# -*- coding: utf-8 -*- # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this file, # You can obtain one at http://mozilla.org/MPL/2.0/. import argparse import collections import itertools import json import math import os import struct import time import traceback from datetime import datetime from logging import INFO, basicConfig, getLogger import adr import dateutil.parser import mozci.push from dateutil.relativedelta import relativedelta from tqdm import tqdm from bugbug import commit_features, db, repository, test_scheduling from bugbug.utils import ( download_check_etag, open_tar_zst, zstd_compress, zstd_decompress, ) basicConfig(level=INFO) logger = getLogger(__name__) JOBS_TO_CONSIDER = ("test-", "build-") JOBS_TO_IGNORE = ( "build-docker-image-", "-test-verify-", "-test-coverage-", "-android-hw-", "-awsy-", "-raptor-", "-talos-", ) ADR_CACHE_DB = "data/adr_cache.tar" db.register( ADR_CACHE_DB, "https://s3-us-west-2.amazonaws.com/communitytc-bugbug/data/adr_cache.tar.zst", 3, ) # The mozci version (to bump whenever we change the mozci regression algorithm), # so we can keep track of which version of mozci was used to analyze a given push # and we can decide when we want to regenerate parts of the dataset. MOZCI_VERSION = 2 TRAINING_MONTHS = { "label": 7, "group": 7, } def filter_runnables(runnables, all_runnables, granularity): return tuple( runnable for runnable in runnables if runnable in all_runnables and ( granularity == "group" or ( any(runnable.startswith(j) for j in JOBS_TO_CONSIDER) and not any(j in runnable for j in JOBS_TO_IGNORE) ) ) ) # Handle "meaningless" labeling changes ("meaningless" as they shouldn't really affect test scheduling). def rename_tasks(tasks): return [task.replace("test-linux64-", "test-linux1804-64-") for task in tasks] class Retriever(object): def __init__(self): os.makedirs("data", exist_ok=True) def upload_adr_cache(self): cache_path = os.path.splitext(ADR_CACHE_DB)[0] assert os.path.abspath( adr.config["cache"]["stores"]["file"]["path"] ) == os.path.abspath(cache_path) with open_tar_zst(f"{ADR_CACHE_DB}.zst") as tar: tar.add(cache_path) db.upload(ADR_CACHE_DB) def generate_push_data(self, runnable): # We keep in the cache the fact that we failed to analyze a push for 10 # days, so if we re-run often we don't retry the same pushes many times. MISSING_CACHE_RETENTION = 10 * 24 * 60 # We'll use the past TRAINING_MONTHS months only for training the model, # but we use half TRAINING_MONTHS months more than that to calculate the # failure statistics. from_months = TRAINING_MONTHS[runnable] + math.floor( TRAINING_MONTHS[runnable] / 2 ) pushes = mozci.push.make_push_objects( from_date=f"today-{from_months}month", to_date="today-3day", branch="autoland", ) start_time = time.monotonic() num_cached = 0 push_data = [] def cache_key(push): return f"push_data.{runnable}.{push.rev}" # XXX: Some of the old pushes were stored without the mozci version, we # need to handle that until all have the version stored alongside them. for push in pushes: key = cache_key(push) cached = adr.config.cache.get(key) if not cached or isinstance(cached, tuple): continue adr.config.cache.put(key, (cached, 0), adr.config["cache"]["retention"]) # Regenerating a large amount of data when we update the mozci regression detection # algorithm is currently pretty slow, so we only regenerate 1000 pushes whenever we # run. to_regenerate = set() for push in pushes[::-1]: cached = adr.config.cache.get(cache_key(push)) if not cached: continue value, mozci_version = cached if mozci_version != MOZCI_VERSION and len(to_regenerate) < 1000: to_regenerate.add(value[0][0]) for push in tqdm(pushes): key = cache_key(push) if adr.config.cache.has(key) and push.revs[0] not in to_regenerate: num_cached += 1 cached = adr.config.cache.get(key) if cached: value, mozci_version = cached push_data.append(value) else: logger.info(f"Analyzing {push.rev} at the {runnable} level...") try: if runnable == "label": runnables = push.task_labels elif runnable == "group": runnables = push.group_summaries.keys() value = [ push.revs, list(runnables), list(push.get_possible_regressions(runnable)), list(push.get_likely_regressions(runnable)), ] push_data.append(value) adr.config.cache.put( key, (value, MOZCI_VERSION), adr.config["cache"]["retention"] ) except adr.errors.MissingDataError: logger.warning( f"Tasks for push {push.rev} can't be found on ActiveData" ) adr.config.cache.put(key, (), MISSING_CACHE_RETENTION) except Exception: traceback.print_exc() adr.config.cache.put(key, (), MISSING_CACHE_RETENTION) if time.monotonic() - start_time >= 10800: self.upload_adr_cache() start_time = time.monotonic() logger.info(f"{num_cached} pushes were already cached out of {len(pushes)}") with open(f"push_data_{runnable}.json", "w") as f: json.dump(push_data, f) zstd_compress(f"push_data_{runnable}.json") def