зеркало из https://github.com/mozilla/cubeb.git
speex: Update to current version from libspeexdsp upstream.
This also adds the SSE and NEON files, but they're not integrated with the build system, so you must define _USE_SSE or _USE_NEON when building to take advantage of them for now.
This commit is contained in:
Родитель
d880e44e19
Коммит
6634f0eb3f
|
@ -7,18 +7,18 @@
|
|||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
|
||||
- Neither the name of the Xiph.org Foundation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
|
@ -35,14 +35,6 @@
|
|||
#ifndef ARCH_H
|
||||
#define ARCH_H
|
||||
|
||||
#ifndef SPEEX_VERSION
|
||||
#define SPEEX_MAJOR_VERSION 1 /**< Major Speex version. */
|
||||
#define SPEEX_MINOR_VERSION 1 /**< Minor Speex version. */
|
||||
#define SPEEX_MICRO_VERSION 15 /**< Micro Speex version. */
|
||||
#define SPEEX_EXTRA_VERSION "" /**< Extra Speex version. */
|
||||
#define SPEEX_VERSION "speex-1.2beta3" /**< Speex version string. */
|
||||
#endif
|
||||
|
||||
/* A couple test to catch stupid option combinations */
|
||||
#ifdef FIXED_POINT
|
||||
|
||||
|
@ -75,7 +67,7 @@
|
|||
#endif
|
||||
|
||||
#ifndef OUTSIDE_SPEEX
|
||||
#include "../include/speex/speex_types.h"
|
||||
#include "speex/speexdsp_types.h"
|
||||
#endif
|
||||
|
||||
#define ABS(x) ((x) < 0 ? (-(x)) : (x)) /**< Absolute integer value. */
|
||||
|
@ -109,6 +101,8 @@ typedef spx_word32_t spx_sig_t;
|
|||
#define SIG_SHIFT 14
|
||||
#define GAIN_SHIFT 6
|
||||
|
||||
#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x)))
|
||||
|
||||
#define VERY_SMALL 0
|
||||
#define VERY_LARGE32 ((spx_word32_t)2147483647)
|
||||
#define VERY_LARGE16 ((spx_word16_t)32767)
|
||||
|
@ -171,6 +165,7 @@ typedef float spx_word32_t;
|
|||
#define VSHR32(a,shift) (a)
|
||||
#define SATURATE16(x,a) (x)
|
||||
#define SATURATE32(x,a) (x)
|
||||
#define SATURATE32PSHR(x,shift,a) (x)
|
||||
|
||||
#define PSHR(a,shift) (a)
|
||||
#define SHR(a,shift) (a)
|
||||
|
@ -210,18 +205,19 @@ typedef float spx_word32_t;
|
|||
#define DIV32(a,b) (((spx_word32_t)(a))/(spx_word32_t)(b))
|
||||
#define PDIV32(a,b) (((spx_word32_t)(a))/(spx_word32_t)(b))
|
||||
|
||||
|
||||
#define WORD2INT(x) ((x) < -32767.5f ? -32768 : \
|
||||
((x) > 32766.5f ? 32767 : (spx_int16_t)floor(.5 + (x))))
|
||||
#endif
|
||||
|
||||
|
||||
#if defined (CONFIG_TI_C54X) || defined (CONFIG_TI_C55X)
|
||||
|
||||
/* 2 on TI C5x DSP */
|
||||
#define BYTES_PER_CHAR 2
|
||||
#define BYTES_PER_CHAR 2
|
||||
#define BITS_PER_CHAR 16
|
||||
#define LOG2_BITS_PER_CHAR 4
|
||||
|
||||
#else
|
||||
#else
|
||||
|
||||
#define BYTES_PER_CHAR 1
|
||||
#define BITS_PER_CHAR 8
|
||||
|
|
|
@ -7,18 +7,18 @@
|
|||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
|
||||
- Neither the name of the Xiph.org Foundation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
|
@ -52,6 +52,10 @@
|
|||
#define SATURATE16(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
|
||||
#define SATURATE32(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
|
||||
|
||||
#define SATURATE32PSHR(x,shift,a) (((x)>=(SHL32(a,shift))) ? (a) : \
|
||||
(x)<=-(SHL32(a,shift)) ? -(a) : \
|
||||
(PSHR32(x, shift)))
|
||||
|
||||
#define SHR(a,shift) ((a) >> (shift))
|
||||
#define SHL(a,shift) ((spx_word32_t)(a) << (shift))
|
||||
#define PSHR(a,shift) (SHR((a)+((EXTEND32(1)<<((shift))>>1)),shift))
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
/* Copyright (C) 2007-2008 Jean-Marc Valin
|
||||
Copyright (C) 2008 Thorvald Natvig
|
||||
|
||||
|
||||
File: resample.c
|
||||
Arbitrary resampling code
|
||||
|
||||
|
@ -38,22 +38,22 @@
|
|||
- Low memory requirement
|
||||
- Good *perceptual* quality (and not best SNR)
|
||||
|
||||
Warning: This resampler is relatively new. Although I think I got rid of
|
||||
Warning: This resampler is relatively new. Although I think I got rid of
|
||||
all the major bugs and I don't expect the API to change anymore, there
|
||||
may be something I've missed. So use with caution.
|
||||
|
||||
This algorithm is based on this original resampling algorithm:
|
||||
Smith, Julius O. Digital Audio Resampling Home Page
|
||||
Center for Computer Research in Music and Acoustics (CCRMA),
|
||||
Center for Computer Research in Music and Acoustics (CCRMA),
|
||||
Stanford University, 2007.
|
||||
Web published at http://www-ccrma.stanford.edu/~jos/resample/.
|
||||
Web published at http://ccrma.stanford.edu/~jos/resample/.
|
||||
|
||||
There is one main difference, though. This resampler uses cubic
|
||||
There is one main difference, though. This resampler uses cubic
|
||||
interpolation instead of linear interpolation in the above paper. This
|
||||
makes the table much smaller and makes it possible to compute that table
|
||||
on a per-stream basis. In turn, being able to tweak the table for each
|
||||
stream makes it possible to both reduce complexity on simple ratios
|
||||
(e.g. 2/3), and get rid of the rounding operations in the inner loop.
|
||||
on a per-stream basis. In turn, being able to tweak the table for each
|
||||
stream makes it possible to both reduce complexity on simple ratios
|
||||
(e.g. 2/3), and get rid of the rounding operations in the inner loop.
|
||||
The latter both reduces CPU time and makes the algorithm more SIMD-friendly.
|
||||
*/
|
||||
|
||||
|
@ -69,25 +69,20 @@ static void speex_free (void *ptr) {free(ptr);}
|
|||
#include "speex_resampler.h"
|
||||
#include "arch.h"
|
||||
#else /* OUTSIDE_SPEEX */
|
||||
|
||||
#include "../include/speex/speex_resampler.h"
|
||||
|
||||
#include "speex/speex_resampler.h"
|
||||
#include "arch.h"
|
||||
#include "os_support.h"
|
||||
#endif /* OUTSIDE_SPEEX */
|
||||
|
||||
#include "stack_alloc.h"
|
||||
#include <math.h>
|
||||
#include <limits.h>
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159263
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
#ifdef FIXED_POINT
|
||||
#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x)))
|
||||
#else
|
||||
#define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x))))
|
||||
#endif
|
||||
|
||||
#define IMAX(a,b) ((a) > (b) ? (a) : (b))
|
||||
#define IMIN(a,b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
|
@ -95,10 +90,18 @@ static void speex_free (void *ptr) {free(ptr);}
|
|||
#define NULL 0
|
||||
#endif
|
||||
|
||||
#ifndef UINT32_MAX
|
||||
#define UINT32_MAX 4294967296U
|
||||
#endif
|
||||
|
||||
#ifdef _USE_SSE
|
||||
#include "resample_sse.h"
|
||||
#endif
|
||||
|
||||
#ifdef _USE_NEON
|
||||
#include "resample_neon.h"
|
||||
#endif
|
||||
|
||||
/* Numer of elements to allocate on the stack */
|
||||
#ifdef VAR_ARRAYS
|
||||
#define FIXED_STACK_ALLOC 8192
|
||||
|
@ -113,7 +116,7 @@ struct SpeexResamplerState_ {
|
|||
spx_uint32_t out_rate;
|
||||
spx_uint32_t num_rate;
|
||||
spx_uint32_t den_rate;
|
||||
|
||||
|
||||
int quality;
|
||||
spx_uint32_t nb_channels;
|
||||
spx_uint32_t filt_len;
|
||||
|
@ -125,22 +128,22 @@ struct SpeexResamplerState_ {
|
|||
spx_uint32_t oversample;
|
||||
int initialised;
|
||||
int started;
|
||||
|
||||
|
||||
/* These are per-channel */
|
||||
spx_int32_t *last_sample;
|
||||
spx_uint32_t *samp_frac_num;
|
||||
