLOCKD *const xd, const TX_TYPE tx_type,
const TX_SIZE tx_size) {
(void) tx_type;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
return tx_size == TX_32X32;
}
#else
(void)xd;
#endif
return tx_size == TX_32X32;
}
#if CONFIG_EXT_TX
static void iidtx4_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 4; ++i)
output[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2);
}
static void iidtx8_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 8; ++i)
output[i] = input[i] * 2;
}
static void iidtx16_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 16; ++i)
output[i] = (tran_low_t)dct_const_round_shift(input[i] * 2 * Sqrt2);
}
static void iidtx32_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 32; ++i)
output[i] = input[i] * 4;
}
// For use in lieu of DST
static void ihalfright32_c(const tran_low_t *input, tran_low_t *output) {
int i;
tran_low_t inputhalf[16];
for (i = 0; i < 16; ++i) {
output[i] = input[16 + i] * 4;
}
// Multiply input by sqrt(2)
for (i = 0; i < 16; ++i) {
inputhalf[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2);
}
idct16_c(inputhalf, output + 16);
// Note overall scaling factor is 4 times orthogonal
}
#if CONFIG_VP9_HIGHBITDEPTH
static void highbd_iidtx4_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int i;
for (i = 0; i < 4; ++i)
output[i] = (tran_low_t)highbd_dct_const_round_shift(input[i] * Sqrt2, bd);
}
static void highbd_iidtx8_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int i;
(void) bd;
for (i = 0; i < 8; ++i)
output[i] = input[i] * 2;
}
static void highbd_iidtx16_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int i;
for (i = 0; i < 16; ++i)
output[i] = (tran_low_t)highbd_dct_const_round_shift(
input[i] * 2 * Sqrt2, bd);
}
static void highbd_iidtx32_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int i;
(void) bd;
for (i = 0; i < 32; ++i)
output[i] = input[i] * 4;
}
static void highbd_ihalfright32_c(const tran_low_t *input, tran_low_t *output,
int bd) {
int i;
tran_low_t inputhalf[16];
for (i = 0; i < 16; ++i) {
output[i] = input[16 + i] * 4;
}
// Multiply input by sqrt(2)
for (i = 0; i < 16; ++i) {
inputhalf[i] = (tran_low_t)highbd_dct_const_round_shift(
input[i] * Sqrt2, bd);
}
vpx_highbd_idct16_c(inputhalf, output + 16, bd);
// Note overall scaling factor is 4 times orthogonal
}
#endif // CONFIG_VP9_HIGHBITDEPTH
// Inverse identity transform and add.
static void inv_idtx_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int bs, int tx_type) {
int r, c;
const int shift = bs < 32 ? 3 : 2;
if (tx_type == IDTX) {
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c)
dest[c] = clip_pixel_add(dest[c], input[c] >> shift);
dest += stride;
input += bs;
}
}
}
#define FLIPUD_PTR(dest, stride, size) do { \
(dest) = (dest) + ((size) - 1) * (stride); \
(stride) = - (stride); \
} while (0)
static void maybe_flip_strides(uint8_t **dst, int *dstride,
tran_low_t **src, int *sstride,
int tx_type, int size) {
// Note that the transpose of src will be added to dst. In order to LR
// flip the addends (in dst coordinates), we UD flip the src. To UD flip
// the addends, we UD flip the dst.
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case IDTX:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
break;
case FLIPADST_DCT:
case FLIPADST_ADST:
case V_FLIPADST:
// flip UD
FLIPUD_PTR(*dst, *dstride, size);
break;
case DCT_FLIPADST:
case ADST_FLIPADST:
case H_FLIPADST:
// flip LR
FLIPUD_PTR(*src, *sstride, size);
break;
case FLIPADST_FLIPADST:
// flip UD
FLIPUD_PTR(*dst, *dstride, size);
// flip LR
FLIPUD_PTR(*src, *sstride, size);
break;
default:
assert(0);
break;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
void highbd_idst4_c(const tran_low_t *input, tran_low_t *output, int bd) {
tran_low_t step[4];
tran_high_t temp1, temp2;
(void) bd;
// stage 1
temp1 = (input[3] + input[1]) * cospi_16_64;
temp2 = (input[3] - input[1]) * cospi_16_64;
step[0] = WRAPLOW(dct_const_round_shift(temp1), bd);
step[1] = WRAPLOW(dct_const_round_shift(temp2), bd);
temp1 = input[2] * cospi_24_64 - input[0] * cospi_8_64;
temp2 = input[2] * cospi_8_64 + input[0] * cospi_24_64;
step[2] = WRAPLOW(dct_const_round_shift(temp1), bd);
step[3] = WRAPLOW(dct_const_round_shift(temp2), bd);
// stage 2
output[0] = WRAPLOW(step[0] + step[3], bd);
output[1] = WRAPLOW(-step[1] - step[2], bd);
output[2] = WRAPLOW(step[1] - step[2], bd);
output[3] = WRAPLOW(step[3] - step[0], bd);
}
