gecko-dev/xpcom/threads/TimerThread.cpp

512 строки
14 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
2012-05-21 15:12:37 +04:00
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsTimerImpl.h"
#include "TimerThread.h"
#include "nsThreadUtils.h"
#include "pratom.h"
#include "nsIObserverService.h"
#include "nsIServiceManager.h"
#include "mozilla/Services.h"
#include "mozilla/ChaosMode.h"
#include "mozilla/ArrayUtils.h"
#include <math.h>
using namespace mozilla;
NS_IMPL_ISUPPORTS(TimerThread, nsIRunnable, nsIObserver)
TimerThread::TimerThread() :
mInitInProgress(false),
mInitialized(false),
mMonitor("TimerThread.mMonitor"),
mShutdown(false),
mWaiting(false),
mNotified(false),
mSleeping(false)
{
}
TimerThread::~TimerThread()
{
mThread = nullptr;
NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread");
}
nsresult
TimerThread::InitLocks()
{
return NS_OK;
}
namespace {
class TimerObserverRunnable : public nsRunnable
{
public:
explicit TimerObserverRunnable(nsIObserver* aObserver)
: mObserver(aObserver)
{
}
NS_DECL_NSIRUNNABLE
private:
nsCOMPtr<nsIObserver> mObserver;
};
NS_IMETHODIMP
TimerObserverRunnable::Run()
{
nsCOMPtr<nsIObserverService> observerService =
mozilla::services::GetObserverService();
if (observerService) {
observerService->AddObserver(mObserver, "sleep_notification", false);
observerService->AddObserver(mObserver, "wake_notification", false);
observerService->AddObserver(mObserver, "suspend_process_notification", false);
observerService->AddObserver(mObserver, "resume_process_notification", false);
}
return NS_OK;
}
} // anonymous namespace
nsresult
TimerThread::Init()
{
PR_LOG(GetTimerLog(), PR_LOG_DEBUG,
("TimerThread::Init [%d]\n", mInitialized));
if (mInitialized) {
if (!mThread) {
return NS_ERROR_FAILURE;
}
return NS_OK;
}
if (mInitInProgress.exchange(true) == false) {
// We hold on to mThread to keep the thread alive.
nsresult rv = NS_NewThread(getter_AddRefs(mThread), this);
if (NS_FAILED(rv)) {
mThread = nullptr;
} else {
nsRefPtr<TimerObserverRunnable> r = new TimerObserverRunnable(this);
if (NS_IsMainThread()) {
r->Run();
} else {
NS_DispatchToMainThread(r);
}
}
{
MonitorAutoLock lock(mMonitor);
mInitialized = true;
mMonitor.NotifyAll();
}
} else {
MonitorAutoLock lock(mMonitor);
while (!mInitialized) {
mMonitor.Wait();
}
}
if (!mThread) {
return NS_ERROR_FAILURE;
}
return NS_OK;
}
nsresult
TimerThread::Shutdown()
{
PR_LOG(GetTimerLog(), PR_LOG_DEBUG, ("TimerThread::Shutdown begin\n"));
if (!mThread) {
return NS_ERROR_NOT_INITIALIZED;
}
nsTArray<nsTimerImpl*> timers;
{
// lock scope
MonitorAutoLock lock(mMonitor);
mShutdown = true;
// notify the cond var so that Run() can return
if (mWaiting) {
mNotified = true;
mMonitor.Notify();
}
// Need to copy content of mTimers array to a local array
// because call to timers' ReleaseCallback() (and release its self)
// must not be done under the lock. Destructor of a callback
// might potentially call some code reentering the same lock
// that leads to unexpected behavior or deadlock.
// See bug 422472.
timers.AppendElements(mTimers);
mTimers.Clear();
}
uint32_t timersCount = timers.Length();
for (uint32_t i = 0; i < timersCount; i++) {
nsTimerImpl* timer = timers[i];
timer->ReleaseCallback();
ReleaseTimerInternal(timer);
}
mThread->Shutdown(); // wait for the thread to die
PR_LOG(GetTimerLog(), PR_LOG_DEBUG, ("TimerThread::Shutdown end\n"));
return NS_OK;
}
#ifdef MOZ_NUWA_PROCESS
#include "ipc/Nuwa.h"
#endif
/* void Run(); */
NS_IMETHODIMP
TimerThread::Run()
{
PR_SetCurrentThreadName("Timer");
#ifdef MOZ_NUWA_PROCESS
if (IsNuwaProcess()) {
NS_ASSERTION(NuwaMarkCurrentThread,
"NuwaMarkCurrentThread is undefined!");
NuwaMarkCurrentThread(nullptr, nullptr);
}
#endif
MonitorAutoLock lock(mMonitor);
// We need to know how many microseconds give a positive PRIntervalTime. This
// is platform-dependent, we calculate it at runtime now.