spx_uint32_t *magic_samples;
|
||||
|
||||
|
||||
spx_word16_t *mem;
|
||||
spx_word16_t *sinc_table;
|
||||
spx_uint32_t sinc_table_length;
|
||||
resampler_basic_func resampler_ptr;
|
||||
|
||||
|
||||
int in_stride;
|
||||
int out_stride;
|
||||
} ;
|
||||
|
||||
static double kaiser12_table[68] = {
|
||||
static const double kaiser12_table[68] = {
|
||||
0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076,
|
||||
0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014,
|
||||
0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601,
|
||||
|
@ -154,7 +157,7 @@ static double kaiser12_table[68] = {
|
|||
0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734,
|
||||
0.00001000, 0.00000000};
|
||||
/*
|
||||
static double kaiser12_table[36] = {
|
||||
static const double kaiser12_table[36] = {
|
||||
0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741,
|
||||
0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762,
|
||||
0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274,
|
||||
|
@ -162,7 +165,7 @@ static double kaiser12_table[36] = {
|
|||
0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291,
|
||||
0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000};
|
||||
*/
|
||||
static double kaiser10_table[36] = {
|
||||
static const double kaiser10_table[36] = {
|
||||
0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446,
|
||||
0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347,
|
||||
0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962,
|
||||
|
@ -170,15 +173,15 @@ static double kaiser10_table[36] = {
|
|||
0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739,
|
||||
0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000};
|
||||
|
||||
static double kaiser8_table[36] = {
|
||||
static const double kaiser8_table[36] = {
|
||||
0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200,
|
||||
0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126,
|
||||
0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272,
|
||||
0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758,
|
||||
0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
|
||||
0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000};
|
||||
|
||||
static double kaiser6_table[36] = {
|
||||
|
||||
static const double kaiser6_table[36] = {
|
||||
0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
|
||||
0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
|
||||
0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561,
|
||||
|
@ -187,19 +190,19 @@ static double kaiser6_table[36] = {
|
|||
0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000};
|
||||
|
||||
struct FuncDef {
|
||||
double *table;
|
||||
const double *table;
|
||||
int oversample;
|
||||
};
|
||||
|
||||
static struct FuncDef _KAISER12 = {kaiser12_table, 64};
|
||||
|
||||
static const struct FuncDef _KAISER12 = {kaiser12_table, 64};
|
||||
#define KAISER12 (&_KAISER12)
|
||||
/*static struct FuncDef _KAISER12 = {kaiser12_table, 32};
|
||||
#define KAISER12 (&_KAISER12)*/
|
||||
static struct FuncDef _KAISER10 = {kaiser10_table, 32};
|
||||
static const struct FuncDef _KAISER10 = {kaiser10_table, 32};
|
||||
#define KAISER10 (&_KAISER10)
|
||||
static struct FuncDef _KAISER8 = {kaiser8_table, 32};
|
||||
static const struct FuncDef _KAISER8 = {kaiser8_table, 32};
|
||||
#define KAISER8 (&_KAISER8)
|
||||
static struct FuncDef _KAISER6 = {kaiser6_table, 32};
|
||||
static const struct FuncDef _KAISER6 = {kaiser6_table, 32};
|
||||
#define KAISER6 (&_KAISER6)
|
||||
|
||||
struct QualityMapping {
|
||||
|
@ -207,12 +210,12 @@ struct QualityMapping {
|
|||
int oversample;
|
||||
float downsample_bandwidth;
|
||||
float upsample_bandwidth;
|
||||
struct FuncDef *window_func;
|
||||
const struct FuncDef *window_func;
|
||||
};
|
||||
|
||||
|
||||
/* This table maps conversion quality to internal parameters. There are two
|
||||
reasons that explain why the up-sampling bandwidth is larger than the
|
||||
reasons that explain why the up-sampling bandwidth is larger than the
|
||||
down-sampling bandwidth:
|
||||
1) When up-sampling, we can assume that the spectrum is already attenuated
|
||||
close to the Nyquist rate (from an A/D or a previous resampling filter)
|
||||
|
@ -234,11 +237,11 @@ static const struct QualityMapping quality_map[11] = {
|
|||
{256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 */ /* 96.6% cutoff (~100 dB stop) 10 */
|
||||
};
|
||||
/*8,24,40,56,80,104,128,160,200,256,320*/
|
||||
static double compute_func(float x, struct FuncDef *func)
|
||||
static double compute_func(float x, const struct FuncDef *func)
|
||||
{
|
||||
float y, frac;
|
||||
double interp[4];
|
||||
int ind;
|
||||
int ind;
|
||||
y = x*func->oversample;
|
||||
ind = (int)floor(y);
|
||||
frac = (y-ind);
|
||||
|
@ -249,7 +252,7 @@ static double compute_func(float x, struct FuncDef *func)
|
|||
interp[0] = -0.3333333333*frac + 0.5*(frac*frac) - 0.1666666667*(frac*frac*frac);
|
||||
/* Just to make sure we don't have rounding problems */
|
||||
interp[1] = 1.f-interp[3]-interp[2]-interp[0];
|
||||
|
||||
|
||||
/*sum = frac*accum[1] + (1-frac)*accum[2];*/
|
||||
return interp[0]*func->table[ind] + interp[1]*func->table[ind+1] + interp[2]*func->table[ind+2] + interp[3]*func->table[ind+3];
|
||||
}
|
||||
|
@ -269,7 +272,7 @@ int main(int argc, char **argv)
|
|||
|
||||
#ifdef FIXED_POINT
|
||||
/* The slow way of computing a sinc for the table. Should improve that some day */
|
||||
static spx_word16_t sinc(float cutoff, float x, int N, struct FuncDef *window_func)
|
||||
static spx_word16_t sinc(float cutoff, float x, int N, const struct FuncDef *window_func)
|
||||
{
|
||||
/*fprintf (stderr, "%f ", x);*/
|
||||
float xx = x * cutoff;
|
||||
|
@ -282,7 +285,7 @@ static spx_word16_t sinc(float cutoff, float x, int N, struct FuncDef *window_fu
|
|||
}
|
||||
#else
|
||||
/* The slow way of computing a sinc for the table. Should improve that some day */
|
||||
static spx_word16_t sinc(float cutoff, float x, int N, struct FuncDef *window_func)
|
||||
static spx_word16_t sinc(float cutoff, float x, int N, const struct FuncDef *window_func)
|
||||
{
|
||||
/*fprintf (stderr, "%f ", x);*/
|
||||
float xx = x * cutoff;
|
||||
|
@ -337,34 +340,35 @@ static int resampler_basic_direct_single(SpeexResamplerState *st, spx_uint32_t c
|
|||
const int frac_advance = st->frac_advance;
|
||||
const spx_uint32_t den_rate = st->den_rate;
|
||||
spx_word32_t sum;
|
||||
int j;
|
||||
|
||||
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
|
||||
{
|
||||
const spx_word16_t *sinc = & sinc_table[samp_frac_num*N];
|
||||
const spx_word16_t *sinct = & sinc_table[samp_frac_num*N];
|
||||
const spx_word16_t *iptr = & in[last_sample];
|
||||
|
||||
#ifndef OVERRIDE_INNER_PRODUCT_SINGLE
|
||||
int j;
|
||||
sum = 0;
|
||||
for(j=0;j<N;j++) sum += MULT16_16(sinc[j], iptr[j]);
|
||||
for(j=0;j<N;j++) sum += MULT16_16(sinct[j], iptr[j]);
|
||||
|
||||
/* This code is slower on most DSPs which have only 2 accumulators.
|
||||
Plus this this forces truncation to 32 bits and you lose the HW guard bits.
|
||||
I think we can trust the compiler and let it vectorize and/or unroll itself.