void highbd_idst8_c(const tran_low_t *input, tran_low_t *output, int bd) {
tran_low_t step1[8], step2[8];
tran_high_t temp1, temp2;
(void) bd;
// stage 1
step1[0] = input[7];
step1[2] = input[3];
step1[1] = input[5];
step1[3] = input[1];
temp1 = input[6] * cospi_28_64 - input[0] * cospi_4_64;
temp2 = input[6] * cospi_4_64 + input[0] * cospi_28_64;
step1[4] = WRAPLOW(dct_const_round_shift(temp1), bd);
step1[7] = WRAPLOW(dct_const_round_shift(temp2), bd);
temp1 = input[2] * cospi_12_64 - input[4] * cospi_20_64;
temp2 = input[2] * cospi_20_64 + input[4] * cospi_12_64;
step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd);
step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd);
// stage 2
temp1 = (step1[0] + step1[2]) * cospi_16_64;
temp2 = (step1[0] - step1[2]) * cospi_16_64;
step2[0] = WRAPLOW(dct_const_round_shift(temp1), bd);
step2[1] = WRAPLOW(dct_const_round_shift(temp2), bd);
temp1 = step1[1] * cospi_24_64 - step1[3] * cospi_8_64;
temp2 = step1[1] * cospi_8_64 + step1[3] * cospi_24_64;
step2[2] = WRAPLOW(dct_const_round_shift(temp1), bd);
step2[3] = WRAPLOW(dct_const_round_shift(temp2), bd);
step2[4] = WRAPLOW(step1[4] + step1[5], bd);
step2[5] = WRAPLOW(step1[4] - step1[5], bd);
step2[6] = WRAPLOW(-step1[6] + step1[7], bd);
step2[7] = WRAPLOW(step1[6] + step1[7], bd);
// stage 3
step1[0] = WRAPLOW(step2[0] + step2[3], bd);
step1[1] = WRAPLOW(step2[1] + step2[2], bd);
step1[2] = WRAPLOW(step2[1] - step2[2], bd);
step1[3] = WRAPLOW(step2[0] - step2[3], bd);
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd);
step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd);
step1[7] = step2[7];
// stage 4
output[0] = WRAPLOW(step1[0] + step1[7], bd);
output[1] = WRAPLOW(-step1[1] - step1[6], bd);
output[2] = WRAPLOW(step1[2] + step1[5], bd);
output[3] = WRAPLOW(-step1[3] - step1[4], bd);
output[4] = WRAPLOW(step1[3] - step1[4], bd);
output[5] = WRAPLOW(-step1[2] + step1[5], bd);
output[6] = WRAPLOW(step1[1] - step1[6], bd);
output[7] = WRAPLOW(-step1[0] + step1[7], bd);
}
void highbd_idst16_c(const tran_low_t *input, tran_low_t *output, int bd) {
// vp9_highbd_igentx16(input, output, bd, Tx16);
tran_low_t step1[16], step2[16];
tran_high_t temp1, temp2;
(void) bd;
// stage 1
step1[0] = input[15];
step1[1] = input[7];
step1[2] = input[11];
step1[3] = input[3];
step1[4] = input[13];
step1[5] = input[5];
step1[6] = input[9];
step1[7] = input[1];
step1[8] = input[14];
step1[9] = input[6];
step1[10] = input[10];
step1[11] = input[2];
step1[12] = input[12];
step1[13] = input[4];
step1[14] = input[8];
step1[15] = input[0];
// stage 2
step2[0] = step1[0];
step2[1] = step1[1];
step2[2] = step1[2];
step2[3] = step1[3];
step2[4] = step1[4];
step2[5] = step1[5];
step2[6] = step1[6];
step2[7] = step1[7];
temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64;
temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64;
step2[8] = WRAPLOW(dct_const_round_shift(temp1), bd);
step2[15] = WRAPLOW(dct_const_round_shift(temp2), bd);
temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64;
temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64;
step2[9] = WRAPLOW(dct_const_round_shift(temp1), bd);
step2[14] = WRAPLOW(dct_const_round_shift(temp2), bd);
temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64;
temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64;
step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd);
step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd);
temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64;
temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64;
step2[11] = WRAPLOW(dct_const_round_shift(temp1), bd);
step2[12] = WRAPLOW(dct_const_round_shift(temp2), bd);
// stage 3
step1[0] = step2[0];
step1[1] = step2[1];
step1[2] = step2[2];
step1[3] = step2[3];
temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64;
temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64;
step1[4] = WRAPLOW(dct_const_round_shift(temp1), bd);
step1[7] = WRAPLOW(dct_const_round_shift(temp2), bd);
temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64;
temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64;
step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd);
step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd);
step1[8] = WRAPLOW(step2[8] + step2[9], bd);
step1[9] = WRAPLOW(step2[8] - step2[9], bd);
step1[10] = WRAPLOW(-step2[10] + step2[11], bd);
step1[11] = WRAPLOW(step2[10] + step2[11], bd);
