зеркало из https://github.com/mozilla/docker-etl.git
Ruff format changes
This commit is contained in:
Родитель
18dead8c1b
Коммит
c619059d40
|
@ -42,7 +42,6 @@ class ScalarForecast(BaseForecast):
|
|||
if all(pd.to_datetime(self.observed_df["submission_date"]).dt.day == 1):
|
||||
self.start_date = self._default_start_date_monthly
|
||||
|
||||
|
||||
if self.metric_hub is None:
|
||||
# this is used to avoid the code below for testing purposes
|
||||
return
|
||||
|
@ -78,7 +77,9 @@ class ScalarForecast(BaseForecast):
|
|||
"""The first day after the last date in the observed dataset."""
|
||||
return self.observed_df["submission_date"].max() + pd.DateOffset(months=1)
|
||||
|
||||
def _prep_class_dataframes(self, observed_df: pd.DataFrame, segment_column_list: List) -> None:
|
||||
def _prep_class_dataframes(
|
||||
self, observed_df: pd.DataFrame, segment_column_list: List
|
||||
) -> None:
|
||||
"""
|
||||
Prepares the dataframes necessary to identify segment combinations and hold results
|
||||
of scalar forecasting.
|
||||
|
@ -90,9 +91,7 @@ class ScalarForecast(BaseForecast):
|
|||
"""
|
||||
|
||||
# Construct a DataFrame containing all combination of segment values in the observed_df
|
||||
self.combination_df = observed_df[
|
||||
segment_column_list
|
||||
].drop_duplicates()
|
||||
self.combination_df = observed_df[segment_column_list].drop_duplicates()
|
||||
|
||||
# Cross join to the dates_to_predict DataFrame to create a DataFrame that contains a row
|
||||
## for each forecast date for each segment
|
||||
|
|
Загрузка…
Ссылка в новой задаче