|
||||
spx_word32_t accum[4] = {0,0,0,0};
|
||||
for(j=0;j<N;j+=4) {
|
||||
accum[0] += MULT16_16(sinc[j], iptr[j]);
|
||||
accum[1] += MULT16_16(sinc[j+1], iptr[j+1]);
|
||||
accum[2] += MULT16_16(sinc[j+2], iptr[j+2]);
|
||||
accum[3] += MULT16_16(sinc[j+3], iptr[j+3]);
|
||||
accum[0] += MULT16_16(sinct[j], iptr[j]);
|
||||
accum[1] += MULT16_16(sinct[j+1], iptr[j+1]);
|
||||
accum[2] += MULT16_16(sinct[j+2], iptr[j+2]);
|
||||
accum[3] += MULT16_16(sinct[j+3], iptr[j+3]);
|
||||
}
|
||||
sum = accum[0] + accum[1] + accum[2] + accum[3];
|
||||
*/
|
||||
sum = SATURATE32PSHR(sum, 15, 32767);
|
||||
#else
|
||||
sum = inner_product_single(sinc, iptr, N);
|
||||
sum = inner_product_single(sinct, iptr, N);
|
||||
#endif
|
||||
|
||||
out[out_stride * out_sample++] = SATURATE32(PSHR32(sum, 15), 32767);
|
||||
out[out_stride * out_sample++] = sum;
|
||||
last_sample += int_advance;
|
||||
samp_frac_num += frac_advance;
|
||||
if (samp_frac_num >= den_rate)
|
||||
|
@ -394,25 +398,25 @@ static int resampler_basic_direct_double(SpeexResamplerState *st, spx_uint32_t c
|
|||
const int frac_advance = st->frac_advance;
|
||||
const spx_uint32_t den_rate = st->den_rate;
|
||||
double sum;
|
||||
int j;
|
||||
|
||||
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
|
||||
{
|
||||
const spx_word16_t *sinc = & sinc_table[samp_frac_num*N];
|
||||
const spx_word16_t *sinct = & sinc_table[samp_frac_num*N];
|
||||
const spx_word16_t *iptr = & in[last_sample];
|
||||
|
||||
#ifndef OVERRIDE_INNER_PRODUCT_DOUBLE
|
||||
int j;
|
||||
double accum[4] = {0,0,0,0};
|
||||
|
||||
for(j=0;j<N;j+=4) {
|
||||
accum[0] += sinc[j]*iptr[j];
|
||||
accum[1] += sinc[j+1]*iptr[j+1];
|
||||
accum[2] += sinc[j+2]*iptr[j+2];
|
||||
accum[3] += sinc[j+3]*iptr[j+3];
|
||||
accum[0] += sinct[j]*iptr[j];
|
||||
accum[1] += sinct[j+1]*iptr[j+1];
|
||||
accum[2] += sinct[j+2]*iptr[j+2];
|
||||
accum[3] += sinct[j+3]*iptr[j+3];
|
||||
}
|
||||
sum = accum[0] + accum[1] + accum[2] + accum[3];
|
||||
#else
|
||||
sum = inner_product_double(sinc, iptr, N);
|
||||
sum = inner_product_double(sinct, iptr, N);
|
||||
#endif
|
||||
|
||||
out[out_stride * out_sample++] = PSHR32(sum, 15);
|
||||
|
@ -441,7 +445,6 @@ static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint3
|
|||
const int int_advance = st->int_advance;
|
||||
const int frac_advance = st->frac_advance;
|
||||
const spx_uint32_t den_rate = st->den_rate;
|
||||
int j;
|
||||
spx_word32_t sum;
|
||||
|
||||
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
|
||||
|
@ -458,6 +461,7 @@ static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint3
|
|||
|
||||
|
||||
#ifndef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
|
||||
int j;
|
||||
spx_word32_t accum[4] = {0,0,0,0};
|
||||
|
||||
for(j=0;j<N;j++) {
|
||||
|
@ -470,12 +474,13 @@ static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint3
|
|||
|
||||
cubic_coef(frac, interp);
|
||||
sum = MULT16_32_Q15(interp[0],SHR32(accum[0], 1)) + MULT16_32_Q15(interp[1],SHR32(accum[1], 1)) + MULT16_32_Q15(interp[2],SHR32(accum[2], 1)) + MULT16_32_Q15(interp[3],SHR32(accum[3], 1));
|
||||
sum = SATURATE32PSHR(sum, 15, 32767);
|
||||
#else
|
||||
cubic_coef(frac, interp);
|
||||
sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
|
||||
#endif
|
||||
|
||||
out[out_stride * out_sample++] = SATURATE32(PSHR32(sum, 14), 32767);
|
||||
|
||||
out[out_stride * out_sample++] = sum;
|
||||
last_sample += int_advance;
|
||||
samp_frac_num += frac_advance;
|
||||
if (samp_frac_num >= den_rate)
|
||||
|
@ -503,7 +508,6 @@ static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint3
|
|||
const int int_advance = st->int_advance;
|
||||
const int frac_advance = st->frac_advance;
|
||||
const spx_uint32_t den_rate = st->den_rate;
|
||||
int j;
|
||||
spx_word32_t sum;
|
||||
|
||||
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
|
||||
|
@ -520,6 +524,7 @@ static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint3
|
|||
|
||||
|
||||
#ifndef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
|
||||
int j;
|
||||
double accum[4] = {0,0,0,0};
|
||||
|
||||
for(j=0;j<N;j++) {
|
||||
|
@ -536,7 +541,7 @@ static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint3
|
|||
cubic_coef(frac, interp);
|
||||
sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
|
||||
#endif
|
||||
|
||||
|
||||
out[out_stride * out_sample++] = PSHR32(sum,15);
|
||||
last_sample += int_advance;
|
||||
samp_frac_num += frac_advance;
|
||||
|
@ -553,22 +558,71 @@ static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint3
|
|||
}
|
||||
#endif
|
||||
|
||||
static void update_filter(SpeexResamplerState *st)
|
||||
/* This resampler is used to produce zero output in situations where memory
|
||||
for the filter could not be allocated. The expected numbers of input and
|
||||
output samples are still processed so that callers failing to check error
|
||||
codes are not surprised, possibly getting into infinite loops. */
|
||||
static int resampler_basic_zero(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
|
||||
{
|
||||
spx_uint32_t old_length;
|
||||
|
||||
old_length = st->filt_len;
|
||||
int out_sample = 0;
|
||||
int last_sample = st->last_sample[channel_index];
|
||||
spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
|
||||
const int out_stride = st->out_stride;
|
||||
const int int_advance = st->int_advance;
|
||||
const int frac_advance = st->frac_advance;
|
||||
const spx_uint32_t den_rate = st->den_rate;
|
||||
|
||||
while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
|
||||
{
|
||||
out[out_stride * out_sample++] = 0;
|
||||
last_sample += int_advance;
|
||||
samp_frac_num += frac_advance;
|
||||
if (samp_frac_num >= den_rate)
|
||||
{
|
||||
samp_frac_num -= den_rate;
|
||||
last_sample++;
|
||||
}
|
||||
}
|
||||
|
||||
st->last_sample[channel_index] = last_sample;
|
||||
st->samp_frac_num[channel_index] = samp_frac_num;
|
||||
return out_sample;
|
||||
}
|
||||
|
||||
static int _muldiv(spx_uint32_t *result, spx_uint32_t value, spx_uint32_t mul, spx_uint32_t div)
|
||||
{
|
||||
speex_assert(result);
|
||||
spx_uint32_t major = value / div;
|
||||
spx_uint32_t remainder = value % div;
|
||||
/* TODO: Could use 64 bits operation to check for overflow. But only guaranteed in C99+ */
|
||||
if (remainder > UINT32_MAX / mul || major > UINT32_MAX / mul
|
||||
|| major * mul > UINT32_MAX - remainder * mul / div)
|
||||
return RESAMPLER_ERR_OVERFLOW;
|
||||
*result = remainder * mul / div + major * mul;
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
}
|
||||
|
||||
static int update_filter(SpeexResamplerState *st)
|
||||
{
|
||||
spx_uint32_t old_length = st->filt_len;
|
||||
spx_uint32_t old_alloc_size = st->mem_alloc_size;
|
||||
int use_direct;
|
||||
spx_uint32_t min_sinc_table_length;
|
||||
spx_uint32_t min_alloc_size;
|
||||
|
||||
st->int_advance = st->num_rate/st->den_rate;
|
||||
st->frac_advance = st->num_rate%st->den_rate;
|
||||
st->oversample = quality_map[st->quality].oversample;
|
||||
st->filt_len = quality_map[st->quality].base_length;
|
||||
|
||||
|
||||
if (st->num_rate > st->den_rate)
|
||||
{
|
||||
/* down-sampling */
|
||||
st->cutoff = quality_map[st->quality].downsample_bandwidth * st->den_rate / st->num_rate;
|
||||
/* FIXME: divide the numerator and denominator by a certain amount if they're too large */
|
||||
st->filt_len = st->filt_len*st->num_rate / st->den_rate;
|
||||
/* Round down to make sure we have a multiple of 4 */
|
||||
st->filt_len &= (~0x3);
|