step1[12] = WRAPLOW(step2[12] + step2[13], bd);
step1[13] = WRAPLOW(step2[12] - step2[13], bd);
step1[14] = WRAPLOW(-step2[14] + step2[15], bd);
step1[15] = WRAPLOW(step2[14] + step2[15], bd);
// stage 4
temp1 = (step1[0] + step1[1]) * cospi_16_64;
temp2 = (step1[0] - step1[1]) * cospi_16_64;
step2[0] = WRAPLOW(dct_const_round_shift(temp1), bd);
step2[1] = WRAPLOW(dct_const_round_shift(temp2), bd);
temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64;
temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64;
step2[2] = WRAPLOW(dct_const_round_shift(temp1), bd);
step2[3] = WRAPLOW(dct_const_round_shift(temp2), bd);
step2[4] = WRAPLOW(step1[4] + step1[5], bd);
step2[5] = WRAPLOW(step1[4] - step1[5], bd);
step2[6] = WRAPLOW(-step1[6] + step1[7], bd);
step2[7] = WRAPLOW(step1[6] + step1[7], bd);
step2[8] = step1[8];
step2[15] = step1[15];
temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64;
temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64;
step2[9] = WRAPLOW(dct_const_round_shift(temp1), bd);
step2[14] = WRAPLOW(dct_const_round_shift(temp2), bd);
temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64;
temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64;
step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd);
step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd);
step2[11] = step1[11];
step2[12] = step1[12];
// stage 5
step1[0] = WRAPLOW(step2[0] + step2[3], bd);
step1[1] = WRAPLOW(step2[1] + step2[2], bd);
step1[2] = WRAPLOW(step2[1] - step2[2], bd);
step1[3] = WRAPLOW(step2[0] - step2[3], bd);
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd);
step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd);
step1[7] = step2[7];
step1[8] = WRAPLOW(step2[8] + step2[11], bd);
step1[9] = WRAPLOW(step2[9] + step2[10], bd);
step1[10] = WRAPLOW(step2[9] - step2[10], bd);
step1[11] = WRAPLOW(step2[8] - step2[11], bd);
step1[12] = WRAPLOW(-step2[12] + step2[15], bd);
step1[13] = WRAPLOW(-step2[13] + step2[14], bd);
step1[14] = WRAPLOW(step2[13] + step2[14], bd);
step1[15] = WRAPLOW(step2[12] + step2[15], bd);
// stage 6
step2[0] = WRAPLOW(step1[0] + step1[7], bd);
step2[1] = WRAPLOW(step1[1] + step1[6], bd);
step2[2] = WRAPLOW(step1[2] + step1[5], bd);
step2[3] = WRAPLOW(step1[3] + step1[4], bd);
step2[4] = WRAPLOW(step1[3] - step1[4], bd);
step2[5] = WRAPLOW(step1[2] - step1[5], bd);
step2[6] = WRAPLOW(step1[1] - step1[6], bd);
step2[7] = WRAPLOW(step1[0] - step1[7], bd);
step2[8] = step1[8];
step2[9] = step1[9];
temp1 = (-step1[10] + step1[13]) * cospi_16_64;
temp2 = (step1[10] + step1[13]) * cospi_16_64;
step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd);
step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd);
temp1 = (-step1[11] + step1[12]) * cospi_16_64;
temp2 = (step1[11] + step1[12]) * cospi_16_64;
step2[11] = WRAPLOW(dct_const_round_shift(temp1), bd);
step2[12] = WRAPLOW(dct_const_round_shift(temp2), bd);
step2[14] = step1[14];
step2[15] = step1[15];
// stage 7
output[0] = WRAPLOW(step2[0] + step2[15], bd);
output[1] = WRAPLOW(-step2[1] - step2[14], bd);
output[2] = WRAPLOW(step2[2] + step2[13], bd);
output[3] = WRAPLOW(-step2[3] - step2[12], bd);
output[4] = WRAPLOW(step2[4] + step2[11], bd);
output[5] = WRAPLOW(-step2[5] - step2[10], bd);
output[6] = WRAPLOW(step2[6] + step2[9], bd);
output[7] = WRAPLOW(-step2[7] - step2[8], bd);
output[8] = WRAPLOW(step2[7] - step2[8], bd);
output[9] = WRAPLOW(-step2[6] + step2[9], bd);
output[10] = WRAPLOW(step2[5] - step2[10], bd);
output[11] = WRAPLOW(-step2[4] + step2[11], bd);
output[12] = WRAPLOW(step2[3] - step2[12], bd);
output[13] = WRAPLOW(-step2[2] + step2[13], bd);
output[14] = WRAPLOW(step2[1] - step2[14], bd);
output[15] = WRAPLOW(-step2[0] + step2[15], bd);
}
static void highbd_inv_idtx_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bs, int tx_type, int bd) {
int r, c;
const int shift = bs < 32 ? 3 : 2;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
if (tx_type == IDTX) {
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c)
dest[c] = highbd_clip_pixel_add(dest[c], input[c] >> shift, bd);
dest += stride;
input += bs;
}
}
}
static void maybe_flip_strides16(uint16_t **dst, int *dstride,
tran_low_t **src, int *sstride,
int tx_type, int size) {
// Note that the transpose of src will be added to dst. In order to LR
// flip the addends (in dst coordinates), we UD flip the src. To UD flip
// the addends, we UD flip the dst.
