# vim: set ts=4 sw=4 tw=99 et: # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import re import os import sys import awfy, util import math from profiler import Profiler from datetime import datetime import glob SecondsPerDay = 60 * 60 * 24 MaxRecentRuns = 30 class FolderChanger: def __init__(self, folder): self.old = os.getcwd() self.new = folder def __enter__(self): os.chdir(self.new) def __exit__(self, type, value, traceback): os.chdir(self.old) def export(name, j): path = os.path.join(awfy.path, name) if os.path.exists(path): os.remove(path) with open(path, 'w') as fp: util.json_dump(j, fp) def find_all_months(cx, prefix, name): pattern = prefix + 'raw-' + name + '-*-*.json' re_pattern = prefix + 'raw-' + name + '-(\d\d\d\d)-(\d+)\.json' with FolderChanger(awfy.path): files = [] for file in glob.glob(pattern): m = re.match(re_pattern, file) if not m: continue year = int(m.group(1)) month = int(m.group(2)) files.append(((year, month), file)) files = sorted(files, key=lambda key: key[0][0] * 12 + key[0][1]) return files def retrieve_graphs(cx, files): graphs = [] for when, file in files: graphs.append((when, retrieve_graph(cx, file))) return graphs def retrieve_graph(cx, file): with open(os.path.join(awfy.path, file)) as fp: cache = util.json_load(fp) return cache['graph'] # Take a timelist and split it into lists of which times correspond to days. def split_into_days(timelist): if not len(timelist): return [] days = [] first = None earliest = timelist[0] for i, t in enumerate(timelist): if t >= earliest + SecondsPerDay: days.append((first, i)) first = i days.append((first, i)) return days # Aggregate the datapoints in a graph into the supplied regions. Line ordering # stays the same. def condense_graph(graph, regions): # Prefill the new graph. new_graph = { 'direction': graph['direction'], 'timelist': [], 'lines': [] } for line in graph['lines']: points = [] for start, end in regions: total = 0 count = 0 first = None last = None suite_version = None id = None for i in range(start, end): p = line['data'][i] if not p or not p[0]: continue total += p[0] count += 1 if not first: first = p[1] last = p[1] suite_version = p[3] id = p[4] if count == 0: avg = 0 else: avg = total/count points.append([avg, first, last, suite_version, id if count is 1 else None]) newline = { 'modeid': line['modeid'], 'data': points } new_graph['lines'].append(newline) for start, end in regions: new_graph['timelist'].append(graph['timelist'][start]) return new_graph def condense_month(cx, graph, prefix, name): days = split_into_days(graph['timelist']) new_graph = condense_graph(graph, days) j = { 'version': awfy.version, 'graph': new_graph } export(name + '.json', j) def combine(graphs): combined = { 'lines': [], 'timelist': [], 'direction': graphs[0]['direction'] } # Pre-fill modes. modes = { } for graph in graphs: for line in graph['lines']: if line['modeid'] in modes: continue obj = { 'modeid': line['modeid'], 'data': [] } modes[line['modeid']] = obj combined['lines'].append(obj) for graph in graphs: updated = { } for line in graph['lines']: newline = modes[line['modeid']] newline['data'].extend(line['data']) updated[line['modeid']] = True for mode in modes: if mode in updated: continue empty = [None] * len(graph['timelist']) modes[mode]['data'].extend(empty) combined['timelist'].extend(graph['timelist']) # Sanity check. for line in combined['lines']: if len(line['data']) != len(combined['timelist']): raise Exception('corrupt graph') return combined def aggregate(cx, prefix, name): with Profiler() as p: sys.stdout.write('Aggregating ' + name + '... ') sys.stdout.flush() files = find_all_months(cx, prefix, name) graphs = retrieve_graphs(cx, files) graph = combine([graph for when, graph in graphs]) graph['aggregate'] = True # If we don't have enough points for a historical view, we won't display # a historical view. if len(graph['timelist']) <= MaxRecentRuns: if len(graph['timelist']) == 0: graph['earliest'] = 0 else: graph['earliest'] = graph['timelist'][0] return graph # Show MacRecentRuns of atleast one line. recentRuns = 0 runs = [] for i in range(len(graph['lines'])): runs.append(0) for i in range(len(graph['timelist'])-1, -1, -1): for j in range(len(graph['lines'])): if graph['lines'] and i < len(graph['lines'][j]["data"]) and graph['lines'][j]["data"][i]: runs[j] += 1 recentRuns += 1 if max(runs) == MaxRecentRuns: break # If the number of historical points is <= the number of recent points, # then the graph is about split so we don't have to do anything. historical = len(graph['timelist']) - recentRuns if historical <= MaxRecentRuns: graph['earliest'] = graph['timelist'][historical] return graph # How big should each region be? region_length = float(historical) / MaxRecentRuns pos = 0 regions = [] for i in range(0, MaxRecentRuns): start = int(round(pos)) end = min(int(math.floor(pos + region_length)), historical) - 1 if end < start: end = start regions.append((start, end)) pos += region_length new_graph = condense_graph(graph, regions) for i, line in enumerate(new_graph['lines']): oldline = graph['lines'][i] line['data'].extend(oldline['data'][historical:]) new_graph['timelist'].extend(graph['timelist'][historical:]) new_graph['earliest'] = graph['timelist'][historical] new_graph['aggregate'] = True # Sanity check. for line in new_graph['lines']: if len(line['data']) != len(new_graph['timelist']): raise Exception('corrupt graph') diff = p.time() print('took ' + diff) return new_graph def file_is_newer(file1, file2): return os.path.getmtime(file1) >= os.path.getmtime(file2) def condense(cx, prefix, name): with Profiler() as p: sys.stdout.write('Importing all datapoints for ' + name + '... ') sys.stdout.flush() files = find_all_months(cx, prefix, name) diff = p.time() print('took ' + diff) if not len(files): return False change = False for when, raw_file in files: condensed_name = prefix + 'condensed-' + name + '-' + str(when[0]) + '-' + str(when[1]) condensed_file = condensed_name + '.json' # Only update the graph when condensed file is older. if os.path.exists(os.path.join(awfy.path, condensed_file)) and file_is_newer(os.path.join(awfy.path, condensed_file), os.path.join(awfy.path, raw_file)): continue # There was a datapoint added to one of the condensed files. change = True with Profiler() as p: sys.stdout.write('Condensing ' + condensed_name + '... ') sys.stdout.flush() graph = retrieve_graph(cx, raw_file) condense_month(cx, graph, prefix, condensed_name) diff = p.time() print(' took ' + diff) return change def condense_suite(cx, machine, suite): name = suite.name + '-' + str(machine.id) prefix = "" if suite.visible == 2: prefix = "auth-" # Condense suite change = condense(cx, prefix, name) # Aggregate suite if needed. aggregated_file = prefix + 'aggregate-' + name + '.json' if change: j = { 'version': awfy.version, 'graph': aggregate(cx, prefix, name) } export(aggregated_file, j) # Note: only run the subtest condenser when suite was changed. for subtest in suite.tests: test_path = suite.name + '-' + subtest.name + '-' + str(machine.id) # Condense test change = condense(cx, prefix + 'bk-', test_path) # Aggregate suite if needed. if change: j = { 'version': awfy.version, 'graph': aggregate(cx, prefix + 'bk-', test_path) } export(prefix + 'bk-aggregate-' + test_path + '.json', j) if not os.path.exists(os.path.join(awfy.path, aggregated_file)): return None return retrieve_graph(cx, aggregated_file) def condense_all(cx): for machine in cx.machines: # If a machine is set to no longer report scores, don't condense it. if machine.active == 2: continue aggregates = { } for suite in cx.benchmarks: if suite.name == 'v8': continue suite_aggregate = condense_suite(cx, machine, suite) if suite.name == 'misc': continue if suite.visible == 2: continue if suite_aggregate == None: continue aggregates[suite.name] = suite_aggregate j = { 'version': awfy.version, 'graphs': aggregates } export('aggregate-' + str(machine.id) + '.json', j)