||||
if (_muldiv(&st->filt_len,st->filt_len,st->num_rate,st->den_rate) != RESAMPLER_ERR_SUCCESS)
|
||||
goto fail;
|
||||
/* Round up to make sure we have a multiple of 8 for SSE */
|
||||
st->filt_len = ((st->filt_len-1)&(~0x7))+8;
|
||||
if (2*st->den_rate < st->num_rate)
|
||||
st->oversample >>= 1;
|
||||
if (4*st->den_rate < st->num_rate)
|
||||
|
@ -583,18 +637,37 @@ static void update_filter(SpeexResamplerState *st)
|
|||
/* up-sampling */
|
||||
st->cutoff = quality_map[st->quality].upsample_bandwidth;
|
||||
}
|
||||
|
||||
|
||||
/* Choose the resampling type that requires the least amount of memory */
|
||||
if (st->den_rate <= st->oversample)
|
||||
#ifdef RESAMPLE_FULL_SINC_TABLE
|
||||
use_direct = 1;
|
||||
if (INT_MAX/sizeof(spx_word16_t)/st->den_rate < st->filt_len)
|
||||
goto fail;
|
||||
#else
|
||||
use_direct = st->filt_len*st->den_rate <= st->filt_len*st->oversample+8
|
||||
&& INT_MAX/sizeof(spx_word16_t)/st->den_rate >= st->filt_len;
|
||||
#endif
|
||||
if (use_direct)
|
||||
{
|
||||
min_sinc_table_length = st->filt_len*st->den_rate;
|
||||
} else {
|
||||
if ((INT_MAX/sizeof(spx_word16_t)-8)/st->oversample < st->filt_len)
|
||||
goto fail;
|
||||
|
||||
min_sinc_table_length = st->filt_len*st->oversample+8;
|
||||
}
|
||||
if (st->sinc_table_length < min_sinc_table_length)
|
||||
{
|
||||
spx_word16_t *sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,min_sinc_table_length*sizeof(spx_word16_t));
|
||||
if (!sinc_table)
|
||||
goto fail;
|
||||
|
||||
st->sinc_table = sinc_table;
|
||||
st->sinc_table_length = min_sinc_table_length;
|
||||
}
|
||||
if (use_direct)
|
||||
{
|
||||
spx_uint32_t i;
|
||||
if (!st->sinc_table)
|
||||
st->sinc_table = (spx_word16_t *)speex_alloc(st->filt_len*st->den_rate*sizeof(spx_word16_t));
|
||||
else if (st->sinc_table_length < st->filt_len*st->den_rate)
|
||||
{
|
||||
st->sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,st->filt_len*st->den_rate*sizeof(spx_word16_t));
|
||||
st->sinc_table_length = st->filt_len*st->den_rate;
|
||||
}
|
||||
for (i=0;i<st->den_rate;i++)
|
||||
{
|
||||
spx_int32_t j;
|
||||
|
@ -614,13 +687,6 @@ static void update_filter(SpeexResamplerState *st)
|
|||
/*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff);*/
|
||||
} else {
|
||||
spx_int32_t i;
|
||||
if (!st->sinc_table)
|
||||
st->sinc_table = (spx_word16_t *)speex_alloc((st->filt_len*st->oversample+8)*sizeof(spx_word16_t));
|
||||
else if (st->sinc_table_length < st->filt_len*st->oversample+8)
|
||||
{
|
||||
st->sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,(st->filt_len*st->oversample+8)*sizeof(spx_word16_t));
|
||||
st->sinc_table_length = st->filt_len*st->oversample+8;
|
||||
}
|
||||
for (i=-4;i<(spx_int32_t)(st->oversample*st->filt_len+4);i++)
|
||||
st->sinc_table[i+4] = sinc(st->cutoff,(i/(float)st->oversample - st->filt_len/2), st->filt_len, quality_map[st->quality].window_func);
|
||||
#ifdef FIXED_POINT
|
||||
|
@ -633,51 +699,47 @@ static void update_filter(SpeexResamplerState *st)
|
|||
#endif
|
||||
/*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff);*/
|
||||
}
|
||||
st->int_advance = st->num_rate/st->den_rate;
|
||||
st->frac_advance = st->num_rate%st->den_rate;
|
||||
|
||||
|
||||
/* Here's the place where we update the filter memory to take into account
|
||||
the change in filter length. It's probably the messiest part of the code
|
||||
due to handling of lots of corner cases. */
|
||||
if (!st->mem)
|
||||
|
||||
/* Adding buffer_size to filt_len won't overflow here because filt_len
|
||||
could be multiplied by sizeof(spx_word16_t) above. */
|
||||
min_alloc_size = st->filt_len-1 + st->buffer_size;
|
||||
if (min_alloc_size > st->mem_alloc_size)
|
||||
{
|
||||
spx_word16_t *mem;
|
||||
if (INT_MAX/sizeof(spx_word16_t)/st->nb_channels < min_alloc_size)
|
||||
goto fail;
|
||||
else if (!(mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*min_alloc_size * sizeof(*mem))))
|
||||
goto fail;
|
||||
|
||||
st->mem = mem;
|
||||
st->mem_alloc_size = min_alloc_size;
|
||||
}
|
||||
if (!st->started)
|
||||
{
|
||||
spx_uint32_t i;
|
||||
st->mem_alloc_size = st->filt_len-1 + st->buffer_size;
|
||||
st->mem = (spx_word16_t*)speex_alloc(st->nb_channels*st->mem_alloc_size * sizeof(spx_word16_t));
|
||||
for (i=0;i<st->nb_channels*st->mem_alloc_size;i++)
|
||||
st->mem[i] = 0;
|
||||
/*speex_warning("init filter");*/
|
||||
} else if (!st->started)
|
||||
{
|
||||
spx_uint32_t i;
|
||||
st->mem_alloc_size = st->filt_len-1 + st->buffer_size;
|
||||
st->mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*st->mem_alloc_size * sizeof(spx_word16_t));
|
||||
for (i=0;i<st->nb_channels*st->mem_alloc_size;i++)
|
||||
st->mem[i] = 0;
|
||||
/*speex_warning("reinit filter");*/
|
||||
} else if (st->filt_len > old_length)
|
||||
{
|
||||
spx_int32_t i;
|
||||
spx_uint32_t i;
|
||||
/* Increase the filter length */
|
||||
/*speex_warning("increase filter size");*/
|
||||
int old_alloc_size = st->mem_alloc_size;
|
||||
if ((st->filt_len-1 + st->buffer_size) > st->mem_alloc_size)
|
||||
for (i=st->nb_channels;i--;)
|
||||
{
|
||||
st->mem_alloc_size = st->filt_len-1 + st->buffer_size;
|
||||
st->mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*st->mem_alloc_size * sizeof(spx_word16_t));
|
||||
}
|
||||
for (i=st->nb_channels-1;i>=0;i--)
|
||||
{
|
||||
spx_int32_t j;
|
||||
spx_uint32_t j;
|
||||
spx_uint32_t olen = old_length;
|
||||
/*if (st->magic_samples[i])*/
|
||||
{
|
||||
/* Try and remove the magic samples as if nothing had happened */
|
||||
|
||||
|
||||
/* FIXME: This is wrong but for now we need it to avoid going over the array bounds */
|
||||
olen = old_length + 2*st->magic_samples[i];
|
||||
for (j=old_length-2+st->magic_samples[i];j>=0;j--)
|
||||
for (j=old_length-1+st->magic_samples[i];j--;)
|
||||
st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]] = st->mem[i*old_alloc_size+j];
|
||||
for (j=0;j<st->magic_samples[i];j++)
|
||||
st->mem[i*st->mem_alloc_size+j] = 0;
|
||||
|
@ -718,7 +780,15 @@ static void update_filter(SpeexResamplerState *st)
|
|||
st->magic_samples[i] += old_magic;
|
||||
}
|
||||
}
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
|
||||
fail:
|
||||
st->resampler_ptr = resampler_basic_zero;
|
||||
/* st->mem may still contain consumed input samples for the filter.
|
||||
Restore filt_len so that filt_len - 1 still points to the position after
|
||||
the last of these samples. */
|
||||
st->filt_len = old_length;
|
||||
return RESAMPLER_ERR_ALLOC_FAILED;
|
||||
}
|
||||
|
||||
EXPORT SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
|
||||
|
@ -730,6 +800,8 @@ EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
|||
{
|
||||
spx_uint32_t i;
|
||||
SpeexResamplerState *st;
|
||||
int filter_err;
|
||||
|
||||
if (quality > 10 || quality < 0)
|
||||
{
|
||||
if (err)
|
||||
|
@ -737,6 +809,12 @@ EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
|||
return NULL;
|
||||
}
|
||||
st = (SpeexResamplerState *)speex_alloc(sizeof(SpeexResamplerState));
|
||||
if (!st)
|
||||
{
|
||||
if (err)
|
||||
*err = RESAMPLER_ERR_ALLOC_FAILED;
|
||||
return NULL;
|
||||
}
|
||||
st->initialised = 0;
|
||||
st->started = 0;
|
||||
st->in_rate = 0;
|
||||
|
@ -749,40 +827,43 @@ EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
|||
st->filt_len = 0;
|
||||
st->mem = 0;
|
||||
st->resampler_ptr = 0;
|
||||
|
||||
|
||||
st->cutoff = 1.f;
|
||||
st->nb_channels = nb_channels;
|
||||
st->in_stride = 1;
|
||||
st->out_stride = 1;
|
||||
|
||||
#ifdef FIXED_POINT