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case IDTX:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
break;
case FLIPADST_DCT:
case FLIPADST_ADST:
case V_FLIPADST:
// flip UD
FLIPUD_PTR(*dst, *dstride, size);
break;
case DCT_FLIPADST:
case ADST_FLIPADST:
case H_FLIPADST:
// flip LR
FLIPUD_PTR(*src, *sstride, size);
break;
case FLIPADST_FLIPADST:
// flip UD
FLIPUD_PTR(*dst, *dstride, size);
// flip LR
FLIPUD_PTR(*src, *sstride, size);
break;
default:
assert(0);
break;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // CONFIG_EXT_TX
void vp10_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_4[] = {
{ idct4_c, idct4_c }, // DCT_DCT
{ iadst4_c, idct4_c }, // ADST_DCT
{ idct4_c, iadst4_c }, // DCT_ADST
{ iadst4_c, iadst4_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ iadst4_c, idct4_c }, // FLIPADST_DCT
{ idct4_c, iadst4_c }, // DCT_FLIPADST
{ iadst4_c, iadst4_c }, // FLIPADST_FLIPADST
{ iadst4_c, iadst4_c }, // ADST_FLIPADST
{ iadst4_c, iadst4_c }, // FLIPADST_ADST
{ iidtx4_c, iidtx4_c }, // IDTX
{ idct4_c, iidtx4_c }, // V_DCT
{ iidtx4_c, idct4_c }, // H_DCT
{ iadst4_c, iidtx4_c }, // V_ADST
{ iidtx4_c, iadst4_c }, // H_ADST
{ iadst4_c, iidtx4_c }, // V_FLIPADST
{ iidtx4_c, iadst4_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
int i, j;
tran_low_t tmp;
tran_low_t out[4][4];
tran_low_t *outp = &out[0][0];
int outstride = 4;
// inverse transform row vectors
for (i = 0; i < 4; ++i) {
IHT_4[tx_type].rows(input, out[i]);
input += 4;
}
// transpose
for (i = 1 ; i < 4; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 4; ++i) {
IHT_4[tx_type].cols(out[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 4);
#endif
// Sum with the destination
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4));
}
}
}
void vp10_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_8[] = {
{ idct8_c, idct8_c }, // DCT_DCT
{ iadst8_c, idct8_c }, // ADST_DCT
{ idct8_c, iadst8_c }, // DCT_ADST
{ iadst8_c, iadst8_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ iadst8_c, idct8_c }, // FLIPADST_DCT
{ idct8_c, iadst8_c }, // DCT_FLIPADST
{ iadst8_c, iadst8_c }, // FLIPADST_FLIPADST
{ iadst8_c, iadst8_c }, // ADST_FLIPADST
{ iadst8_c, iadst8_c }, // FLIPADST_ADST
{ iidtx8_c, iidtx8_c }, // IDTX
{ idct8_c, iidtx8_c }, // V_DCT
{ iidtx8_c, idct8_c }, // H_DCT
{ iadst8_c, iidtx8_c }, // V_ADST
{ iidtx8_c, iadst8_c }, // H_ADST
{ iadst8_c, iidtx8_c }, // V_FLIPADST
{ iidtx8_c, iadst8_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
int i, j;
tran_low_t tmp;
tran_low_t out[8][8];
tran_low_t *outp = &out[0][0];
int outstride = 8;
// inverse transform row vectors
for (i = 0; i < 8; ++i) {
IHT_8[tx_type].rows(input, out[i]);
input += 8;
}
// transpose
for (i = 1 ; i < 8; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 8; ++i) {
IHT_8[tx_type].cols(out[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 8);
#endif
// Sum with the destination
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5));
}
}
}
void vp10_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
static const transform_2d IHT_16[] = {
{ idct16_c, idct16_c }, // DCT_DCT
{ iadst16_c, idct16_c }, // ADST_DCT
{ idct16_c, iadst16_c }, // DCT_ADST
{ iadst16_c, iadst16_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ iadst16_c, idct16_c }, // FLIPADST_DCT
{ idct16_c, iadst16_c }, // DCT_FLIPADST
{ iadst16_c, iadst16_c }, // FLIPADST_FLIPADST
{ iadst16_c, iadst16_c }, // ADST_FLIPADST
{ iadst16_c, iadst16_c }, // FLIPADST_ADST
{ iidtx16_c, iidtx16_c }, // IDTX
{ idct16_c, iidtx16_c }, // V_DCT
{ iidtx16_c, idct16_c }, // H_DCT
{ iadst16_c, iidtx16_c }, // V_ADST
{ iidtx16_c, iadst16_c }, // H_ADST
{ iadst16_c, iidtx16_c }, // V_FLIPADST
{ iidtx16_c, iadst16_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
int i, j;
tran_low_t tmp;
tran_low_t out[16][16];
tran_low_t *outp = &out[0][0];
int outstride = 16;
// inverse transform row vectors
for (i = 0; i < 16; ++i) {
IHT_16[tx_type].rows(input, out[i]);
input += 16;
}
// transpose
for (i = 1 ; i < 16; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 16; ++i) {
IHT_16[tx_type].cols(out[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 16);
#endif
// Sum with the destination
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
#if CONFIG_EXT_TX
void vp10_iht32x32_1024_add_c(const tran_low_t *input, uint8_t *dest,
int stride, int tx_type) {
static const transform_2d IHT_32[] = {