// First we find a value such that PR_MicrosecondsToInterval(high) = 1
int32_t low = 0, high = 1;
while (PR_MicrosecondsToInterval(high) == 0) {
high <<= 1;
}
// We now have
// PR_MicrosecondsToInterval(low) = 0
// PR_MicrosecondsToInterval(high) = 1
// and we can proceed to find the critical value using binary search
while (high - low > 1) {
int32_t mid = (high + low) >> 1;
if (PR_MicrosecondsToInterval(mid) == 0) {
low = mid;
} else {
high = mid;
}
}
// Half of the amount of microseconds needed to get positive PRIntervalTime.
// We use this to decide how to round our wait times later
int32_t halfMicrosecondsIntervalResolution = high >> 1;
bool forceRunNextTimer = false;
while (!mShutdown) {
// Have to use PRIntervalTime here, since PR_WaitCondVar takes it
PRIntervalTime waitFor;
bool forceRunThisTimer = forceRunNextTimer;
forceRunNextTimer = false;
if (mSleeping) {
// Sleep for 0.1 seconds while not firing timers.
uint32_t milliseconds = 100;
if (ChaosMode::isActive()) {
milliseconds = ChaosMode::randomUint32LessThan(200);
}
waitFor = PR_MillisecondsToInterval(milliseconds);
} else {
waitFor = PR_INTERVAL_NO_TIMEOUT;
TimeStamp now = TimeStamp::Now();
nsTimerImpl* timer = nullptr;
if (!mTimers.IsEmpty()) {
timer = mTimers[0];
if (now >= timer->mTimeout || forceRunThisTimer) {
next:
// NB: AddRef before the Release under RemoveTimerInternal to avoid
// mRefCnt passing through zero, in case all other refs than the one
// from mTimers have gone away (the last non-mTimers[i]-ref's Release
// must be racing with us, blocked in gThread->RemoveTimer waiting
// for TimerThread::mMonitor, under nsTimerImpl::Release.
nsRefPtr<nsTimerImpl> timerRef(timer);
RemoveTimerInternal(timer);
timer = nullptr;
{
// We release mMonitor around the Fire call to avoid deadlock.
MonitorAutoUnlock unlock(mMonitor);
#ifdef DEBUG_TIMERS
if (PR_LOG_TEST(GetTimerLog(), PR_LOG_DEBUG)) {
PR_LOG(GetTimerLog(), PR_LOG_DEBUG,
("Timer thread woke up %fms from when it was supposed to\n",
fabs((now - timerRef->mTimeout).ToMilliseconds())));
}
#endif
// We are going to let the call to PostTimerEvent here handle the
// release of the timer so that we don't end up releasing the timer
// on the TimerThread instead of on the thread it targets.
timerRef = nsTimerImpl::PostTimerEvent(timerRef.forget());
if (timerRef) {
// We got our reference back due to an error.
// Unhook the nsRefPtr, and release manually so we can get the
// refcount.
nsrefcnt rc = timerRef.forget().take()->Release();
(void)rc;
// The nsITimer interface requires that its users keep a reference
// to the timers they use while those timers are initialized but
// have not yet fired. If this ever happens, it is a bug in the
// code that created and used the timer.
//
// Further, note that this should never happen even with a
// misbehaving user, because nsTimerImpl::Release checks for a
// refcount of 1 with an armed timer (a timer whose only reference
// is from the timer thread) and when it hits this will remove the
// timer from the timer thread and thus destroy the last reference,
// preventing this situation from occurring.
MOZ_ASSERT(rc != 0, "destroyed timer off its target thread!");
}
}
if (mShutdown) {
break;
}
// Update now, as PostTimerEvent plus the locking may have taken a
// tick or two, and we may goto next below.
now = TimeStamp::Now();
}
}
if (!mTimers.IsEmpty()) {
timer = mTimers[0];
TimeStamp timeout = timer->mTimeout;
// Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer
// is due now or overdue.
//
// Note that we can only sleep for integer values of a certain
// resolution. We use halfMicrosecondsIntervalResolution, calculated
// before, to do the optimal rounding (i.e., of how to decide what
// interval is so small we should not wait at all).
double microseconds = (timeout - now).ToMilliseconds() * 1000;
if (ChaosMode::isActive()) {
// The mean value of sFractions must be 1 to ensure that
// the average of a long sequence of timeouts converges to the
// actual sum of their times.
static const float sFractions[] = {
0.0f, 0.25f, 0.5f, 0.75f, 1.0f, 1.75f, 2.75f
};
microseconds *=
sFractions[ChaosMode::randomUint32LessThan(ArrayLength(sFractions))];
forceRunNextTimer = true;
}
if (microseconds < halfMicrosecondsIntervalResolution) {
forceRunNextTimer = false;
goto next; // round down; execute event now
}
waitFor = PR_MicrosecondsToInterval(
static_cast<uint32_t>(microseconds)); // Floor is accurate enough.