|
||||
|
||||
st->buffer_size = 160;
|
||||
#else
|
||||
st->buffer_size = 160;
|
||||
#endif
|
||||
|
||||
|
||||
/* Per channel data */
|
||||
st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(int));
|
||||
st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(int));
|
||||
st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(int));
|
||||
for (i=0;i<nb_channels;i++)
|
||||
{
|
||||
st->last_sample[i] = 0;
|
||||
st->magic_samples[i] = 0;
|
||||
st->samp_frac_num[i] = 0;
|
||||
}
|
||||
if (!(st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(spx_int32_t))))
|
||||
goto fail;
|
||||
if (!(st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t))))
|
||||
goto fail;
|
||||
if (!(st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t))))
|
||||
goto fail;
|
||||
|
||||
speex_resampler_set_quality(st, quality);
|
||||
speex_resampler_set_rate_frac(st, ratio_num, ratio_den, in_rate, out_rate);
|
||||
|
||||
|
||||
update_filter(st);
|
||||
|
||||
st->initialised = 1;
|
||||
filter_err = update_filter(st);
|
||||
if (filter_err == RESAMPLER_ERR_SUCCESS)
|
||||
{
|
||||
st->initialised = 1;
|
||||
} else {
|
||||
speex_resampler_destroy(st);
|
||||
st = NULL;
|
||||
}
|
||||
if (err)
|
||||
*err = RESAMPLER_ERR_SUCCESS;
|
||||
*err = filter_err;
|
||||
|
||||
return st;
|
||||
|
||||
fail:
|
||||
if (err)
|
||||
*err = RESAMPLER_ERR_ALLOC_FAILED;
|
||||
speex_resampler_destroy(st);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
EXPORT void speex_resampler_destroy(SpeexResamplerState *st)
|
||||
|
@ -802,17 +883,17 @@ static int speex_resampler_process_native(SpeexResamplerState *st, spx_uint32_t
|
|||
int out_sample = 0;
|
||||
spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
|
||||
spx_uint32_t ilen;
|
||||
|
||||
|
||||
st->started = 1;
|
||||
|
||||
|
||||
/* Call the right resampler through the function ptr */
|
||||
out_sample = st->resampler_ptr(st, channel_index, mem, in_len, out, out_len);
|
||||
|
||||
|
||||
if (st->last_sample[channel_index] < (spx_int32_t)*in_len)
|
||||
*in_len = st->last_sample[channel_index];
|
||||
*out_len = out_sample;
|
||||
st->last_sample[channel_index] -= *in_len;
|
||||
|
||||
|
||||
ilen = *in_len;
|
||||
|
||||
for(j=0;j<N-1;++j)
|
||||
|
@ -825,11 +906,11 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
|||
spx_uint32_t tmp_in_len = st->magic_samples[channel_index];
|
||||
spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
|
||||
const int N = st->filt_len;
|
||||
|
||||
|
||||
speex_resampler_process_native(st, channel_index, &tmp_in_len, *out, &out_len);
|
||||
|
||||
st->magic_samples[channel_index] -= tmp_in_len;
|
||||
|
||||
|
||||
/* If we couldn't process all "magic" input samples, save the rest for next time */
|
||||
if (st->magic_samples[channel_index])
|
||||
{
|
||||
|
@ -855,13 +936,13 @@ EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t c
|
|||
const spx_uint32_t xlen = st->mem_alloc_size - filt_offs;
|
||||
const int istride = st->in_stride;
|
||||
|
||||
if (st->magic_samples[channel_index])
|
||||
if (st->magic_samples[channel_index])
|
||||
olen -= speex_resampler_magic(st, channel_index, &out, olen);
|
||||
if (! st->magic_samples[channel_index]) {
|
||||
while (ilen && olen) {
|
||||
spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
|
||||
spx_uint32_t ochunk = olen;
|
||||
|
||||
|
||||
if (in) {
|
||||
for(j=0;j<ichunk;++j)
|
||||
x[j+filt_offs]=in[j*istride];
|
||||
|
@ -879,7 +960,7 @@ EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t c
|
|||
}
|
||||
*in_len -= ilen;
|
||||
*out_len -= olen;
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
|
||||
}
|
||||
|
||||
#ifdef FIXED_POINT
|
||||
|
@ -905,7 +986,7 @@ EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t cha
|
|||
#endif
|
||||
|
||||
st->out_stride = 1;
|
||||
|
||||
|
||||
while (ilen && olen) {
|
||||
spx_word16_t *y = ystack;
|
||||
spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
|
||||
|
@ -942,7 +1023,7 @@ EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t cha
|
|||
#else
|
||||
out[j*ostride_save] = WORD2INT(ystack[j]);
|
||||
#endif
|
||||
|
||||
|
||||
ilen -= ichunk;
|
||||
olen -= ochunk;
|
||||
out += (ochunk+omagic) * ostride_save;
|
||||
|
@ -953,7 +1034,7 @@ EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t cha
|
|||
*in_len -= ilen;
|
||||
*out_len -= olen;
|
||||
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
|
||||
}
|
||||
|
||||
EXPORT int speex_resampler_process_interleaved_float(SpeexResamplerState *st, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
|
||||
|
@ -976,20 +1057,22 @@ EXPORT int speex_resampler_process_interleaved_float(SpeexResamplerState *st, co
|
|||
}
|
||||
st->in_stride = istride_save;
|
||||
st->out_stride = ostride_save;
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
EXPORT int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
|
||||
{
|
||||
spx_uint32_t i;
|
||||
int istride_save, ostride_save;
|
||||
spx_uint32_t bak_len = *out_len;
|
||||
spx_uint32_t bak_out_len = *out_len;
|
||||
spx_uint32_t bak_in_len = *in_len;
|
||||
istride_save = st->in_stride;
|
||||
ostride_save = st->out_stride;
|
||||
st->in_stride = st->out_stride = st->nb_channels;
|
||||
for (i=0;i<st->nb_channels;i++)
|
||||
{
|
||||
*out_len = bak_len;
|
||||
*out_len = bak_out_len;
|
||||
*in_len = bak_in_len;
|
||||
if (in != NULL)
|
||||
speex_resampler_process_int(st, i, in+i, in_len, out+i, out_len);
|
||||
else
|
||||
|
@ -997,7 +1080,7 @@ EXPORT int speex_resampler_process_interleaved_int(SpeexResamplerState *st, cons
|
|||
}
|
||||
st->in_stride = istride_save;
|
||||
st->out_stride = ostride_save;
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
|
||||
}
|
||||
|
||||
EXPORT int speex_resampler_set_rate(SpeexResamplerState *st, spx_uint32_t in_rate, spx_uint32_t out_rate)
|
||||
|
@ -1011,6 +1094,18 @@ EXPORT void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_r
|
|||
*out_rate = st->out_rate;
|
||||
}
|
||||
|
||||
static inline spx_uint32_t _gcd(spx_uint32_t a, spx_uint32_t b)
|
||||
{
|
||||
while (b != 0)
|
||||
{
|
||||
spx_uint32_t temp = a;
|
||||
|
||||
a = b;
|
||||
b = temp % b;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
EXPORT int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
|
||||
{
|
||||
spx_uint32_t fact;
|
||||
|
@ -1018,35 +1113,32 @@ EXPORT int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t r
|
|||
spx_uint32_t i;
|
||||
if (st->in_rate == in_rate && st->out_rate == out_rate && st->num_rate == ratio_num && st->den_rate == ratio_den)
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
|
||||
|
||||
old_den = st->den_rate;
|
||||
st->in_rate = in_rate;
|
||||
st->out_rate = out_rate;
|
||||
st->num_rate = ratio_num;
|
||||
st->den_rate = ratio_den;
|
||||
/* FIXME: This is terribly inefficient, but who cares (at least for now)? */
|
||||
for (fact=2;fact<=IMIN(st->num_rate, st->den_rate);fact++)
|
||||
{
|
||||
while ((st->num_rate % fact == 0) && (st->den_rate % fact == 0))
|
||||
{
|
||||
st->num_rate /= fact;
|
||||
st->den_rate /= fact;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
fact = _gcd (st->num_rate, st->den_rate);
|
||||
|
||||
st->num_rate /= fact;
|
||||
st->den_rate /= fact;
|
||||
|
||||
if (old_den > 0)
|
||||
{
|
||||
for (i=0;i<st->nb_channels;i++)
|
||||
{
|
||||
st->samp_frac_num[i]=st->samp_frac_num[i]*st->den_rate/old_den;
|
||||
if (_muldiv(&st->samp_frac_num[i],st->samp_frac_num[i],st->den_rate,old_den) != RESAMPLER_ERR_SUCCESS)
|
||||