{ idct32_c, idct32_c }, // DCT_DCT
{ ihalfright32_c, idct32_c }, // ADST_DCT
{ idct32_c, ihalfright32_c }, // DCT_ADST
{ ihalfright32_c, ihalfright32_c }, // ADST_ADST
{ ihalfright32_c, idct32_c }, // FLIPADST_DCT
{ idct32_c, ihalfright32_c }, // DCT_FLIPADST
{ ihalfright32_c, ihalfright32_c }, // FLIPADST_FLIPADST
{ ihalfright32_c, ihalfright32_c }, // ADST_FLIPADST
{ ihalfright32_c, ihalfright32_c }, // FLIPADST_ADST
{ iidtx32_c, iidtx32_c }, // IDTX
{ idct32_c, iidtx32_c }, // V_DCT
{ iidtx32_c, idct32_c }, // H_DCT
{ ihalfright32_c, iidtx16_c }, // V_ADST
{ iidtx16_c, ihalfright32_c }, // H_ADST
{ ihalfright32_c, iidtx16_c }, // V_FLIPADST
{ iidtx16_c, ihalfright32_c }, // H_FLIPADST
};
int i, j;
tran_low_t tmp;
tran_low_t out[32][32];
tran_low_t *outp = &out[0][0];
int outstride = 32;
// inverse transform row vectors
for (i = 0; i < 32; ++i) {
IHT_32[tx_type].rows(input, out[i]);
input += 32;
}
// transpose
for (i = 1 ; i < 32; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 32; ++i) {
IHT_32[tx_type].cols(out[i], out[i]);
}
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 32);
// Sum with the destination
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
#endif // CONFIG_EXT_TX
// idct
void vp10_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
if (eob > 1)
vpx_idct4x4_16_add(input, dest, stride);
else
vpx_idct4x4_1_add(input, dest, stride);
}
void vp10_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
if (eob > 1)
vpx_iwht4x4_16_add(input, dest, stride);
else
vpx_iwht4x4_1_add(input, dest, stride);
}
void vp10_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
// If dc is 1, then input[0] is the reconstructed value, do not need
// dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1.
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to decide what to do.
// TODO(yunqingwang): "eobs = 1" case is also handled in vp10_short_idct8x8_c.
// Combine that with code here.
if (eob == 1)
// DC only DCT coefficient
vpx_idct8x8_1_add(input, dest, stride);
else if (eob <= 12)
vpx_idct8x8_12_add(input, dest, stride);
else
vpx_idct8x8_64_add(input, dest, stride);
}
void vp10_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
/* The calculation can be simplified if there are not many non-zero dct
* coefficients. Use eobs to separate different cases. */
if (eob == 1)
/* DC only DCT coefficient. */
vpx_idct16x16_1_add(input, dest, stride);
else if (eob <= 10)
vpx_idct16x16_10_add(input, dest, stride);
else
vpx_idct16x16_256_add(input, dest, stride);
}
void vp10_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
if (eob == 1)
vpx_idct32x32_1_add(input, dest, stride);
else if (eob <= 34)
// non-zero coeff only in upper-left 8x8
vpx_idct32x32_34_add(input, dest, stride);
else
vpx_idct32x32_1024_add(input, dest, stride);
}
void vp10_inv_txfm_add_4x4(const tran_low_t *input, uint8_t *dest,
int stride, int eob, TX_TYPE tx_type, int lossless) {
if (lossless) {
assert(tx_type == DCT_DCT);
vp10_iwht4x4_add(input, dest, stride, eob);
return;
}
switch (tx_type) {
case DCT_DCT:
vp10_idct4x4_add(input, dest, stride, eob);
break;
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_iht4x4_16_add(input, dest, stride, tx_type);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_iht4x4_16_add(input, dest, stride, tx_type);
break;
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
vp10_iht4x4_16_add_c(input, dest, stride, tx_type);
break;
case IDTX:
inv_idtx_add_c(input, dest, stride, 4, tx_type);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
void vp10_inv_txfm_add_8x8(const tran_low_t *input, uint8_t *dest,
int stride, int eob, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
vp10_idct8x8_add(input, dest, stride, eob);
break;
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_iht8x8_64_add(input, dest, stride, tx_type);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_iht8x8_64_add(input, dest, stride, tx_type);
break;
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
vp10_iht8x8_64_add_c(input, dest, stride, tx_type);
break;
case IDTX:
inv_idtx_add_c(input, dest, stride, 8, tx_type);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
void vp10_inv_txfm_add_16x16(const tran_low_t *input, uint8_t *dest,
int stride, int eob, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
vp10_idct16x16_add(input, dest, stride, eob);
break;