retrieve_push_data(self): # Download previous cache. db.download(ADR_CACHE_DB) self.generate_push_data("label") self.generate_push_data("group") self.upload_adr_cache() def generate_test_scheduling_history(self, granularity): push_data_path = f"push_data_{granularity}.json" updated = download_check_etag( test_scheduling.PUSH_DATA_URL.format(granularity=granularity) ) if updated: zstd_decompress(push_data_path) os.remove(f"{push_data_path}.zst") assert os.path.exists(push_data_path), "Decompressed push data file exists" # Get the commits DB. assert db.download(repository.COMMITS_DB) HISTORY_DATE_START = datetime.now() - relativedelta( months=TRAINING_MONTHS[granularity] ) if granularity == "label": test_scheduling_db = test_scheduling.TEST_LABEL_SCHEDULING_DB past_failures_db = os.path.join( "data", test_scheduling.PAST_FAILURES_LABEL_DB ) failing_together_db = os.path.join( "data", test_scheduling.FAILING_TOGETHER_LABEL_DB ) elif granularity == "group": test_scheduling_db = test_scheduling.TEST_GROUP_SCHEDULING_DB past_failures_db = os.path.join( "data", test_scheduling.PAST_FAILURES_GROUP_DB ) touched_together_db = os.path.join( "data", test_scheduling.TOUCHED_TOGETHER_DB ) db.download(test_scheduling_db, support_files_too=True) last_node = None for revs, _ in test_scheduling.get_test_scheduling_history(granularity): last_node = revs[0] def generate_failing_together_probabilities(push_data): # TODO: we should consider the probabilities of `task1 failure -> task2 failure` and # `task2 failure -> task1 failure` separately, as they could be different. count_runs = collections.Counter() count_single_failures = collections.Counter() count_both_failures = collections.Counter() for revisions, tasks, likely_regressions, candidate_regressions in tqdm( push_data ): failures = set(likely_regressions + candidate_regressions) all_tasks = list(set(tasks) | failures) for task1, task2 in itertools.combinations(sorted(all_tasks), 2): count_runs[(task1, task2)] += 1 if task1 in failures: if task2 in failures: count_both_failures[(task1, task2)] += 1 else: count_single_failures[(task1, task2)] += 1 elif task2 in failures: count_single_failures[(task1, task2)] += 1 stats = {} skipped = 0 for couple, run_count in count_runs.most_common(): failure_count = count_both_failures[couple] support = failure_count / run_count if support < 1 / 700: skipped += 1 continue if failure_count != 0: confidence = failure_count / ( count_single_failures[couple] + failure_count ) else: confidence = 0.0 stats[couple] = (support, confidence) logger.info(f"{skipped} couples skipped because their support was too low") logger.info("Redundancies with the highest support and confidence:") for couple, (support, confidence) in sorted( stats.items(), key=lambda k: (-k[1][1], -k[1][0]) )[:7]: failure_count = count_both_failures[couple] run_count = count_runs[couple] logger.info( f"{couple[0]} - {couple[1]} redundancy confidence {confidence}, support {support} ({failure_count} over {run_count})." ) logger.info("Redundancies with the highest confidence and lowest support:") for couple, (support, confidence) in sorted( stats.items(), key=lambda k: (-k[1][1], k[1][0]) )[:7]: failure_count = count_both_failures[couple] run_count = count_runs[couple] logger.info( f"{couple[0]} - {couple[1]} redundancy confidence {confidence}, support {support} ({failure_count} over {run_count})." ) failing_together = test_scheduling.get_failing_together_db() count_redundancies = collections.Counter() for couple, (support, confidence) in stats.items(): if confidence == 1.0: count_redundancies["==100%"] += 1 if confidence > 0.9: count_redundancies[">=90%"] += 1 if confidence > 0.8: count_redundancies[">=80%"] += 1 if confidence > 0.7: count_redundancies[">=70%"] += 1 if confidence < 0.7: continue failing_together[ f"{couple[0]}${couple[1]}".encode("utf-8") ] = struct.pack("ff", support, confidence) for percentage, count in count_redundancies.most_common(): logger.info(f"{count} with {percentage} confidence") test_scheduling.close_failing_together_db() def generate_all_data(): past_failures = test_scheduling.get_past_failures(granularity) push_num = past_failures["push_num"] if "push_num" in past_failures else 0 # We can start once we get to the last revision we added in the previous run. can_start = True if last_node is None else False commit_map = {} for commit_data in tqdm(repository.get_commits()): if not can_start: if last_node == commit_data["node"]: can_start = True continue commit_map[commit_data["node"]] = commit_data with open(push_data_path, "r") as f: push_data = json.load(f) logger.info(f"push data nodes: {len(push_data)}") if granularity == "label": push_data = [ ( revisions, rename_tasks(push_tasks), rename_tasks(possible_regressions), rename_tasks(likely_regressions), ) for revisions, push_tasks, possible_regressions, likely_regressions in