return RESAMPLER_ERR_OVERFLOW;
|
||||
/* Safety net */
|
||||
if (st->samp_frac_num[i] >= st->den_rate)
|
||||
st->samp_frac_num[i] = st->den_rate-1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (st->initialised)
|
||||
update_filter(st);
|
||||
return update_filter(st);
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
}
|
||||
|
||||
|
@ -1064,7 +1156,7 @@ EXPORT int speex_resampler_set_quality(SpeexResamplerState *st, int quality)
|
|||
return RESAMPLER_ERR_SUCCESS;
|
||||
st->quality = quality;
|
||||
if (st->initialised)
|
||||
update_filter(st);
|
||||
return update_filter(st);
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
}
|
||||
|
||||
|
@ -1114,6 +1206,12 @@ EXPORT int speex_resampler_skip_zeros(SpeexResamplerState *st)
|
|||
EXPORT int speex_resampler_reset_mem(SpeexResamplerState *st)
|
||||
{
|
||||
spx_uint32_t i;
|
||||
for (i=0;i<st->nb_channels;i++)
|
||||
{
|
||||
st->last_sample[i] = 0;
|
||||
st->magic_samples[i] = 0;
|
||||
st->samp_frac_num[i] = 0;
|
||||
}
|
||||
for (i=0;i<st->nb_channels*(st->filt_len-1);i++)
|
||||
st->mem[i] = 0;
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
|
|
|
@ -0,0 +1,201 @@
|
|||
/* Copyright (C) 2007-2008 Jean-Marc Valin
|
||||
* Copyright (C) 2008 Thorvald Natvig
|
||||
* Copyright (C) 2011 Texas Instruments
|
||||
* author Jyri Sarha
|
||||
*/
|
||||
/**
|
||||
@file resample_neon.h
|
||||
@brief Resampler functions (NEON version)
|
||||
*/
|
||||
/*
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
- Neither the name of the Xiph.org Foundation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||||
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <arm_neon.h>
|
||||
|
||||
#ifdef FIXED_POINT
|
||||
#ifdef __thumb2__
|
||||
static inline int32_t saturate_32bit_to_16bit(int32_t a) {
|
||||
int32_t ret;
|
||||
asm ("ssat %[ret], #16, %[a]"
|
||||
: [ret] "=&r" (ret)
|
||||
: [a] "r" (a)
|
||||
: );
|
||||
return ret;
|
||||
}
|
||||
#else
|
||||
static inline int32_t saturate_32bit_to_16bit(int32_t a) {
|
||||
int32_t ret;
|
||||
asm ("vmov.s32 d0[0], %[a]\n"
|
||||
"vqmovn.s32 d0, q0\n"
|
||||
"vmov.s16 %[ret], d0[0]\n"
|
||||
: [ret] "=&r" (ret)
|
||||
: [a] "r" (a)
|
||||
: "q0");
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
#undef WORD2INT
|
||||
#define WORD2INT(x) (saturate_32bit_to_16bit(x))
|
||||
|
||||
#define OVERRIDE_INNER_PRODUCT_SINGLE
|
||||
/* Only works when len % 4 == 0 */
|
||||
static inline int32_t inner_product_single(const int16_t *a, const int16_t *b, unsigned int len)
|
||||
{
|
||||
int32_t ret;
|
||||
uint32_t remainder = len % 16;
|
||||
len = len - remainder;
|
||||
|
||||
asm volatile (" cmp %[len], #0\n"
|
||||
" bne 1f\n"
|
||||
" vld1.16 {d16}, [%[b]]!\n"
|
||||
" vld1.16 {d20}, [%[a]]!\n"
|
||||
" subs %[remainder], %[remainder], #4\n"
|
||||
" vmull.s16 q0, d16, d20\n"
|
||||
" beq 5f\n"
|
||||
" b 4f\n"
|
||||
"1:"
|
||||
" vld1.16 {d16, d17, d18, d19}, [%[b]]!\n"
|
||||
" vld1.16 {d20, d21, d22, d23}, [%[a]]!\n"
|
||||
" subs %[len], %[len], #16\n"
|
||||
" vmull.s16 q0, d16, d20\n"
|
||||
" vmlal.s16 q0, d17, d21\n"
|
||||
" vmlal.s16 q0, d18, d22\n"
|
||||
" vmlal.s16 q0, d19, d23\n"
|
||||
" beq 3f\n"
|
||||
"2:"
|
||||
" vld1.16 {d16, d17, d18, d19}, [%[b]]!\n"
|
||||
" vld1.16 {d20, d21, d22, d23}, [%[a]]!\n"
|
||||
" subs %[len], %[len], #16\n"
|
||||
" vmlal.s16 q0, d16, d20\n"
|
||||
" vmlal.s16 q0, d17, d21\n"
|
||||
" vmlal.s16 q0, d18, d22\n"
|
||||
" vmlal.s16 q0, d19, d23\n"
|
||||
" bne 2b\n"
|
||||
"3:"
|
||||
" cmp %[remainder], #0\n"
|
||||
" beq 5f\n"
|
||||
"4:"
|
||||
" vld1.16 {d16}, [%[b]]!\n"
|
||||
" vld1.16 {d20}, [%[a]]!\n"
|
||||
" subs %[remainder], %[remainder], #4\n"
|
||||
" vmlal.s16 q0, d16, d20\n"
|
||||
" bne 4b\n"
|
||||
"5:"
|
||||
" vaddl.s32 q0, d0, d1\n"
|
||||
" vadd.s64 d0, d0, d1\n"
|
||||
" vqmovn.s64 d0, q0\n"
|
||||
" vqrshrn.s32 d0, q0, #15\n"
|
||||
" vmov.s16 %[ret], d0[0]\n"
|
||||
: [ret] "=&r" (ret), [a] "+r" (a), [b] "+r" (b),
|
||||
[len] "+r" (len), [remainder] "+r" (remainder)
|
||||
:
|
||||
: "cc", "q0",
|
||||
"d16", "d17", "d18", "d19",
|
||||
"d20", "d21", "d22", "d23");
|
||||
|
||||
return ret;
|
||||
}
|
||||
#elif defined(FLOATING_POINT)
|
||||
|
||||
static inline int32_t saturate_float_to_16bit(float a) {
|
||||
int32_t ret;
|
||||
asm ("vmov.f32 d0[0], %[a]\n"
|
||||
"vcvt.s32.f32 d0, d0, #15\n"
|
||||
"vqrshrn.s32 d0, q0, #15\n"
|
||||
"vmov.s16 %[ret], d0[0]\n"
|
||||
: [ret] "=&r" (ret)
|
||||
: [a] "r" (a)
|
||||
: "q0");
|
||||
return ret;
|
||||
}
|
||||
#undef WORD2INT
|
||||
#define WORD2INT(x) (saturate_float_to_16bit(x))
|
||||
|
||||
#define OVERRIDE_INNER_PRODUCT_SINGLE
|
||||
/* Only works when len % 4 == 0 */
|
||||
static inline float inner_product_single(const float *a, const float *b, unsigned int len)
|
||||
{
|
||||
float ret;
|
||||
uint32_t remainder = len % 16;
|
||||
len = len - remainder;
|
||||
|
||||
asm volatile (" cmp %[len], #0\n"
|
||||
" bne 1f\n"
|
||||
" vld1.32 {q4}, [%[b]]!\n"
|
||||
" vld1.32 {q8}, [%[a]]!\n"
|
||||
" subs %[remainder], %[remainder], #4\n"
|
||||
" vmul.f32 q0, q4, q8\n"
|
||||
" bne 4f\n"
|
||||
" b 5f\n"
|
||||
"1:"
|
||||
" vld1.32 {q4, q5}, [%[b]]!\n"
|
||||
" vld1.32 {q8, q9}, [%[a]]!\n"
|
||||
" vld1.32 {q6, q7}, [%[b]]!\n"
|
||||
" vld1.32 {q10, q11}, [%[a]]!\n"
|
||||
" subs %[len], %[len], #16\n"
|
||||
" vmul.f32 q0, q4, q8\n"
|
||||
" vmul.f32 q1, q5, q9\n"
|
||||
" vmul.f32 q2, q6, q10\n"
|
||||
" vmul.f32 q3, q7, q11\n"
|
||||
" beq 3f\n"
|
||||
"2:"
|
||||
" vld1.32 {q4, q5}, [%[b]]!\n"
|
||||
" vld1.32 {q8, q9}, [%[a]]!\n"
|
||||
" vld1.32 {q6, q7}, [%[b]]!\n"
|
||||
" vld1.32 {q10, q11}, [%[a]]!\n"
|
||||
" subs %[len], %[len], #16\n"
|
||||
" vmla.f32 q0, q4, q8\n"
|
||||
" vmla.f32 q1, q5, q9\n"
|
||||
" vmla.f32 q2, q6, q10\n"
|
||||
" vmla.f32 q3, q7, q11\n"
|
||||
" bne 2b\n"
|
||||
"3:"
|
||||
" vadd.f32 q4, q0, q1\n"
|
||||
" vadd.f32 q5, q2, q3\n"
|
||||
" cmp %[remainder], #0\n"
|
||||
" vadd.f32 q0, q4, q5\n"
|
||||
" beq 5f\n"
|
||||
"4:"
|
||||
" vld1.32 {q6}, [%[b]]!\n"
|
||||
" vld1.32 {q10}, [%[a]]!\n"
|
||||
" subs %[remainder], %[remainder], #4\n"
|
||||
" vmla.f32 q0, q6, q10\n"
|
||||
" bne 4b\n"
|
||||
"5:"
|
||||
" vadd.f32 d0, d0, d1\n"
|
||||
" vpadd.f32 d0, d0, d0\n"
|
||||
" vmov.f32 %[ret], d0[0]\n"
|
||||
: [ret] "=&r" (ret), [a] "+r" (a), [b] "+r" (b),
|
||||
[len] "+l" (len), [remainder] "+l" (remainder)
|
||||
:
|
||||
: "cc", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8",
|
||||
"q9", "q10", "q11");
|
||||
return ret;
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,128 @@
|
|||
/* Copyright (C) 2007-2008 Jean-Marc Valin
|
||||
* Copyright (C) 2008 Thorvald Natvig
|
||||
*/
|
||||
/**
|
||||
@file resample_sse.h
|
||||
@brief Resampler functions (SSE version)
|
||||
*/
|
||||
/*
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
- Neither the name of the Xiph.org Foundation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||||
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <xmmintrin.h>
|
||||
|
||||
#define OVERRIDE_INNER_PRODUCT_SINGLE
|
||||
static inline float inner_product_single(const float *a, const float *b, unsigned int len)
|
||||
{
|
||||
int i;
|
||||
float ret;
|
||||
__m128 sum = _mm_setzero_ps();
|
||||
for (i=0;i<len;i+=8)
|
||||
{
|
||||
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(a+i), _mm_loadu_ps(b+i)));
|
||||
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(a+i+4), _mm_loadu_ps(b+i+4)));
|
||||
}
|
||||
sum = _mm_add_ps(sum, _mm_movehl_ps(sum, sum));