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_iht16x16_256_add(input, dest, stride, tx_type);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_iht16x16_256_add(input, dest, stride, tx_type);
break;
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
vp10_iht16x16_256_add_c(input, dest, stride, tx_type);
break;
case IDTX:
inv_idtx_add_c(input, dest, stride, 16, tx_type);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
void vp10_inv_txfm_add_32x32(const tran_low_t *input, uint8_t *dest,
int stride, int eob, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
vp10_idct32x32_add(input, dest, stride, eob);
break;
#if CONFIG_EXT_TX
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
vp10_iht32x32_1024_add_c(input, dest, stride, tx_type);
break;
case IDTX:
inv_idtx_add_c(input, dest, stride, 32, tx_type);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
void vp10_highbd_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_4[] = {
{ vpx_highbd_idct4_c, vpx_highbd_idct4_c }, // DCT_DCT
{ vpx_highbd_iadst4_c, vpx_highbd_idct4_c }, // ADST_DCT
{ vpx_highbd_idct4_c, vpx_highbd_iadst4_c }, // DCT_ADST
{ vpx_highbd_iadst4_c, vpx_highbd_iadst4_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ vpx_highbd_iadst4_c, vpx_highbd_idct4_c }, // FLIPADST_DCT
{ vpx_highbd_idct4_c, vpx_highbd_iadst4_c }, // DCT_FLIPADST
{ vpx_highbd_iadst4_c, vpx_highbd_iadst4_c }, // FLIPADST_FLIPADST
{ vpx_highbd_iadst4_c, vpx_highbd_iadst4_c }, // ADST_FLIPADST
{ vpx_highbd_iadst4_c, vpx_highbd_iadst4_c }, // FLIPADST_ADST
{ highbd_iidtx4_c, highbd_iidtx4_c }, // IDTX
{ vpx_highbd_idct4_c, highbd_iidtx4_c }, // V_DCT
{ highbd_iidtx4_c, vpx_highbd_idct4_c }, // H_DCT
{ vpx_highbd_iadst4_c, highbd_iidtx4_c }, // V_ADST
{ highbd_iidtx4_c, vpx_highbd_iadst4_c }, // H_ADST
{ vpx_highbd_iadst4_c, highbd_iidtx4_c }, // V_FLIPADST
{ highbd_iidtx4_c, vpx_highbd_iadst4_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t tmp;
tran_low_t out[4][4];
tran_low_t *outp = &out[0][0];
int outstride = 4;
// inverse transform row vectors
for (i = 0; i < 4; ++i) {
HIGH_IHT_4[tx_type].rows(input, out[i], bd);
input += 4;
}
// transpose
for (i = 1 ; i < 4; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 4; ++i) {
HIGH_IHT_4[tx_type].cols(out[i], out[i], bd);
}
#if CONFIG_EXT_TX
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 4);
#endif
// Sum with the destination
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = highbd_clip_pixel_add(dest[d],
ROUND_POWER_OF_TWO(outp[s], 4), bd);
}
}
}
void vp10_highbd_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_8[] = {
{ vpx_highbd_idct8_c, vpx_highbd_idct8_c }, // DCT_DCT
{ vpx_highbd_iadst8_c, vpx_highbd_idct8_c }, // ADST_DCT
{ vpx_highbd_idct8_c, vpx_highbd_iadst8_c }, // DCT_ADST
{ vpx_highbd_iadst8_c, vpx_highbd_iadst8_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ vpx_highbd_iadst8_c, vpx_highbd_idct8_c }, // FLIPADST_DCT
{ vpx_highbd_idct8_c, vpx_highbd_iadst8_c }, // DCT_FLIPADST
{ vpx_highbd_iadst8_c, vpx_highbd_iadst8_c }, // FLIPADST_FLIPADST
{ vpx_highbd_iadst8_c, vpx_highbd_iadst8_c }, // ADST_FLIPADST
{ vpx_highbd_iadst8_c, vpx_highbd_iadst8_c }, // FLIPADST_ADST
{ highbd_iidtx8_c, highbd_iidtx8_c }, // IDTX
{ vpx_highbd_idct8_c, highbd_iidtx8_c }, // V_DCT
{ highbd_iidtx8_c, vpx_highbd_idct8_c }, // H_DCT
{ vpx_highbd_iadst8_c, highbd_iidtx8_c }, // V_ADST
{ highbd_iidtx8_c, vpx_highbd_iadst8_c }, // H_ADST
{ vpx_highbd_iadst8_c, highbd_iidtx8_c }, // V_FLIPADST
{ highbd_iidtx8_c, vpx_highbd_iadst8_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t tmp;
tran_low_t out[8][8];
tran_low_t *outp = &out[0][0];
int outstride = 8;
// inverse transform row vectors
for (i = 0; i < 8; ++i) {
HIGH_IHT_8[tx_type].rows(input, out[i], bd);
input += 8;
}
// transpose
for (i = 1 ; i < 8; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 8; ++i) {
HIGH_IHT_8[tx_type].cols(out[i], out[i], bd);
}
#if CONFIG_EXT_TX
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 8);
#endif
// Sum with the destination
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = highbd_clip_pixel_add(dest[d],
ROUND_POWER_OF_TWO(outp[s], 5), bd);
}
}
}
void vp10_highbd_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_16[] = {
{ vpx_highbd_idct16_c, vpx_highbd_idct16_c }, // DCT_DCT
{ vpx_highbd_iadst16_c, vpx_highbd_idct16_c }, // ADST_DCT
{ vpx_highbd_idct16_c, vpx_highbd_iadst16_c }, // DCT_ADST
{ vpx_highbd_iadst16_c, vpx_highbd_iadst16_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ vpx_highbd_iadst16_c, vpx_highbd_idct16_c }, // FLIPADST_DCT