push_data ] # In the last 14 pushes, we definitely run all possible runnables. all_runnables_set = set( sum((push_runnables for _, push_runnables, _, _ in push_data[-14:]), []) ) # Filter runnables we don't need. all_runnables = filter_runnables( list(all_runnables_set), all_runnables_set, granularity ) all_runnables_set = set(all_runnables_set) logger.info(f"{len(all_runnables_set)} runnables run in the last 14 pushes") push_data = [ ( revisions, filter_runnables(push_tasks, all_runnables_set, granularity), filter_runnables( possible_regressions, all_runnables_set, granularity ), filter_runnables( likely_regressions, all_runnables_set, granularity ), ) for revisions, push_tasks, possible_regressions, likely_regressions in push_data ] if granularity == "label": generate_failing_together_probabilities(push_data) # Store all runnables in the past_failures DB so it can be used in the evaluation phase. past_failures["all_runnables"] = all_runnables # XXX: Should we recreate the DB from scratch if the previous all_runnables are not the # same as the current ones? saved_nodes = set() skipped_no_commits = 0 skipped_too_big_commits = 0 skipped_no_runnables = 0 # We can start once we get to the last revision we added in the previous run. can_start = True if last_node is None else False if granularity == "group": update_touched_together_gen = test_scheduling.update_touched_together() next(update_touched_together_gen) for i in tqdm(range(len(push_data))): ( revisions, push_runnables, possible_regressions, likely_regressions, ) = push_data.pop(0) if not can_start: if last_node == revisions[0]: can_start = True continue push_num += 1 # XXX: Some commits are skipped in the repository mining, e.g. merges and backouts. Maybe we should not skip them. commits = tuple( commit_map.pop(revision) for revision in revisions if revision in commit_map ) if len(commits) == 0: skipped_no_commits += 1 continue merged_commits = commit_features.merge_commits(commits) # XXX: For now, skip commits which are too large. # In the future we can either: # - Improve shelve perf and go back to consider all files; # - Consider only files which appear with a given frequency, like the "files" feature in commit_features; # - Keep a limit of number of files. if len(merged_commits["files"]) > 50: skipped_too_big_commits += 1 continue # If we considered all_runnables, we'd generate a huge amount of data. # We consider only the runnables which run in this push, and the possible and likely regressions # from this push. We can't consider all runnables because we can't be sure that a task that didn't # run on a push would have been successful. runnables_to_consider = list( set(push_runnables + possible_regressions + likely_regressions) ) if len(runnables_to_consider) == 0: skipped_no_runnables += 1 continue # Sync DB every 250 pushes, so we cleanup the shelve cache (we'd run OOM otherwise!). if i % 250 == 0: past_failures.sync() pushdate = dateutil.parser.parse(merged_commits["pushdate"]) if granularity == "group": update_touched_together_gen.send(commits[0]["node"]) result = { "revs": revisions, "data": [], } for data in test_scheduling.generate_data( past_failures, merged_commits, push_num, runnables_to_consider, possible_regressions, likely_regressions, ): if pushdate > HISTORY_DATE_START: result["data"].append(data) if pushdate > HISTORY_DATE_START: saved_nodes.add(i) yield result if granularity == "group": try: update_touched_together_gen.send(None) except StopIteration: pass logger.info(f"saved push data nodes: {len(saved_nodes)}") logger.info(f"skipped {skipped_no_commits} (no commits in our DB)") logger.info(f"skipped {skipped_too_big_commits} (too big commits)") logger.info(f"skipped {skipped_no_runnables} (no interesting runnables)") past_failures["push_num"] = push_num past_failures.close() db.append(test_scheduling_db, generate_all_data()) zstd_compress(test_scheduling_db) with open_tar_zst(past_failures_db) as tar: tar.add(past_failures_db[: -len(".tar.zst")]) if granularity == "group": with open_tar_zst(touched_together_db) as tar: tar.add(touched_together_db[: -len(".tar.zst")]) if granularity == "label": with open_tar_zst(failing_together_db) as tar: tar.add(failing_together_db[: -len(".tar.zst")]) def main(): description = "Retrieve and extract the test scheduling history from ActiveData" parser = argparse.ArgumentParser(description=description) parser.add_argument( "op", help="Which operation to perform.", choices=["retrieve", "generate"] ) parser.add_argument( "--granularity", help="Which test granularity to use.", choices=["label", "group"], ) args = parser.parse_args() retriever = Retriever() if args.op == "retrieve": retriever.retrieve_push_data() elif args.op == "generate": assert args.granularity is not None retriever.generate_test_scheduling_history(args.granularity) if __name__ == "__main__": main()