if (waitFor == 0) {
waitFor = 1; // round up, wait the minimum time we can wait
}
}
#ifdef DEBUG_TIMERS
if (PR_LOG_TEST(GetTimerLog(), PR_LOG_DEBUG)) {
if (waitFor == PR_INTERVAL_NO_TIMEOUT)
PR_LOG(GetTimerLog(), PR_LOG_DEBUG,
("waiting for PR_INTERVAL_NO_TIMEOUT\n"));
else
PR_LOG(GetTimerLog(), PR_LOG_DEBUG,
("waiting for %u\n", PR_IntervalToMilliseconds(waitFor)));
}
#endif
}
mWaiting = true;
mNotified = false;
mMonitor.Wait(waitFor);
if (mNotified) {
forceRunNextTimer = false;
}
mWaiting = false;
}
return NS_OK;
}
nsresult
TimerThread::AddTimer(nsTimerImpl* aTimer)
{
MonitorAutoLock lock(mMonitor);
// Add the timer to our list.
int32_t i = AddTimerInternal(aTimer);
if (i < 0) {
return NS_ERROR_OUT_OF_MEMORY;
}
// Awaken the timer thread.
if (mWaiting && i == 0) {
mNotified = true;
mMonitor.Notify();
}
return NS_OK;
}
nsresult
TimerThread::TimerDelayChanged(nsTimerImpl* aTimer)
{
MonitorAutoLock lock(mMonitor);
// Our caller has a strong ref to aTimer, so it can't go away here under
// ReleaseTimerInternal.
RemoveTimerInternal(aTimer);
int32_t i = AddTimerInternal(aTimer);
if (i < 0) {
return NS_ERROR_OUT_OF_MEMORY;
}
// Awaken the timer thread.
if (mWaiting && i == 0) {
mNotified = true;
mMonitor.Notify();
}
return NS_OK;
}
nsresult
TimerThread::RemoveTimer(nsTimerImpl* aTimer)
{
MonitorAutoLock lock(mMonitor);
// Remove the timer from our array. Tell callers that aTimer was not found
// by returning NS_ERROR_NOT_AVAILABLE. Unlike the TimerDelayChanged case
// immediately above, our caller may be passing a (now-)weak ref in via the
// aTimer param, specifically when nsTimerImpl::Release loses a race with
// TimerThread::Run, must wait for the mMonitor auto-lock here, and during the
// wait Run drops the only remaining ref to aTimer via RemoveTimerInternal.
if (!RemoveTimerInternal(aTimer)) {
return NS_ERROR_NOT_AVAILABLE;
}
// Awaken the timer thread.
if (mWaiting) {
mNotified = true;
mMonitor.Notify();
}
return NS_OK;
}
// This function must be called from within a lock
int32_t
TimerThread::AddTimerInternal(nsTimerImpl* aTimer)
{
if (mShutdown) {
return -1;
}
TimeStamp now = TimeStamp::Now();
TimerAdditionComparator c(now, aTimer);
nsTimerImpl** insertSlot = mTimers.InsertElementSorted(aTimer, c);
if (!insertSlot) {
return -1;
}
aTimer->mArmed = true;
NS_ADDREF(aTimer);
#ifdef MOZ_TASK_TRACER
aTimer->DispatchTracedTask();
#endif
return insertSlot - mTimers.Elements();
}
bool
TimerThread::RemoveTimerInternal(nsTimerImpl* aTimer)
{
if (!mTimers.RemoveElement(aTimer)) {
return false;
}
ReleaseTimerInternal(aTimer);
return true;
}
void
TimerThread::ReleaseTimerInternal(nsTimerImpl* aTimer)
{
// Order is crucial here -- see nsTimerImpl::Release.
aTimer->mArmed = false;
NS_RELEASE(aTimer);
}
void
TimerThread::DoBeforeSleep()
{
mSleeping = true;
}
void
TimerThread::DoAfterSleep()
{
mSleeping = true; // wake may be notified without preceding sleep notification
for (uint32_t i = 0; i < mTimers.Length(); i ++) {
nsTimerImpl* timer = mTimers[i];
// get and set the delay to cause its timeout to be recomputed
uint32_t delay;
timer->GetDelay(&delay);
timer->SetDelay(delay);
}
mSleeping = false;
}
/* void observe (in nsISupports aSubject, in string aTopic, in wstring aData); */
NS_IMETHODIMP
TimerThread::Observe(nsISupports* /* aSubject */, const char* aTopic,
const char16_t* /* aData */)
{
if (strcmp(aTopic, "sleep_notification") == 0 ||
strcmp(aTopic, "suspend_process_notification") == 0) {
DoBeforeSleep();
} else if (strcmp(aTopic, "wake_notification") == 0 ||
strcmp(aTopic, "resume_process_notification") == 0) {
DoAfterSleep();
}
return NS_OK;
}