{ vpx_highbd_idct16_c, vpx_highbd_iadst16_c }, // DCT_FLIPADST
{ vpx_highbd_iadst16_c, vpx_highbd_iadst16_c }, // FLIPADST_FLIPADST
{ vpx_highbd_iadst16_c, vpx_highbd_iadst16_c }, // ADST_FLIPADST
{ vpx_highbd_iadst16_c, vpx_highbd_iadst16_c }, // FLIPADST_ADST
{ highbd_iidtx16_c, highbd_iidtx16_c }, // IDTX
{ vpx_highbd_idct16_c, highbd_iidtx16_c }, // V_DCT
{ highbd_iidtx16_c, vpx_highbd_idct16_c }, // H_DCT
{ vpx_highbd_iadst16_c, highbd_iidtx16_c }, // V_ADST
{ highbd_iidtx16_c, vpx_highbd_iadst16_c }, // H_ADST
{ vpx_highbd_iadst16_c, highbd_iidtx16_c }, // V_FLIPADST
{ highbd_iidtx16_c, vpx_highbd_iadst16_c }, // H_FLIPADST
#endif // CONFIG_EXT_TX
};
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t tmp;
tran_low_t out[16][16];
tran_low_t *outp = &out[0][0];
int outstride = 16;
// inverse transform row vectors
for (i = 0; i < 16; ++i) {
HIGH_IHT_16[tx_type].rows(input, out[i], bd);
input += 16;
}
// transpose
for (i = 1 ; i < 16; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 16; ++i) {
HIGH_IHT_16[tx_type].cols(out[i], out[i], bd);
}
#if CONFIG_EXT_TX
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 16);
#endif
// Sum with the destination
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = highbd_clip_pixel_add(dest[d],
ROUND_POWER_OF_TWO(outp[s], 6), bd);
}
}
}
#if CONFIG_EXT_TX
void vp10_highbd_iht32x32_1024_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
static const highbd_transform_2d HIGH_IHT_32[] = {
{ vpx_highbd_idct32_c, vpx_highbd_idct32_c }, // DCT_DCT
{ highbd_ihalfright32_c, vpx_highbd_idct32_c }, // ADST_DCT
{ vpx_highbd_idct32_c, highbd_ihalfright32_c }, // DCT_ADST
{ highbd_ihalfright32_c, highbd_ihalfright32_c }, // ADST_ADST
{ highbd_ihalfright32_c, vpx_highbd_idct32_c }, // FLIPADST_DCT
{ vpx_highbd_idct32_c, highbd_ihalfright32_c }, // DCT_FLIPADST
{ highbd_ihalfright32_c, highbd_ihalfright32_c }, // FLIPADST_FLIPADST
{ highbd_ihalfright32_c, highbd_ihalfright32_c }, // ADST_FLIPADST
{ highbd_ihalfright32_c, highbd_ihalfright32_c }, // FLIPADST_ADST
{ highbd_iidtx32_c, highbd_iidtx32_c }, // IDTX
{ vpx_highbd_idct32_c, highbd_iidtx32_c }, // V_DCT
{ highbd_iidtx32_c, vpx_highbd_idct32_c }, // H_DCT
{ highbd_ihalfright32_c, highbd_iidtx32_c }, // V_ADST
{ highbd_iidtx32_c, highbd_ihalfright32_c }, // H_ADST
{ highbd_ihalfright32_c, highbd_iidtx32_c }, // V_FLIPADST
{ highbd_iidtx32_c, highbd_ihalfright32_c }, // H_FLIPADST
};
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t tmp;
tran_low_t out[32][32];
tran_low_t *outp = &out[0][0];
int outstride = 32;
// inverse transform row vectors
for (i = 0; i < 32; ++i) {
HIGH_IHT_32[tx_type].rows(input, out[i], bd);
input += 32;
}
// transpose
for (i = 1 ; i < 32; i++) {
for (j = 0; j < i; j++) {
tmp = out[i][j];
out[i][j] = out[j][i];
out[j][i] = tmp;
}
}
// inverse transform column vectors
for (i = 0; i < 32; ++i) {
HIGH_IHT_32[tx_type].cols(out[i], out[i], bd);
}
maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 32);
// Sum with the destination
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = highbd_clip_pixel_add(dest[d],
ROUND_POWER_OF_TWO(outp[s], 6), bd);
}
}
}
#endif // CONFIG_EXT_TX
// idct
void vp10_highbd_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
if (eob > 1)
vpx_highbd_idct4x4_16_add(input, dest, stride, bd);
else
vpx_highbd_idct4x4_1_add(input, dest, stride, bd);
}
void vp10_highbd_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
if (eob > 1)
vpx_highbd_iwht4x4_16_add(input, dest, stride, bd);
else
vpx_highbd_iwht4x4_1_add(input, dest, stride, bd);
}
void vp10_highbd_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
// If dc is 1, then input[0] is the reconstructed value, do not need
// dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1.
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to decide what to do.
// TODO(yunqingwang): "eobs = 1" case is also handled in vp10_short_idct8x8_c.
// Combine that with code here.
// DC only DCT coefficient
if (eob == 1) {
vpx_highbd_idct8x8_1_add(input, dest, stride, bd);
} else if (eob <= 10) {
vpx_highbd_idct8x8_10_add(input, dest, stride, bd);
} else {
vpx_highbd_idct8x8_64_add(input, dest, stride, bd);
}
}
void vp10_highbd_idct16x16_add(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd) {
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to separate different cases.
