Bigquery ETL
Перейти к файлу
kik-kik 4a7aebc813
renamed event_category to fxa_log to avoid confusion with event terminology (#3659)
2023-03-16 13:44:33 +00:00
.circleci issues(3416): added missing metadata.yaml files inside moz-fx-data-shared-prod (#3640) 2023-03-13 21:53:05 +00:00
.github Use Mozilla-owned fork of `git-push-fork-to-upstream-branch` for `push-to-upstream` workflow. (#3548) 2023-01-31 09:52:44 -08:00
.vscode Add Visual Studio Code debug configuration for current Python file. (#3457) 2022-12-13 13:07:27 -08:00
bigquery_etl Fix staging UDFs (#3649) 2023-03-09 09:49:02 -08:00
dags Bug 1822251 Update legacy_compatible_experiments UDF (#3661) 2023-03-14 12:21:21 -04:00
docs Stage deploy docs (#3648) 2023-03-10 09:10:32 -08:00
script added a debug message and flag for when authenticating to gcloud (#3602) 2023-02-23 18:43:24 +01:00
sql renamed event_category to fxa_log to avoid confusion with event terminology (#3659) 2023-03-16 13:44:33 +00:00
sql_generators Updated locale field (#3663) 2023-03-15 15:53:01 -07:00
src/main/java/com/mozilla/telemetry Reapply "Update to zetasql 2022.02.1 (#2862)" (#2881) 2022-04-07 14:02:20 -07:00
tests RS-595 (#3518) 2023-03-10 12:38:52 -05:00
.bigqueryrc Create ~/.bigqueryrc without GCLOUD_SERVICE_KEY (#112) 2019-05-01 13:38:31 -07:00
.dockerignore Use zetasql to get dependencies for dag generation (#1817) 2021-02-18 17:49:46 -05:00
.eslintrc.yml Ran YAMLlint on all yaml files and resolved linting issues (fixes #1297) (#1481) 2020-10-29 17:24:55 -07:00
.flake8 Add and incrementally populate a table for google ads campaign cost metrics (#3468) 2023-01-11 15:58:10 -06:00
.gitignore feat(): Adding ETL for monitoring_airflow datasets (#3204) 2022-10-12 10:57:24 +01:00
.isort.cfg Automatically sort python imports (#1840) 2021-02-24 17:11:52 -05:00
.pre-commit-config.yaml Change isort version for pre-commit (#3625) 2023-03-02 09:30:23 -08:00
.yamllint.yaml Increase yamllint max line length (#3469) 2022-12-16 12:23:32 -08:00
CODEOWNERS DSRE-695 Remove search-terms restrictions from quicksuggest ETL (#2908) 2022-06-21 20:44:30 +00:00
CODE_OF_CONDUCT.md Create CODE_OF_CONDUCT.md (#50) 2019-03-30 10:01:54 -07:00
CONTRIBUTING.md Add CODEOWNERS and restricted access datasets documentation (#2524) 2021-12-21 20:25:05 +00:00
Dockerfile Move to python 3.10 (#3236) 2022-09-22 15:39:40 -04:00
GRAVEYARD.md Remove asn_aggregates ETL (#2580) 2021-12-15 18:28:29 +00:00
LICENSE Add MPL license (#2353) 2021-09-20 17:59:47 +00:00
M1_MAC_SETUP.md Add M1 Mac setup guide (#3302) 2022-11-14 11:03:32 -05:00
README.md Add Visual Studio Code debug configuration for bqetl. (#3395) 2022-12-01 16:42:52 -08:00
bqetl Use --no-deps when installing compiled requirements files (#2752) 2022-02-24 21:36:47 +00:00
conftest.py Reapply "Update to zetasql 2022.02.1 (#2862)" (#2881) 2022-04-07 14:02:20 -07:00
dags.yaml Retry `bqetl_pocket` DAG tasks for 10 hours rather than 1 hour. (#3635) 2023-03-03 15:00:19 -08:00
pom.xml Bump maven-compiler-plugin from 3.10.1 to 3.11.0 (#3618) 2023-02-28 19:39:10 +00:00
pytest.ini Use zetasql to find sql dependencies (#1802) 2021-02-17 11:48:40 -08:00
requirements.in updated authlib and gitpython packages (#3577) 2023-02-09 15:48:54 +01:00
requirements.txt updated cryptography packages (#3578) 2023-02-16 15:08:09 +01:00
setup.py Move to python 3.10 (#3236) 2022-09-22 15:39:40 -04:00

README.md

CircleCI

BigQuery ETL

This repository contains Mozilla Data Team's:

  • Derived ETL jobs that do not require a custom container
  • User-defined functions (UDFs)
  • Airflow DAGs for scheduled bigquery-etl queries
  • Tools for query & UDF deployment, management and scheduling

For more information, see https://mozilla.github.io/bigquery-etl/

Quick Start

Apple Silicon (M1) user requirement

Enable Rosetta mode for your terminal BEFORE installing below tools using your terminal. See our M1 Mac Setup Guide for more information

Pre-requisites

  • Pyenv (optional) Recommended if you want to install different versions of python, see instructions here. After the installation of pyenv, make sure that your terminal app is configured to run the shell as a login shell.
  • Homebrew (not required, but useful for Mac) - Follow the instructions here to install homebrew on your Mac.
  • Python 3.10+ - (see this guide for instructions if you're on a mac and haven't installed anything other than the default system Python).
  • Java JDK 8+ - (required for some functionality, e.g. AdoptOpenJDK) with $JAVA_HOME set.
  • Maven - (needed for downloading jar dependencies). Available via your package manager in most Linux distributions and from homebrew on mac, or you can install yourself by downloading a binary and following maven's install instructions.

GCP CLI tools

  • For Mozilla Employees or Contributors (not in Data Engineering) - Set up GCP command line tools, as described on docs.telemetry.mozilla.org. Note that some functionality (e.g. writing UDFs or backfilling queries) may not be allowed.
  • For Data Engineering - In addition to setting up the command line tools, you will want to log in to shared-prod if making changes to production systems. Run gcloud auth login --update-adc --project=moz-fx-data-shared-prod (if you have not run it previously).

Installing bqetl

  1. Clone the repository
git clone git@github.com:mozilla/bigquery-etl.git
cd bigquery-etl
  1. Install the bqetl command line tool
./bqetl bootstrap
  1. Install standard pre-commit hooks
venv/bin/pre-commit install
  1. Build and install java dependencies
mvn package
# specify `<(echo mozilla-bigquery-etl)` to retain bqetl from `./bqetl bootstrap`
venv/bin/pip-sync --pip-args=--no-deps requirements.txt <(echo mozilla-bigquery-etl)

Finally, if you are using Visual Studio Code, you may also wish to use our recommended defaults:

cp .vscode/settings.json.default .vscode/settings.json
cp .vscode/launch.json.default .vscode/launch.json

And you should now be set up to start working in the repo! The easiest way to do this is for many tasks is to use bqetl. You may also want to read up on common workflows.