|
||||
sum = _mm_add_ss(sum, _mm_shuffle_ps(sum, sum, 0x55));
|
||||
_mm_store_ss(&ret, sum);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#define OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
|
||||
static inline float interpolate_product_single(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac) {
|
||||
int i;
|
||||
float ret;
|
||||
__m128 sum = _mm_setzero_ps();
|
||||
__m128 f = _mm_loadu_ps(frac);
|
||||
for(i=0;i<len;i+=2)
|
||||
{
|
||||
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_load1_ps(a+i), _mm_loadu_ps(b+i*oversample)));
|
||||
sum = _mm_add_ps(sum, _mm_mul_ps(_mm_load1_ps(a+i+1), _mm_loadu_ps(b+(i+1)*oversample)));
|
||||
}
|
||||
sum = _mm_mul_ps(f, sum);
|
||||
sum = _mm_add_ps(sum, _mm_movehl_ps(sum, sum));
|
||||
sum = _mm_add_ss(sum, _mm_shuffle_ps(sum, sum, 0x55));
|
||||
_mm_store_ss(&ret, sum);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#ifdef _USE_SSE2
|
||||
#include <emmintrin.h>
|
||||
#define OVERRIDE_INNER_PRODUCT_DOUBLE
|
||||
|
||||
static inline double inner_product_double(const float *a, const float *b, unsigned int len)
|
||||
{
|
||||
int i;
|
||||
double ret;
|
||||
__m128d sum = _mm_setzero_pd();
|
||||
__m128 t;
|
||||
for (i=0;i<len;i+=8)
|
||||
{
|
||||
t = _mm_mul_ps(_mm_loadu_ps(a+i), _mm_loadu_ps(b+i));
|
||||
sum = _mm_add_pd(sum, _mm_cvtps_pd(t));
|
||||
sum = _mm_add_pd(sum, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
|
||||
|
||||
t = _mm_mul_ps(_mm_loadu_ps(a+i+4), _mm_loadu_ps(b+i+4));
|
||||
sum = _mm_add_pd(sum, _mm_cvtps_pd(t));
|
||||
sum = _mm_add_pd(sum, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
|
||||
}
|
||||
sum = _mm_add_sd(sum, _mm_unpackhi_pd(sum, sum));
|
||||
_mm_store_sd(&ret, sum);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#define OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
|
||||
static inline double interpolate_product_double(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac) {
|
||||
int i;
|
||||
double ret;
|
||||
__m128d sum;
|
||||
__m128d sum1 = _mm_setzero_pd();
|
||||
__m128d sum2 = _mm_setzero_pd();
|
||||
__m128 f = _mm_loadu_ps(frac);
|
||||
__m128d f1 = _mm_cvtps_pd(f);
|
||||
__m128d f2 = _mm_cvtps_pd(_mm_movehl_ps(f,f));
|
||||
__m128 t;
|
||||
for(i=0;i<len;i+=2)
|
||||
{
|
||||
t = _mm_mul_ps(_mm_load1_ps(a+i), _mm_loadu_ps(b+i*oversample));
|
||||
sum1 = _mm_add_pd(sum1, _mm_cvtps_pd(t));
|
||||
sum2 = _mm_add_pd(sum2, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
|
||||
|
||||
t = _mm_mul_ps(_mm_load1_ps(a+i+1), _mm_loadu_ps(b+(i+1)*oversample));
|
||||
sum1 = _mm_add_pd(sum1, _mm_cvtps_pd(t));
|
||||
sum2 = _mm_add_pd(sum2, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
|
||||
}
|
||||
sum1 = _mm_mul_pd(f1, sum1);
|
||||
sum2 = _mm_mul_pd(f2, sum2);
|
||||
sum = _mm_add_pd(sum1, sum2);
|
||||
sum = _mm_add_sd(sum, _mm_unpackhi_pd(sum, sum));
|
||||
_mm_store_sd(&ret, sum);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif
|
|
@ -1,8 +1,8 @@
|
|||
/* Copyright (C) 2007 Jean-Marc Valin
|
||||
|
||||
|
||||
File: speex_resampler.h
|
||||
Resampling code
|
||||
|
||||
|
||||
The design goals of this code are:
|
||||
- Very fast algorithm
|
||||
- Low memory requirement
|
||||
|
@ -43,7 +43,7 @@
|
|||
|
||||
/********* WARNING: MENTAL SANITY ENDS HERE *************/
|
||||
|
||||
/* If the resampler is defined outside of Speex, we change the symbol names so that
|
||||
/* If the resampler is defined outside of Speex, we change the symbol names so that
|
||||
there won't be any clash if linking with Speex later on. */
|
||||
|
||||
/* #define RANDOM_PREFIX your software name here */
|
||||
|
@ -53,7 +53,7 @@
|
|||
|
||||
#define CAT_PREFIX2(a,b) a ## b
|
||||
#define CAT_PREFIX(a,b) CAT_PREFIX2(a, b)
|
||||
|
||||
|
||||
#define speex_resampler_init CAT_PREFIX(RANDOM_PREFIX,_resampler_init)
|
||||
#define speex_resampler_init_frac CAT_PREFIX(RANDOM_PREFIX,_resampler_init_frac)
|
||||
#define speex_resampler_destroy CAT_PREFIX(RANDOM_PREFIX,_resampler_destroy)
|
||||
|
@ -81,14 +81,12 @@
|
|||
#define spx_int32_t int
|
||||
#define spx_uint16_t unsigned short
|
||||
#define spx_uint32_t unsigned int
|
||||
|
||||
|
||||
#define speex_assert(cond)
|
||||
|
||||
#else /* OUTSIDE_SPEEX */
|
||||
|
||||
#ifdef _BUILD_SPEEX
|
||||
# include "speex_types.h"
|
||||
#else
|
||||
# include <speex/speex_types.h>
|
||||
#endif
|
||||
#include "speexdsp_types.h"
|
||||
|
||||
#endif /* OUTSIDE_SPEEX */
|
||||
|
||||
|
@ -108,7 +106,8 @@ enum {
|
|||
RESAMPLER_ERR_BAD_STATE = 2,
|
||||
RESAMPLER_ERR_INVALID_ARG = 3,
|
||||
RESAMPLER_ERR_PTR_OVERLAP = 4,
|
||||
|
||||
RESAMPLER_ERR_OVERFLOW = 5,
|
||||
|
||||
RESAMPLER_ERR_MAX_ERROR
|
||||
};
|
||||
|
||||
|
@ -124,14 +123,14 @@ typedef struct SpeexResamplerState_ SpeexResamplerState;
|
|||
* @return Newly created resampler state
|
||||
* @retval NULL Error: not enough memory
|
||||
*/
|
||||
SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels,
|
||||
spx_uint32_t in_rate,
|
||||
spx_uint32_t out_rate,
|
||||
SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels,
|
||||
spx_uint32_t in_rate,
|
||||
spx_uint32_t out_rate,
|
||||
int quality,
|
||||
int *err);
|
||||
|
||||
/** Create a new resampler with fractional input/output rates. The sampling
|
||||
* rate ratio is an arbitrary rational number with both the numerator and
|
||||
/** Create a new resampler with fractional input/output rates. The sampling
|
||||
* rate ratio is an arbitrary rational number with both the numerator and
|
||||
* denominator being 32-bit integers.
|
||||
* @param nb_channels Number of channels to be processed
|
||||
* @param ratio_num Numerator of the sampling rate ratio
|
||||
|
@ -143,11 +142,11 @@ SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels,
|
|||
* @return Newly created resampler state
|
||||
* @retval NULL Error: not enough memory
|
||||
*/
|
||||
SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
||||
spx_uint32_t ratio_num,
|
||||
spx_uint32_t ratio_den,
|
||||
spx_uint32_t in_rate,
|
||||
spx_uint32_t out_rate,
|
||||
SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
||||
spx_uint32_t ratio_num,
|
||||
spx_uint32_t ratio_den,
|
||||
spx_uint32_t in_rate,
|
||||
spx_uint32_t out_rate,
|
||||
int quality,
|
||||
int *err);
|
||||
|
||||
|
@ -158,24 +157,24 @@ void speex_resampler_destroy(SpeexResamplerState *st);
|
|||
|
||||
/** Resample a float array. The input and output buffers must *not* overlap.
|
||||
* @param st Resampler state
|
||||
* @param channel_index Index of the channel to process for the multi-channel
|
||||
* @param channel_index Index of the channel to process for the multi-channel
|
||||
* base (0 otherwise)
|
||||
* @param in Input buffer
|
||||
* @param in_len Number of input samples in the input buffer. Returns the
|
||||
* @param in_len Number of input samples in the input buffer. Returns the
|
||||
* number of samples processed
|
||||
* @param out Output buffer
|
||||
* @param out_len Size of the output buffer. Returns the number of samples written
|
||||
*/
|
||||
int speex_resampler_process_float(SpeexResamplerState *st,
|
||||
spx_uint32_t channel_index,
|
||||
const float *in,
|
||||
spx_uint32_t *in_len,
|
||||
float *out,
|
||||
int speex_resampler_process_float(SpeexResamplerState *st,
|
||||
spx_uint32_t channel_index,
|
||||
const float *in,
|
||||
spx_uint32_t *in_len,
|
||||
float *out,
|
||||
spx_uint32_t *out_len);
|
||||
|
||||
/** Resample an int array. The input and output buffers must *not* overlap.
|
||||
* @param st Resampler state
|
||||
* @param channel_index Index of the channel to process for the multi-channel
|
||||
* @param channel_index Index of the channel to process for the multi-channel
|
||||
* base (0 otherwise)
|
||||
* @param in Input buffer
|
||||
* @param in_len Number of input samples in the input buffer. Returns the number
|
||||
|
@ -183,11 +182,11 @@ int speex_resampler_process_float(SpeexResamplerState *st,
|
|||
* @param out Output buffer
|
||||
* @param out_len Size of the output buffer. Returns the number of samples written
|
||||
*/
|
||||
int speex_resampler_process_int(SpeexResamplerState *st,
|
||||
spx_uint32_t channel_index,
|
||||
const spx_int16_t *in,
|
||||
spx_uint32_t *in_len,
|
||||
spx_int16_t *out,
|
||||
int speex_resampler_process_int(SpeexResamplerState *st,
|
||||
spx_uint32_t channel_index,
|
||||
const spx_int16_t *in,
|
||||
spx_uint32_t *in_len,
|
||||
spx_int16_t *out,
|
||||
spx_uint32_t *out_len);
|
||||
|
||||
/** Resample an interleaved float array. The input and output buffers must *not* overlap.
|
||||
|
@ -199,10 +198,10 @@ int speex_resampler_process_int(SpeexResamplerState *st,
|
|||
* @param out_len Size of the output buffer. Returns the number of samples written.
|
||||
* This is all per-channel.
|
||||
*/
|
||||
int speex_resampler_process_interleaved_float(SpeexResamplerState *st,
|
||||
const float *in,
|
||||
spx_uint32_t *in_len,
|
||||
float *out,
|
||||
int speex_resampler_process_interleaved_float(SpeexResamplerState *st,
|
||||
const float *in,
|
||||
spx_uint32_t *in_len,
|
||||
float *out,
|
||||
spx_uint32_t *out_len);
|
||||
|
||||
/** Resample an interleaved int array. The input and output buffers must *not* overlap.
|
||||
|
@ -214,10 +213,10 @@ int speex_resampler_process_interleaved_float(SpeexResamplerState *st,
|
|||
* @param out_len Size of the output buffer. Returns the number of samples written.
|
||||
* This is all per-channel.
|
||||
*/
|
||||
int speex_resampler_process_interleaved_int(SpeexResamplerState *st,
|
||||
const spx_int16_t *in,
|
||||
spx_uint32_t *in_len,
|
||||
spx_int16_t *out,
|
||||
int speex_resampler_process_interleaved_int(SpeexResamplerState *st,
|
||||
const spx_int16_t *in,
|
||||
spx_uint32_t *in_len,
|
||||
spx_int16_t *out,
|
||||
spx_uint32_t *out_len);
|
||||
|
||||
/** Set (change) the input/output sampling rates (integer value).
|
||||
|
@ -225,8 +224,8 @@ int speex_resampler_process_interleaved_int(SpeexResamplerState *st,
|
|||
* @param in_rate Input sampling rate (integer number of Hz).
|
||||
* @param out_rate Output sampling rate (integer number of Hz).
|
||||
*/
|
||||
int speex_resampler_set_rate(SpeexResamplerState *st,
|
||||
spx_uint32_t in_rate,
|
||||
int speex_resampler_set_rate(SpeexResamplerState *st,
|
||||
spx_uint32_t in_rate,
|
||||
spx_uint32_t out_rate);
|
||||
|
||||
/** Get the current input/output sampling rates (integer value).
|
||||
|
@ -234,11 +233,11 @@ int speex_resampler_set_rate(SpeexResamplerState *st,
|
|||
* @param in_rate Input sampling rate (integer number of Hz) copied.
|
||||
* @param out_rate Output sampling rate (integer number of Hz) copied.
|
||||
*/
|
||||
void speex_resampler_get_rate(SpeexResamplerState *st,
|
||||
spx_uint32_t *in_rate,
|
||||
void speex_resampler_get_rate(SpeexResamplerState *st,
|
||||
spx_uint32_t *in_rate,
|
||||
spx_uint32_t *out_rate);
|
||||
|
||||
/** Set (change) the input/output sampling rates and resampling ratio
|
||||
/** Set (change) the input/output sampling rates and resampling ratio
|
||||
* (fractional values in Hz supported).
|
||||
* @param st Resampler state
|
||||
* @param ratio_num Numerator of the sampling rate ratio
|
||||
|
@ -246,10 +245,10 @@ void speex_resampler_get_rate(SpeexResamplerState *st,
|
|||
* @param in_rate Input sampling rate rounded to the nearest integer (in Hz).
|
||||
* @param out_rate Output sampling rate rounded to the nearest integer (in Hz).
|
||||
*/
|
||||
int speex_resampler_set_rate_frac(SpeexResamplerState *st,
|
||||
spx_uint32_t ratio_num,
|
||||
spx_uint32_t ratio_den,
|
||||
spx_uint32_t in_rate,
|
||||
int speex_resampler_set_rate_frac(SpeexResamplerState *st,
|
||||
spx_uint32_t ratio_num,
|
||||
spx_uint32_t ratio_den,
|
||||
spx_uint32_t in_rate,
|
||||
spx_uint32_t out_rate);
|
||||
|
||||
/** Get the current resampling ratio. This will be reduced to the least
|
||||
|
@ -258,52 +257,52 @@ int speex_resampler_set_rate_frac(SpeexResamplerState *st,
|
|||
* @param ratio_num Numerator of the sampling rate ratio copied
|
||||
* @param ratio_den Denominator of the sampling rate ratio copied
|
||||
*/
|
||||
void speex_resampler_get_ratio(SpeexResamplerState *st,
|
||||
spx_uint32_t *ratio_num,
|
||||
void speex_resampler_get_ratio(SpeexResamplerState *st,
|
||||
spx_uint32_t *ratio_num,
|
||||
spx_uint32_t *ratio_den);
|
||||
|
||||
/** Set (change) the conversion quality.
|
||||
* @param st Resampler state
|
||||
* @param quality Resampling quality between 0 and 10, where 0 has poor
|
||||
* @param quality Resampling quality between 0 and 10, where 0 has poor
|
||||
* quality and 10 has very high quality.
|
||||
*/
|
||||
int speex_resampler_set_quality(SpeexResamplerState *st,
|
||||
int speex_resampler_set_quality(SpeexResamplerState *st,
|
||||
int quality);
|
||||
|
||||
/** Get the conversion quality.
|
||||
* @param st Resampler state
|
||||
* @param quality Resampling quality between 0 and 10, where 0 has poor
|
||||
* @param quality Resampling quality between 0 and 10, where 0 has poor
|
||||
* quality and 10 has very high quality.
|
||||
*/
|
||||
void speex_resampler_get_quality(SpeexResamplerState *st,
|
||||
void speex_resampler_get_quality(SpeexResamplerState *st,
|
||||
int *quality);
|
||||
|
||||
/** Set (change) the input stride.
|
||||
* @param st Resampler state
|
||||
* @param stride Input stride
|
||||
*/
|
||||
void speex_resampler_set_input_stride(SpeexResamplerState *st,
|
||||
void speex_resampler_set_input_stride(SpeexResamplerState *st,
|
||||
spx_uint32_t stride);
|
||||
|
||||
/** Get the input stride.
|
||||
* @param st Resampler state
|
||||
* @param stride Input stride copied
|
||||
*/
|
||||
void speex_resampler_get_input_stride(SpeexResamplerState *st,
|
||||
void speex_resampler_get_input_stride(SpeexResamplerState *st,
|
||||
spx_uint32_t *stride);
|
||||
|
||||
/** Set (change) the output stride.
|
||||
* @param st Resampler state
|
||||
* @param stride Output stride
|
||||
*/
|
||||
void speex_resampler_set_output_stride(SpeexResamplerState *st,
|
||||
void speex_resampler_set_output_stride(SpeexResamplerState *st,
|
||||
spx_uint32_t stride);
|
||||
|
||||
/** Get the output stride.
|
||||
* @param st Resampler state copied
|
||||
* @param stride Output stride
|
||||
*/
|
||||
void speex_resampler_get_output_stride(SpeexResamplerState *st,
|
||||
void speex_resampler_get_output_stride(SpeexResamplerState *st,
|
||||
spx_uint32_t *stride);
|
||||
|
||||
/** Get the latency introduced by the resampler measured in input samples.
|
||||
|
@ -316,8 +315,8 @@ int speex_resampler_get_input_latency(SpeexResamplerState *st);
|
|||
*/
|
||||
int speex_resampler_get_output_latency(SpeexResamplerState *st);
|
||||
|
||||
/** Make sure that the first samples to go out of the resamplers don't have
|
||||
* leading zeros. This is only useful before starting to use a newly created
|
||||
/** Make sure that the first samples to go out of the resamplers don't have
|
||||
* leading zeros. This is only useful before starting to use a newly created
|
||||
* resampler. It is recommended to use that when resampling an audio file, as
|
||||
* it will generate a file with the same length. For real-time processing,
|
||||
* it is probably easier not to use this call (so that the output duration
|
||||
|
|
|
@ -7,18 +7,18 @@
|
|||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
|
||||
- Neither the name of the Xiph.org Foundation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
|
@ -101,7 +101,7 @@
|
|||
#endif
|
||||
|
||||
#if defined(VAR_ARRAYS)
|
||||
#define VARDECL(var)
|
||||
#define VARDECL(var)
|
||||
#define ALLOC(var, size, type) type var[size]
|
||||
#elif defined(USE_ALLOCA)
|
||||
#define VARDECL(var) var
|
||||
|
|
Загрузка…
Ссылка в новой задаче