bugbug/run.py

132 строки
4.2 KiB
Python

# -*- coding: utf-8 -*-
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this file,
# You can obtain one at http://mozilla.org/MPL/2.0/.
import argparse
import csv
import os
from datetime import datetime, timedelta
import numpy as np
from bugbug import repository # noqa
from bugbug import bugzilla, db
from bugbug.models import MODELS, get_model_class
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--lemmatization",
help="Perform lemmatization (using spaCy)",
action="store_true",
)
parser.add_argument("--train", help="Perform training", action="store_true")
parser.add_argument(
"--goal", help="Goal of the classifier", choices=MODELS.keys(), default="defect"
)
parser.add_argument(
"--classifier",
help="Type of the classifier",
choices=["default", "nn"],
default="default",
)
parser.add_argument("--classify", help="Perform evaluation", action="store_true")
parser.add_argument(
"--generate-sheet",
help="Perform evaluation on bugs from last week and generate a csv file",
action="store_true",
)
parser.add_argument("--token", help="Bugzilla token", action="store")
parser.add_argument(
"--historical", help="Analyze historical bugs", action="store_true"
)
args = parser.parse_args()
model_file_name = "{}{}model".format(
args.goal, "" if args.classifier == "default" else args.classifier
)
model_class_name = args.goal
if args.goal == "component":
if args.classifier == "default":
model_class_name = "component"
elif args.classifier == "nn":
model_class_name = "component_nn"
else:
raise ValueError(f"Unknown value {args.classifier}")
model_class = get_model_class(model_class_name)
if args.train:
db.download()
if args.historical:
model = model_class(args.lemmatization, args.historical)
else:
model = model_class(args.lemmatization)
model.train()
else:
model = model_class.load(model_file_name)
if args.classify:
for bug in bugzilla.get_bugs():
print(
f'https://bugzilla.mozilla.org/show_bug.cgi?id={ bug["id"] } - { bug["summary"]} '
)
if model.calculate_importance:
probas, importances = model.classify(
bug, probabilities=True, importances=True
)
feature_names = model.get_feature_names()
for i, (importance, index, is_positive) in enumerate(importances):
print(
f'{i + 1}. \'{feature_names[int(index)]}\' ({"+" if (is_positive) else "-"}{importance})'
)
else:
probas = model.classify(bug, probabilities=True, importances=False)
if np.argmax(probas) == 1:
print(f"Positive! {probas}")
else:
print(f"Negative! {probas}")
input()
if args.generate_sheet:
assert (
args.token is not None
), "A Bugzilla token should be set in order to download bugs"
today = datetime.utcnow()
a_week_ago = today - timedelta(7)
bugzilla.set_token(args.token)
bugs = bugzilla.download_bugs_between(a_week_ago, today)
print(f"Classifying {len(bugs)} bugs...")
rows = [["Bug", f"{args.goal}(model)", args.goal, "Title"]]
for bug in bugs:
p = model.classify(bug, probabilities=True)
rows.append(
[
f'https://bugzilla.mozilla.org/show_bug.cgi?id={bug["id"]}',
"y" if p[0][1] >= 0.7 else "n",
"",
bug["summary"],
]
)
os.makedirs("sheets", exist_ok=True)
with open(
os.path.join(
"sheets",
f'{args.goal}-{datetime.utcnow().strftime("%Y-%m-%d")}-labels.csv',
),
"w",
) as f:
writer = csv.writer(f)
writer.writerows(rows)