// DC only DCT coefficient.
if (eob == 1) {
vpx_highbd_idct16x16_1_add(input, dest, stride, bd);
} else if (eob <= 10) {
vpx_highbd_idct16x16_10_add(input, dest, stride, bd);
} else {
vpx_highbd_idct16x16_256_add(input, dest, stride, bd);
}
}
void vp10_highbd_idct32x32_add(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd) {
// Non-zero coeff only in upper-left 8x8
if (eob == 1) {
vpx_highbd_idct32x32_1_add(input, dest, stride, bd);
} else if (eob <= 34) {
vpx_highbd_idct32x32_34_add(input, dest, stride, bd);
} else {
vpx_highbd_idct32x32_1024_add(input, dest, stride, bd);
}
}
void vp10_highbd_inv_txfm_add_4x4(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd, TX_TYPE tx_type,
int lossless) {
if (lossless) {
assert(tx_type == DCT_DCT);
vp10_highbd_iwht4x4_add(input, dest, stride, eob, bd);
return;
}
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_inv_txfm2d_add_4x4(input, CONVERT_TO_SHORTPTR(dest), stride,
tx_type, bd);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_inv_txfm2d_add_4x4_c(input, CONVERT_TO_SHORTPTR(dest), stride,
tx_type, bd);
break;
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
vp10_highbd_iht4x4_16_add_c(input, dest, stride, tx_type, bd);
break;
case IDTX:
highbd_inv_idtx_add_c(input, dest, stride, 4, tx_type, bd);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
void vp10_highbd_inv_txfm_add_8x8(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd,
TX_TYPE tx_type) {
(void)eob;
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_inv_txfm2d_add_8x8(input, CONVERT_TO_SHORTPTR(dest), stride,
tx_type, bd);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_inv_txfm2d_add_8x8_c(input, CONVERT_TO_SHORTPTR(dest), stride,
tx_type, bd);
break;
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
vp10_highbd_iht8x8_64_add_c(input, dest, stride, tx_type, bd);
break;
case IDTX:
highbd_inv_idtx_add_c(input, dest, stride, 8, tx_type, bd);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
void vp10_highbd_inv_txfm_add_16x16(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd,
TX_TYPE tx_type) {
(void)eob;
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_inv_txfm2d_add_16x16(input, CONVERT_TO_SHORTPTR(dest), stride,
tx_type, bd);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_inv_txfm2d_add_16x16_c(input, CONVERT_TO_SHORTPTR(dest), stride,
tx_type, bd);
break;
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
vp10_highbd_iht16x16_256_add_c(input, dest, stride, tx_type, bd);
break;
case IDTX:
highbd_inv_idtx_add_c(input, dest, stride, 16, tx_type, bd);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
void vp10_highbd_inv_txfm_add_32x32(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd,
TX_TYPE tx_type) {
(void)eob;
switch (tx_type) {
case DCT_DCT:
vp10_inv_txfm2d_add_32x32(input, CONVERT_TO_SHORTPTR(dest), stride,
DCT_DCT, bd);
break;
#if CONFIG_EXT_TX
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
vp10_highbd_iht32x32_1024_add_c(input, dest, stride, tx_type, bd);
break;
case IDTX:
highbd_inv_idtx_add_c(input, dest, stride, 32, tx_type, bd);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
void inv_txfm_add(const tran_low_t *input, uint8_t *dest, int stride,
INV_TXFM_PARAM *inv_txfm_param) {
const TX_TYPE tx_type = inv_txfm_param->tx_type;
const TX_SIZE tx_size = inv_txfm_param->tx_size;
const int eob = inv_txfm_param->eob;
const int lossless = inv_txfm_param->lossless;
switch (tx_size) {
case TX_32X32:
vp10_inv_txfm_add_32x32(input, dest, stride, eob, tx_type);
break;
case TX_16X16:
vp10_inv_txfm_add_16x16(input, dest, stride, eob, tx_type);
break;
case TX_8X8:
vp10_inv_txfm_add_8x8(input, dest, stride, eob, tx_type);
break;
case TX_4X4:
// this is like vp10_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
vp10_inv_txfm_add_4x4(input, dest, stride, eob, tx_type,
lossless);
break;
default:
assert(0 && "Invalid transform size");
break;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
void highbd_inv_txfm_add(const tran_low_t *input, uint8_t *dest, int stride,
INV_TXFM_PARAM *inv_txfm_param) {
const TX_TYPE tx_type = inv_txfm_param->tx_type;
const TX_SIZE tx_size = inv_txfm_param->tx_size;
const int eob = inv_txfm_param->eob;
const int bd = inv_txfm_param->bd;
const int lossless = inv_txfm_param->lossless;
switch (tx_size) {
case TX_32X32:
vp10_highbd_inv_txfm_add_32x32(input, dest, stride, eob, bd, tx_type);
break;
case TX_16X16:
vp10_highbd_inv_txfm_add_16x16(input, dest, stride, eob, bd, tx_type);
break;
case TX_8X8:
vp10_highbd_inv_txfm_add_8x8(input, dest, stride, eob, bd, tx_type);
break;
case TX_4X4:
// this is like vp10_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
vp10_highbd_inv_txfm_add_4x4(input, dest, stride, eob, bd, tx_type,
lossless);
break;
default:
assert(0 && "Invalid transform size");
break;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH