gecko-dev/mfbt/tests/gtest/TestSpan.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2360 строки
56 KiB
C++
Исходник Обычный вид История

///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
// Adapted from
// https://github.com/Microsoft/GSL/blob/3819df6e378ffccf0e29465afe99c3b324c2aa70/tests/Span_tests.cpp
#include "gtest/gtest.h"
#include "mozilla/Span.h"
#include "nsString.h"
#include "nsTArray.h"
#include "mozilla/Range.h"
#include <type_traits>
#define SPAN_TEST(name) TEST(SpanTest, name)
#define CHECK_THROW(a, b)
using namespace mozilla;
static_assert(std::is_convertible_v<Range<int>, Span<const int>>,
"Range should convert into const");
static_assert(std::is_convertible_v<Range<const int>, Span<const int>>,
"const Range should convert into const");
static_assert(!std::is_convertible_v<Range<const int>, Span<int>>,
"Range should not drop const in conversion");
static_assert(std::is_convertible_v<Span<int>, Range<const int>>,
"Span should convert into const");
static_assert(std::is_convertible_v<Span<const int>, Range<const int>>,
"const Span should convert into const");
static_assert(!std::is_convertible_v<Span<const int>, Range<int>>,
"Span should not drop const in conversion");
static_assert(std::is_convertible_v<Span<const int>, Span<const int>>,
"const Span should convert into const");
static_assert(std::is_convertible_v<Span<int>, Span<const int>>,
"Span should convert into const");
static_assert(!std::is_convertible_v<Span<const int>, Span<int>>,
"Span should not drop const in conversion");
static_assert(std::is_convertible_v<const nsTArray<int>, Span<const int>>,
"const nsTArray should convert into const");
static_assert(std::is_convertible_v<nsTArray<int>, Span<const int>>,
"nsTArray should convert into const");
static_assert(!std::is_convertible_v<const nsTArray<int>, Span<int>>,
"nsTArray should not drop const in conversion");
static_assert(std::is_convertible_v<nsTArray<const int>, Span<const int>>,
"nsTArray should convert into const");
static_assert(!std::is_convertible_v<nsTArray<const int>, Span<int>>,
"nsTArray should not drop const in conversion");
static_assert(std::is_convertible_v<const std::vector<int>, Span<const int>>,
"const std::vector should convert into const");
static_assert(std::is_convertible_v<std::vector<int>, Span<const int>>,
"std::vector should convert into const");
static_assert(!std::is_convertible_v<const std::vector<int>, Span<int>>,
"std::vector should not drop const in conversion");
/**
* Rust slice-compatible nullptr replacement value.
*/
#define SLICE_CONST_INT_PTR reinterpret_cast<const int*>(alignof(const int))
/**
* Rust slice-compatible nullptr replacement value.
*/
#define SLICE_INT_PTR reinterpret_cast<int*>(alignof(int))
/**
* Rust slice-compatible nullptr replacement value.
*/
#define SLICE_CONST_INT_PTR_PTR \
reinterpret_cast<const int**>(alignof(const int*))
/**
* Rust slice-compatible nullptr replacement value.
*/
#define SLICE_INT_PTR_PTR reinterpret_cast<int**>(alignof(int*))
namespace {
struct BaseClass {};
struct DerivedClass : BaseClass {};
} // namespace
void AssertSpanOfThreeInts(Span<const int> s) {
ASSERT_EQ(s.size(), 3U);
ASSERT_EQ(s[0], 1);
ASSERT_EQ(s[1], 2);
ASSERT_EQ(s[2], 3);
}
void AssertSpanOfThreeChars(Span<const char> s) {
ASSERT_EQ(s.size(), 3U);
ASSERT_EQ(s[0], 'a');
ASSERT_EQ(s[1], 'b');
ASSERT_EQ(s[2], 'c');
}
void AssertSpanOfThreeChar16s(Span<const char16_t> s) {
ASSERT_EQ(s.size(), 3U);
ASSERT_EQ(s[0], 'a');
ASSERT_EQ(s[1], 'b');
ASSERT_EQ(s[2], 'c');
}
void AssertSpanOfThreeCharsViaString(const nsACString& aStr) {
AssertSpanOfThreeChars(aStr);
}
void AssertSpanOfThreeChar16sViaString(const nsAString& aStr) {
AssertSpanOfThreeChar16s(aStr);
}
SPAN_TEST(default_constructor) {
{
Span<int> s;
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
Span<const int> cs;
ASSERT_EQ(cs.Length(), 0U);
ASSERT_EQ(cs.data(), SLICE_CONST_INT_PTR);
}
{
Span<int, 0> s;
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
Span<const int, 0> cs;
ASSERT_EQ(cs.Length(), 0U);
ASSERT_EQ(cs.data(), SLICE_CONST_INT_PTR);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
Span<int, 1> s;
ASSERT_EQ(s.Length(), 1U);
ASSERT_EQ(s.data(), SLICE_INT_PTR); // explains why it can't compile
#endif
}
{
Span<int> s{};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
Span<const int> cs{};
ASSERT_EQ(cs.Length(), 0U);
ASSERT_EQ(cs.data(), SLICE_CONST_INT_PTR);
}
}
SPAN_TEST(size_optimization) {
{
Span<int> s;
ASSERT_EQ(sizeof(s), sizeof(int*) + sizeof(size_t));
}
{
Span<int, 0> s;
ASSERT_EQ(sizeof(s), sizeof(int*));
}
}
SPAN_TEST(from_nullptr_constructor) {
{
Span<int> s = nullptr;
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
Span<const int> cs = nullptr;
ASSERT_EQ(cs.Length(), 0U);
ASSERT_EQ(cs.data(), SLICE_CONST_INT_PTR);
}
{
Span<int, 0> s = nullptr;
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
Span<const int, 0> cs = nullptr;
ASSERT_EQ(cs.Length(), 0U);
ASSERT_EQ(cs.data(), SLICE_CONST_INT_PTR);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
Span<int, 1> s = nullptr;
ASSERT_EQ(s.Length(), 1U);
ASSERT_EQ(s.data(), SLICE_INT_PTR); // explains why it can't compile
#endif
}
{
Span<int> s{nullptr};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
Span<const int> cs{nullptr};
ASSERT_EQ(cs.Length(), 0U);
ASSERT_EQ(cs.data(), SLICE_CONST_INT_PTR);
}
{
Span<int*> s{nullptr};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR_PTR);
Span<const int*> cs{nullptr};
ASSERT_EQ(cs.Length(), 0U);
ASSERT_EQ(cs.data(), SLICE_CONST_INT_PTR_PTR);
}
}
SPAN_TEST(from_nullptr_length_constructor) {
{
Span<int> s{nullptr, static_cast<Span<int>::index_type>(0)};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
Span<const int> cs{nullptr, static_cast<Span<int>::index_type>(0)};
ASSERT_EQ(cs.Length(), 0U);
ASSERT_EQ(cs.data(), SLICE_CONST_INT_PTR);
}
{
Span<int, 0> s{nullptr, static_cast<Span<int>::index_type>(0)};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
Span<const int, 0> cs{nullptr, static_cast<Span<int>::index_type>(0)};
ASSERT_EQ(cs.Length(), 0U);
ASSERT_EQ(cs.data(), SLICE_CONST_INT_PTR);
}
#if 0
{
auto workaround_macro = []() { Span<int, 1> s{ nullptr, static_cast<Span<int>::index_type>(0) }; };
CHECK_THROW(workaround_macro(), fail_fast);
}
{
auto workaround_macro = []() { Span<int> s{nullptr, 1}; };
CHECK_THROW(workaround_macro(), fail_fast);
auto const_workaround_macro = []() { Span<const int> cs{nullptr, 1}; };
CHECK_THROW(const_workaround_macro(), fail_fast);
}
{
auto workaround_macro = []() { Span<int, 0> s{nullptr, 1}; };
CHECK_THROW(workaround_macro(), fail_fast);
auto const_workaround_macro = []() { Span<const int, 0> s{nullptr, 1}; };
CHECK_THROW(const_workaround_macro(), fail_fast);
}
#endif
{
Span<int*> s{nullptr, static_cast<Span<int>::index_type>(0)};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR_PTR);
Span<const int*> cs{nullptr, static_cast<Span<int>::index_type>(0)};
ASSERT_EQ(cs.Length(), 0U);
ASSERT_EQ(cs.data(), SLICE_CONST_INT_PTR_PTR);
}
}
SPAN_TEST(from_pointer_length_constructor) {
int arr[4] = {1, 2, 3, 4};
{
Span<int> s{&arr[0], 2};
ASSERT_EQ(s.Length(), 2U);
ASSERT_EQ(s.data(), &arr[0]);
ASSERT_EQ(s[0], 1);
ASSERT_EQ(s[1], 2);
}
{
Span<int, 2> s{&arr[0], 2};
ASSERT_EQ(s.Length(), 2U);
ASSERT_EQ(s.data(), &arr[0]);
ASSERT_EQ(s[0], 1);
ASSERT_EQ(s[1], 2);
}
{
int* p = nullptr;
Span<int> s{p, static_cast<Span<int>::index_type>(0)};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
}
#if 0
{
int* p = nullptr;
auto workaround_macro = [=]() { Span<int> s{p, 2}; };
CHECK_THROW(workaround_macro(), fail_fast);
}
#endif
{
auto s = Span(&arr[0], 2);
ASSERT_EQ(s.Length(), 2U);
ASSERT_EQ(s.data(), &arr[0]);
ASSERT_EQ(s[0], 1);
ASSERT_EQ(s[1], 2);
}
{
int* p = nullptr;
auto s = Span(p, static_cast<Span<int>::index_type>(0));
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
}
#if 0
{
int* p = nullptr;
auto workaround_macro = [=]() { Span(p, 2); };
CHECK_THROW(workaround_macro(), fail_fast);
}
#endif
}
SPAN_TEST(from_pointer_pointer_constructor) {
int arr[4] = {1, 2, 3, 4};
{
Span<int> s{&arr[0], &arr[2]};
ASSERT_EQ(s.Length(), 2U);
ASSERT_EQ(s.data(), &arr[0]);
ASSERT_EQ(s[0], 1);
ASSERT_EQ(s[1], 2);
}
{
Span<int, 2> s{&arr[0], &arr[2]};
ASSERT_EQ(s.Length(), 2U);
ASSERT_EQ(s.data(), &arr[0]);
ASSERT_EQ(s[0], 1);
ASSERT_EQ(s[1], 2);
}
{
Span<int> s{&arr[0], &arr[0]};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), &arr[0]);
}
{
Span<int, 0> s{&arr[0], &arr[0]};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), &arr[0]);
}
// this will fail the std::distance() precondition, which asserts on MSVC
// debug builds
//{
// auto workaround_macro = [&]() { Span<int> s{&arr[1], &arr[0]}; };
// CHECK_THROW(workaround_macro(), fail_fast);
//}
// this will fail the std::distance() precondition, which asserts on MSVC
// debug builds
//{
// int* p = nullptr;
// auto workaround_macro = [&]() { Span<int> s{&arr[0], p}; };
// CHECK_THROW(workaround_macro(), fail_fast);
//}
{
int* p = nullptr;
Span<int> s{p, p};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
}
{
int* p = nullptr;
Span<int, 0> s{p, p};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
}
// this will fail the std::distance() precondition, which asserts on MSVC
// debug builds
//{
// int* p = nullptr;
// auto workaround_macro = [&]() { Span<int> s{&arr[0], p}; };
// CHECK_THROW(workaround_macro(), fail_fast);
//}
{
auto s = Span(&arr[0], &arr[2]);
ASSERT_EQ(s.Length(), 2U);
ASSERT_EQ(s.data(), &arr[0]);
ASSERT_EQ(s[0], 1);
ASSERT_EQ(s[1], 2);
}
{
auto s = Span(&arr[0], &arr[0]);
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), &arr[0]);
}
{
int* p = nullptr;
auto s = Span(p, p);
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), SLICE_INT_PTR);
}
}
SPAN_TEST(from_array_constructor) {
int arr[5] = {1, 2, 3, 4, 5};
{
Span<int> s{arr};
ASSERT_EQ(s.Length(), 5U);
ASSERT_EQ(s.data(), &arr[0]);
}
{
Span<int, 5> s{arr};
ASSERT_EQ(s.Length(), 5U);
ASSERT_EQ(s.data(), &arr[0]);
}
int arr2d[2][3] = {{1, 2, 3}, {4, 5, 6}};
#ifdef CONFIRM_COMPILATION_ERRORS
{ Span<int, 6> s{arr}; }
{
Span<int, 0> s{arr};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), &arr[0]);
}
{
Span<int> s{arr2d};
ASSERT_EQ(s.Length(), 6U);
ASSERT_EQ(s.data(), &arr2d[0][0]);
ASSERT_EQ(s[0], 1);
ASSERT_EQ(s[5], 6);
}
{
Span<int, 0> s{arr2d};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), &arr2d[0][0]);
}
{ Span<int, 6> s{arr2d}; }
#endif
{
Span<int[3]> s{&(arr2d[0]), 1};
ASSERT_EQ(s.Length(), 1U);
ASSERT_EQ(s.data(), &arr2d[0]);
}
int arr3d[2][3][2] = {{{1, 2}, {3, 4}, {5, 6}}, {{7, 8}, {9, 10}, {11, 12}}};
#ifdef CONFIRM_COMPILATION_ERRORS
{
Span<int> s{arr3d};
ASSERT_EQ(s.Length(), 12U);
ASSERT_EQ(s.data(), &arr3d[0][0][0]);
ASSERT_EQ(s[0], 1);
ASSERT_EQ(s[11], 12);
}
{
Span<int, 0> s{arr3d};
ASSERT_EQ(s.Length(), 0U);
ASSERT_EQ(s.data(), &arr3d[0][0][0]);
}
{ Span<int, 11> s{arr3d}; }
{
Span<int, 12> s{arr3d};
ASSERT_EQ(s.Length(), 12U);
ASSERT_EQ(s.data(), &arr3d[0][0][0]);
ASSERT_EQ(s[0], 1);
ASSERT_EQ(s[5], 6);
}
#endif
{
Span<int[3][2]> s{&arr3d[0], 1};
ASSERT_EQ(s.Length(), 1U);
ASSERT_EQ(s.data(), &arr3d[0]);
}
{
auto s = Span(arr);
ASSERT_EQ(s.Length(), 5U);
ASSERT_EQ(s.data(), &arr[0]);
}
{
auto s = Span(&(arr2d[0]), 1);
ASSERT_EQ(s.Length(), 1U);
ASSERT_EQ(s.data(), &arr2d[0]);
}
{
auto s = Span(&arr3d[0], 1);
ASSERT_EQ(s.Length(), 1U);
ASSERT_EQ(s.data(), &arr3d[0]);
}
}
SPAN_TEST(from_dynamic_array_constructor) {
double(*arr)[3][4] = new double[100][3][4];
{
Span<double> s(&arr[0][0][0], 10);
ASSERT_EQ(s.Length(), 10U);
ASSERT_EQ(s.data(), &arr[0][0][0]);
}
{
auto s = Span(&arr[0][0][0], 10);
ASSERT_EQ(s.Length(), 10U);
ASSERT_EQ(s.data(), &arr[0][0][0]);
}
delete[] arr;
}
SPAN_TEST(from_std_array_constructor) {
std::array<int, 4> arr = {{1, 2, 3, 4}};
{
Span<int> s{arr};
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.size()));
ASSERT_EQ(s.data(), arr.data());
Span<const int> cs{arr};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(arr.size()));
ASSERT_EQ(cs.data(), arr.data());
}
{
Span<int, 4> s{arr};
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.size()));
ASSERT_EQ(s.data(), arr.data());
Span<const int, 4> cs{arr};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(arr.size()));
ASSERT_EQ(cs.data(), arr.data());
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
Span<int, 2> s{arr};
ASSERT_EQ(s.size(), 2U);
ASSERT_EQ(s.data(), arr.data());
Span<const int, 2> cs{arr};
ASSERT_EQ(cs.size(), 2U);
ASSERT_EQ(cs.data(), arr.data());
}
{
Span<int, 0> s{arr};
ASSERT_EQ(s.size(), 0U);
ASSERT_EQ(s.data(), arr.data());
Span<const int, 0> cs{arr};
ASSERT_EQ(cs.size(), 0U);
ASSERT_EQ(cs.data(), arr.data());
}
{ Span<int, 5> s{arr}; }
{
auto get_an_array = []() -> std::array<int, 4> { return {1, 2, 3, 4}; };
auto take_a_Span = [](Span<int> s) { static_cast<void>(s); };
// try to take a temporary std::array
take_a_Span(get_an_array());
}
#endif
{
auto get_an_array = []() -> std::array<int, 4> { return {{1, 2, 3, 4}}; };
auto take_a_Span = [](Span<const int> s) { static_cast<void>(s); };
// try to take a temporary std::array
take_a_Span(get_an_array());
}
{
auto s = Span(arr);
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.size()));
ASSERT_EQ(s.data(), arr.data());
}
}
SPAN_TEST(from_const_std_array_constructor) {
const std::array<int, 4> arr = {{1, 2, 3, 4}};
{
Span<const int> s{arr};
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.size()));
ASSERT_EQ(s.data(), arr.data());
}
{
Span<const int, 4> s{arr};
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.size()));
ASSERT_EQ(s.data(), arr.data());
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
Span<const int, 2> s{arr};
ASSERT_EQ(s.size(), 2U);
ASSERT_EQ(s.data(), arr.data());
}
{
Span<const int, 0> s{arr};
ASSERT_EQ(s.size(), 0U);
ASSERT_EQ(s.data(), arr.data());
}
{ Span<const int, 5> s{arr}; }
#endif
{
auto get_an_array = []() -> const std::array<int, 4> {
return {{1, 2, 3, 4}};
};
auto take_a_Span = [](Span<const int> s) { static_cast<void>(s); };
// try to take a temporary std::array
take_a_Span(get_an_array());
}
{
auto s = Span(arr);
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.size()));
ASSERT_EQ(s.data(), arr.data());
}
}
SPAN_TEST(from_std_array_const_constructor) {
std::array<const int, 4> arr = {{1, 2, 3, 4}};
{
Span<const int> s{arr};
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.size()));
ASSERT_EQ(s.data(), arr.data());
}
{
Span<const int, 4> s{arr};
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.size()));
ASSERT_EQ(s.data(), arr.data());
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
Span<const int, 2> s{arr};
ASSERT_EQ(s.size(), 2U);
ASSERT_EQ(s.data(), arr.data());
}
{
Span<const int, 0> s{arr};
ASSERT_EQ(s.size(), 0U);
ASSERT_EQ(s.data(), arr.data());
}
{ Span<const int, 5> s{arr}; }
{ Span<int, 4> s{arr}; }
#endif
{
auto s = Span(arr);
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.size()));
ASSERT_EQ(s.data(), arr.data());
}
}
SPAN_TEST(from_mozilla_array_constructor) {
mozilla::Array<int, 4> arr(1, 2, 3, 4);
{
Span<int> s{arr};
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.cend() - arr.cbegin()));
ASSERT_EQ(s.data(), &arr[0]);
Span<const int> cs{arr};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(arr.cend() - arr.cbegin()));
ASSERT_EQ(cs.data(), &arr[0]);
}
{
Span<int, 4> s{arr};
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.cend() - arr.cbegin()));
ASSERT_EQ(s.data(), &arr[0]);
Span<const int, 4> cs{arr};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(arr.cend() - arr.cbegin()));
ASSERT_EQ(cs.data(), &arr[0]);
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
Span<int, 2> s{arr};
ASSERT_EQ(s.size(), 2U);
ASSERT_EQ(s.data(), &arr[0]);
Span<const int, 2> cs{arr};
ASSERT_EQ(cs.size(), 2U);
ASSERT_EQ(cs.data(), &arr[0]);
}
{
Span<int, 0> s{arr};
ASSERT_EQ(s.size(), 0U);
ASSERT_EQ(s.data(), &arr[0]);
Span<const int, 0> cs{arr};
ASSERT_EQ(cs.size(), 0U);
ASSERT_EQ(cs.data(), &arr[0]);
}
{ Span<int, 5> s{arr}; }
{
auto get_an_array = []() -> mozilla::Array<int, 4> { return {1, 2, 3, 4}; };
auto take_a_Span = [](Span<int> s) { static_cast<void>(s); };
// try to take a temporary mozilla::Array
take_a_Span(get_an_array());
}
#endif
{
auto get_an_array = []() -> mozilla::Array<int, 4> { return {1, 2, 3, 4}; };
auto take_a_Span = [](Span<const int> s) { static_cast<void>(s); };
// try to take a temporary mozilla::Array
take_a_Span(get_an_array());
}
{
auto s = Span(arr);
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.cend() - arr.cbegin()));
ASSERT_EQ(s.data(), &arr[0]);
}
}
SPAN_TEST(from_const_mozilla_array_constructor) {
const mozilla::Array<int, 4> arr(1, 2, 3, 4);
{
Span<const int> s{arr};
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.cend() - arr.cbegin()));
ASSERT_EQ(s.data(), &arr[0]);
}
{
Span<const int, 4> s{arr};
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.cend() - arr.cbegin()));
ASSERT_EQ(s.data(), &arr[0]);
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
Span<const int, 2> s{arr};
ASSERT_EQ(s.size(), 2U);
ASSERT_EQ(s.data(), &arr[0]);
}
{
Span<const int, 0> s{arr};
ASSERT_EQ(s.size(), 0U);
ASSERT_EQ(s.data(), &arr[0]);
}
{ Span<const int, 5> s{arr}; }
#endif
#if 0
{
auto get_an_array = []() -> const mozilla::Array<int, 4> {
return { 1, 2, 3, 4 };
};
auto take_a_Span = [](Span<const int> s) { static_cast<void>(s); };
// try to take a temporary mozilla::Array
take_a_Span(get_an_array());
}
#endif
{
auto s = Span(arr);
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.cend() - arr.cbegin()));
ASSERT_EQ(s.data(), &arr[0]);
}
}
SPAN_TEST(from_mozilla_array_const_constructor) {
mozilla::Array<const int, 4> arr(1, 2, 3, 4);
{
Span<const int> s{arr};
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.cend() - arr.cbegin()));
ASSERT_EQ(s.data(), &arr[0]);
}
{
Span<const int, 4> s{arr};
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.cend() - arr.cbegin()));
ASSERT_EQ(s.data(), &arr[0]);
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
Span<const int, 2> s{arr};
ASSERT_EQ(s.size(), 2U);
ASSERT_EQ(s.data(), &arr[0]);
}
{
Span<const int, 0> s{arr};
ASSERT_EQ(s.size(), 0U);
ASSERT_EQ(s.data(), &arr[0]);
}
{ Span<const int, 5> s{arr}; }
{ Span<int, 4> s{arr}; }
#endif
{
auto s = Span(arr);
ASSERT_EQ(s.size(), narrow_cast<size_t>(arr.cend() - arr.cbegin()));
ASSERT_EQ(s.data(), &arr[0]);
}
}
SPAN_TEST(from_container_constructor) {
std::vector<int> v = {1, 2, 3};
const std::vector<int> cv = v;
{
AssertSpanOfThreeInts(v);
Span<int> s{v};
ASSERT_EQ(s.size(), narrow_cast<size_t>(v.size()));
ASSERT_EQ(s.data(), v.data());
Span<const int> cs{v};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(v.size()));
ASSERT_EQ(cs.data(), v.data());
}
std::string str = "hello";
const std::string cstr = "hello";
{
#ifdef CONFIRM_COMPILATION_ERRORS
Span<char> s{str};
ASSERT_EQ(s.size(), narrow_cast<size_t>(str.size()));
ASSERT_EQ(s.data(), str.data());
#endif
Span<const char> cs{str};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(str.size()));
ASSERT_EQ(cs.data(), str.data());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
Span<char> s{cstr};
#endif
Span<const char> cs{cstr};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(cstr.size()));
ASSERT_EQ(cs.data(), cstr.data());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_temp_vector = []() -> std::vector<int> { return {}; };
auto use_Span = [](Span<int> s) { static_cast<void>(s); };
use_Span(get_temp_vector());
#endif
}
{
auto get_temp_vector = []() -> std::vector<int> { return {}; };
auto use_Span = [](Span<const int> s) { static_cast<void>(s); };
use_Span(get_temp_vector());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_temp_string = []() -> std::string { return {}; };
auto use_Span = [](Span<char> s) { static_cast<void>(s); };
use_Span(get_temp_string());
#endif
}
{
auto get_temp_string = []() -> std::string { return {}; };
auto use_Span = [](Span<const char> s) { static_cast<void>(s); };
use_Span(get_temp_string());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_temp_vector = []() -> const std::vector<int> { return {}; };
auto use_Span = [](Span<const char> s) { static_cast<void>(s); };
use_Span(get_temp_vector());
#endif
}
{
auto get_temp_string = []() -> const std::string { return {}; };
auto use_Span = [](Span<const char> s) { static_cast<void>(s); };
use_Span(get_temp_string());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
std::map<int, int> m;
Span<int> s{m};
#endif
}
{
auto s = Span(v);
ASSERT_EQ(s.size(), narrow_cast<size_t>(v.size()));
ASSERT_EQ(s.data(), v.data());
auto cs = Span(cv);
ASSERT_EQ(cs.size(), narrow_cast<size_t>(cv.size()));
ASSERT_EQ(cs.data(), cv.data());
}
}
SPAN_TEST(from_xpcom_collections) {
{
nsTArray<int> v;
v.AppendElement(1);
v.AppendElement(2);
v.AppendElement(3);
AssertSpanOfThreeInts(v);
Span<int> s{v};
ASSERT_EQ(s.size(), narrow_cast<size_t>(v.Length()));
ASSERT_EQ(s.data(), v.Elements());
ASSERT_EQ(s[2], 3);
Span<const int> cs{v};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(v.Length()));
ASSERT_EQ(cs.data(), v.Elements());
ASSERT_EQ(cs[2], 3);
}
{
nsTArray<int> v;
v.AppendElement(1);
v.AppendElement(2);
v.AppendElement(3);
AssertSpanOfThreeInts(v);
auto s = Span(v);
ASSERT_EQ(s.size(), narrow_cast<size_t>(v.Length()));
ASSERT_EQ(s.data(), v.Elements());
ASSERT_EQ(s[2], 3);
}
{
AutoTArray<int, 5> v;
v.AppendElement(1);
v.AppendElement(2);
v.AppendElement(3);
AssertSpanOfThreeInts(v);
Span<int> s{v};
ASSERT_EQ(s.size(), narrow_cast<size_t>(v.Length()));
ASSERT_EQ(s.data(), v.Elements());
ASSERT_EQ(s[2], 3);
Span<const int> cs{v};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(v.Length()));
ASSERT_EQ(cs.data(), v.Elements());
ASSERT_EQ(cs[2], 3);
}
{
AutoTArray<int, 5> v;
v.AppendElement(1);
v.AppendElement(2);
v.AppendElement(3);
AssertSpanOfThreeInts(v);
auto s = Span(v);
ASSERT_EQ(s.size(), narrow_cast<size_t>(v.Length()));
ASSERT_EQ(s.data(), v.Elements());
ASSERT_EQ(s[2], 3);
}
{
FallibleTArray<int> v;
*(v.AppendElement(fallible)) = 1;
*(v.AppendElement(fallible)) = 2;
*(v.AppendElement(fallible)) = 3;
AssertSpanOfThreeInts(v);
Span<int> s{v};
ASSERT_EQ(s.size(), narrow_cast<size_t>(v.Length()));
ASSERT_EQ(s.data(), v.Elements());
ASSERT_EQ(s[2], 3);
Span<const int> cs{v};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(v.Length()));
ASSERT_EQ(cs.data(), v.Elements());
ASSERT_EQ(cs[2], 3);
}
{
FallibleTArray<int> v;
*(v.AppendElement(fallible)) = 1;
*(v.AppendElement(fallible)) = 2;
*(v.AppendElement(fallible)) = 3;
AssertSpanOfThreeInts(v);
auto s = Span(v);
ASSERT_EQ(s.size(), narrow_cast<size_t>(v.Length()));
ASSERT_EQ(s.data(), v.Elements());
ASSERT_EQ(s[2], 3);
}
{
nsAutoString str;
str.AssignLiteral("abc");
AssertSpanOfThreeChar16s(str);
AssertSpanOfThreeChar16sViaString(str);
Span<char16_t> s{str};
ASSERT_EQ(s.size(), narrow_cast<size_t>(str.Length()));
ASSERT_EQ(s.data(), str.BeginWriting());
ASSERT_EQ(s[2], 'c');
Span<const char16_t> cs{str};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(str.Length()));
ASSERT_EQ(cs.data(), str.BeginReading());
ASSERT_EQ(cs[2], 'c');
}
{
nsAutoString str;
str.AssignLiteral("abc");
AssertSpanOfThreeChar16s(str);
AssertSpanOfThreeChar16sViaString(str);
auto s = Span(str);
ASSERT_EQ(s.size(), narrow_cast<size_t>(str.Length()));
ASSERT_EQ(s.data(), str.BeginWriting());
ASSERT_EQ(s[2], 'c');
}
{
nsAutoCString str;
str.AssignLiteral("abc");
AssertSpanOfThreeChars(str);
AssertSpanOfThreeCharsViaString(str);
Span<uint8_t> s{str};
ASSERT_EQ(s.size(), narrow_cast<size_t>(str.Length()));
ASSERT_EQ(s.data(), reinterpret_cast<uint8_t*>(str.BeginWriting()));
ASSERT_EQ(s[2], 'c');
Span<const uint8_t> cs{str};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(str.Length()));
ASSERT_EQ(cs.data(), reinterpret_cast<const uint8_t*>(str.BeginReading()));
ASSERT_EQ(cs[2], 'c');
}
{
nsAutoCString str;
str.AssignLiteral("abc");
AssertSpanOfThreeChars(str);
AssertSpanOfThreeCharsViaString(str);
auto s = Span(str);
ASSERT_EQ(s.size(), narrow_cast<size_t>(str.Length()));
ASSERT_EQ(s.data(), str.BeginWriting());
ASSERT_EQ(s[2], 'c');
}
{
nsTArray<int> v;
v.AppendElement(1);
v.AppendElement(2);
v.AppendElement(3);
Range<int> r(v.Elements(), v.Length());
AssertSpanOfThreeInts(r);
Span<int> s{r};
ASSERT_EQ(s.size(), narrow_cast<size_t>(v.Length()));
ASSERT_EQ(s.data(), v.Elements());
ASSERT_EQ(s[2], 3);
Span<const int> cs{r};
ASSERT_EQ(cs.size(), narrow_cast<size_t>(v.Length()));
ASSERT_EQ(cs.data(), v.Elements());
ASSERT_EQ(cs[2], 3);
}
{
nsTArray<int> v;
v.AppendElement(1);
v.AppendElement(2);
v.AppendElement(3);
Range<int> r(v.Elements(), v.Length());
AssertSpanOfThreeInts(r);
auto s = Span(r);
ASSERT_EQ(s.size(), narrow_cast<size_t>(v.Length()));
ASSERT_EQ(s.data(), v.Elements());
ASSERT_EQ(s[2], 3);
}
}
SPAN_TEST(from_cstring) {
{
const char* str = nullptr;
auto cs = MakeStringSpan(str);
ASSERT_EQ(cs.size(), 0U);
}
{
const char* str = "abc";
auto cs = MakeStringSpan(str);
ASSERT_EQ(cs.size(), 3U);
ASSERT_EQ(cs.data(), str);
ASSERT_EQ(cs[2], 'c');
Bug 1405582 - Span: delete implicit constructors for char* and char16_t*. r=froydnj,hsivonen Delete Span's implicit constructors for char* and char16_t* pointers to avoid accidental construction in cases where a pointer does not point to a zero-terminated string. Use the MakeStringSpan() function instead. I deleted both the const and non-const char* and char16_t* constructors, in the name of cross-compiler consistency. If we only delete the const char* and char16_t* constructors, for some reason, MSVC complains that `Span<char> s(charArray)` uses a deleted constructor while clang nor gcc permit it. I don't know if this is a compiler bug in MSVC or clang and gcc. Also, do not permit MakeSpan() for string literals (const char and char16_t arrays) because the Span length would include the zero terminator, which may surprise callers. Use MakeStringSpan() to create a Span whose length that excludes the string literal's zero terminator or use the MakeSpan() overload that accepts a pointer and length and specify the string literal's full length. The following Span usages are prevented: Span<const char> span("literal"); // error Span<char> span(charArray); // error Span<const char> span; span = "literal"; // error span = charArray; // error MakeSpan("literal"); // error The following Span usages are still permitted: assert(MakeStringSpan("literal") == 8); // OK: span length is calculated with strlen() and excludes the zero terminator MakeStringSpan(charArray); // OK: span length is calculated with strlen() and excludes the zero terminator MakeSpan(charArray); // OK: span length is the char array size including any zero terminator MozReview-Commit-ID: Et71CpjsiyI --HG-- extra : rebase_source : f6f8bdb28726f0f2368fdfdd039fb1d7dcf2914e extra : source : 0547d8924ffc7713d6cf32cc06eeeaf00e0d69a3
2017-09-20 10:38:07 +03:00
static_assert(MakeStringSpan("abc").size() == 3U);
static_assert(MakeStringSpan("abc")[2] == 'c');
Bug 1405582 - Span: delete implicit constructors for char* and char16_t*. r=froydnj,hsivonen Delete Span's implicit constructors for char* and char16_t* pointers to avoid accidental construction in cases where a pointer does not point to a zero-terminated string. Use the MakeStringSpan() function instead. I deleted both the const and non-const char* and char16_t* constructors, in the name of cross-compiler consistency. If we only delete the const char* and char16_t* constructors, for some reason, MSVC complains that `Span<char> s(charArray)` uses a deleted constructor while clang nor gcc permit it. I don't know if this is a compiler bug in MSVC or clang and gcc. Also, do not permit MakeSpan() for string literals (const char and char16_t arrays) because the Span length would include the zero terminator, which may surprise callers. Use MakeStringSpan() to create a Span whose length that excludes the string literal's zero terminator or use the MakeSpan() overload that accepts a pointer and length and specify the string literal's full length. The following Span usages are prevented: Span<const char> span("literal"); // error Span<char> span(charArray); // error Span<const char> span; span = "literal"; // error span = charArray; // error MakeSpan("literal"); // error The following Span usages are still permitted: assert(MakeStringSpan("literal") == 8); // OK: span length is calculated with strlen() and excludes the zero terminator MakeStringSpan(charArray); // OK: span length is calculated with strlen() and excludes the zero terminator MakeSpan(charArray); // OK: span length is the char array size including any zero terminator MozReview-Commit-ID: Et71CpjsiyI --HG-- extra : rebase_source : f6f8bdb28726f0f2368fdfdd039fb1d7dcf2914e extra : source : 0547d8924ffc7713d6cf32cc06eeeaf00e0d69a3
2017-09-20 10:38:07 +03:00
#ifdef CONFIRM_COMPILATION_ERRORS
Span<const char> scccl("literal"); // error
Span<const char> sccel;
sccel = "literal"; // error
cs = Span("literal"); // error
Bug 1405582 - Span: delete implicit constructors for char* and char16_t*. r=froydnj,hsivonen Delete Span's implicit constructors for char* and char16_t* pointers to avoid accidental construction in cases where a pointer does not point to a zero-terminated string. Use the MakeStringSpan() function instead. I deleted both the const and non-const char* and char16_t* constructors, in the name of cross-compiler consistency. If we only delete the const char* and char16_t* constructors, for some reason, MSVC complains that `Span<char> s(charArray)` uses a deleted constructor while clang nor gcc permit it. I don't know if this is a compiler bug in MSVC or clang and gcc. Also, do not permit MakeSpan() for string literals (const char and char16_t arrays) because the Span length would include the zero terminator, which may surprise callers. Use MakeStringSpan() to create a Span whose length that excludes the string literal's zero terminator or use the MakeSpan() overload that accepts a pointer and length and specify the string literal's full length. The following Span usages are prevented: Span<const char> span("literal"); // error Span<char> span(charArray); // error Span<const char> span; span = "literal"; // error span = charArray; // error MakeSpan("literal"); // error The following Span usages are still permitted: assert(MakeStringSpan("literal") == 8); // OK: span length is calculated with strlen() and excludes the zero terminator MakeStringSpan(charArray); // OK: span length is calculated with strlen() and excludes the zero terminator MakeSpan(charArray); // OK: span length is the char array size including any zero terminator MozReview-Commit-ID: Et71CpjsiyI --HG-- extra : rebase_source : f6f8bdb28726f0f2368fdfdd039fb1d7dcf2914e extra : source : 0547d8924ffc7713d6cf32cc06eeeaf00e0d69a3
2017-09-20 10:38:07 +03:00
#endif
}
{
char arr[4] = {'a', 'b', 'c', 0};
auto cs = MakeStringSpan(arr);
ASSERT_EQ(cs.size(), 3U);
ASSERT_EQ(cs.data(), arr);
ASSERT_EQ(cs[2], 'c');
cs = Span(arr);
Bug 1405582 - Span: delete implicit constructors for char* and char16_t*. r=froydnj,hsivonen Delete Span's implicit constructors for char* and char16_t* pointers to avoid accidental construction in cases where a pointer does not point to a zero-terminated string. Use the MakeStringSpan() function instead. I deleted both the const and non-const char* and char16_t* constructors, in the name of cross-compiler consistency. If we only delete the const char* and char16_t* constructors, for some reason, MSVC complains that `Span<char> s(charArray)` uses a deleted constructor while clang nor gcc permit it. I don't know if this is a compiler bug in MSVC or clang and gcc. Also, do not permit MakeSpan() for string literals (const char and char16_t arrays) because the Span length would include the zero terminator, which may surprise callers. Use MakeStringSpan() to create a Span whose length that excludes the string literal's zero terminator or use the MakeSpan() overload that accepts a pointer and length and specify the string literal's full length. The following Span usages are prevented: Span<const char> span("literal"); // error Span<char> span(charArray); // error Span<const char> span; span = "literal"; // error span = charArray; // error MakeSpan("literal"); // error The following Span usages are still permitted: assert(MakeStringSpan("literal") == 8); // OK: span length is calculated with strlen() and excludes the zero terminator MakeStringSpan(charArray); // OK: span length is calculated with strlen() and excludes the zero terminator MakeSpan(charArray); // OK: span length is the char array size including any zero terminator MozReview-Commit-ID: Et71CpjsiyI --HG-- extra : rebase_source : f6f8bdb28726f0f2368fdfdd039fb1d7dcf2914e extra : source : 0547d8924ffc7713d6cf32cc06eeeaf00e0d69a3
2017-09-20 10:38:07 +03:00
ASSERT_EQ(cs.size(), 4U); // zero terminator is part of the array span.
ASSERT_EQ(cs.data(), arr);
ASSERT_EQ(cs[2], 'c');
ASSERT_EQ(cs[3], '\0'); // zero terminator is part of the array span.
#ifdef CONFIRM_COMPILATION_ERRORS
Span<char> scca(arr); // error
Span<const char> sccca(arr); // error
Span<const char> scccea;
scccea = arr; // error
#endif
}
{
const char16_t* str = nullptr;
auto cs = MakeStringSpan(str);
ASSERT_EQ(cs.size(), 0U);
}
{
char16_t arr[4] = {'a', 'b', 'c', 0};
const char16_t* str = arr;
auto cs = MakeStringSpan(str);
ASSERT_EQ(cs.size(), 3U);
ASSERT_EQ(cs.data(), str);
ASSERT_EQ(cs[2], 'c');
Bug 1405582 - Span: delete implicit constructors for char* and char16_t*. r=froydnj,hsivonen Delete Span's implicit constructors for char* and char16_t* pointers to avoid accidental construction in cases where a pointer does not point to a zero-terminated string. Use the MakeStringSpan() function instead. I deleted both the const and non-const char* and char16_t* constructors, in the name of cross-compiler consistency. If we only delete the const char* and char16_t* constructors, for some reason, MSVC complains that `Span<char> s(charArray)` uses a deleted constructor while clang nor gcc permit it. I don't know if this is a compiler bug in MSVC or clang and gcc. Also, do not permit MakeSpan() for string literals (const char and char16_t arrays) because the Span length would include the zero terminator, which may surprise callers. Use MakeStringSpan() to create a Span whose length that excludes the string literal's zero terminator or use the MakeSpan() overload that accepts a pointer and length and specify the string literal's full length. The following Span usages are prevented: Span<const char> span("literal"); // error Span<char> span(charArray); // error Span<const char> span; span = "literal"; // error span = charArray; // error MakeSpan("literal"); // error The following Span usages are still permitted: assert(MakeStringSpan("literal") == 8); // OK: span length is calculated with strlen() and excludes the zero terminator MakeStringSpan(charArray); // OK: span length is calculated with strlen() and excludes the zero terminator MakeSpan(charArray); // OK: span length is the char array size including any zero terminator MozReview-Commit-ID: Et71CpjsiyI --HG-- extra : rebase_source : f6f8bdb28726f0f2368fdfdd039fb1d7dcf2914e extra : source : 0547d8924ffc7713d6cf32cc06eeeaf00e0d69a3
2017-09-20 10:38:07 +03:00
static_assert(MakeStringSpan(u"abc").size() == 3U);
static_assert(MakeStringSpan(u"abc")[2] == u'c');
Bug 1405582 - Span: delete implicit constructors for char* and char16_t*. r=froydnj,hsivonen Delete Span's implicit constructors for char* and char16_t* pointers to avoid accidental construction in cases where a pointer does not point to a zero-terminated string. Use the MakeStringSpan() function instead. I deleted both the const and non-const char* and char16_t* constructors, in the name of cross-compiler consistency. If we only delete the const char* and char16_t* constructors, for some reason, MSVC complains that `Span<char> s(charArray)` uses a deleted constructor while clang nor gcc permit it. I don't know if this is a compiler bug in MSVC or clang and gcc. Also, do not permit MakeSpan() for string literals (const char and char16_t arrays) because the Span length would include the zero terminator, which may surprise callers. Use MakeStringSpan() to create a Span whose length that excludes the string literal's zero terminator or use the MakeSpan() overload that accepts a pointer and length and specify the string literal's full length. The following Span usages are prevented: Span<const char> span("literal"); // error Span<char> span(charArray); // error Span<const char> span; span = "literal"; // error span = charArray; // error MakeSpan("literal"); // error The following Span usages are still permitted: assert(MakeStringSpan("literal") == 8); // OK: span length is calculated with strlen() and excludes the zero terminator MakeStringSpan(charArray); // OK: span length is calculated with strlen() and excludes the zero terminator MakeSpan(charArray); // OK: span length is the char array size including any zero terminator MozReview-Commit-ID: Et71CpjsiyI --HG-- extra : rebase_source : f6f8bdb28726f0f2368fdfdd039fb1d7dcf2914e extra : source : 0547d8924ffc7713d6cf32cc06eeeaf00e0d69a3
2017-09-20 10:38:07 +03:00
cs = MakeStringSpan(arr);
ASSERT_EQ(cs.size(), 3U);
ASSERT_EQ(cs.data(), str);
ASSERT_EQ(cs[2], 'c');
cs = Span(arr);
Bug 1405582 - Span: delete implicit constructors for char* and char16_t*. r=froydnj,hsivonen Delete Span's implicit constructors for char* and char16_t* pointers to avoid accidental construction in cases where a pointer does not point to a zero-terminated string. Use the MakeStringSpan() function instead. I deleted both the const and non-const char* and char16_t* constructors, in the name of cross-compiler consistency. If we only delete the const char* and char16_t* constructors, for some reason, MSVC complains that `Span<char> s(charArray)` uses a deleted constructor while clang nor gcc permit it. I don't know if this is a compiler bug in MSVC or clang and gcc. Also, do not permit MakeSpan() for string literals (const char and char16_t arrays) because the Span length would include the zero terminator, which may surprise callers. Use MakeStringSpan() to create a Span whose length that excludes the string literal's zero terminator or use the MakeSpan() overload that accepts a pointer and length and specify the string literal's full length. The following Span usages are prevented: Span<const char> span("literal"); // error Span<char> span(charArray); // error Span<const char> span; span = "literal"; // error span = charArray; // error MakeSpan("literal"); // error The following Span usages are still permitted: assert(MakeStringSpan("literal") == 8); // OK: span length is calculated with strlen() and excludes the zero terminator MakeStringSpan(charArray); // OK: span length is calculated with strlen() and excludes the zero terminator MakeSpan(charArray); // OK: span length is the char array size including any zero terminator MozReview-Commit-ID: Et71CpjsiyI --HG-- extra : rebase_source : f6f8bdb28726f0f2368fdfdd039fb1d7dcf2914e extra : source : 0547d8924ffc7713d6cf32cc06eeeaf00e0d69a3
2017-09-20 10:38:07 +03:00
ASSERT_EQ(cs.size(), 4U); // zero terminator is part of the array span.
ASSERT_EQ(cs.data(), str);
ASSERT_EQ(cs[2], 'c');
ASSERT_EQ(cs[3], '\0'); // zero terminator is part of the array span.
#ifdef CONFIRM_COMPILATION_ERRORS
Span<char16_t> scca(arr); // error
Span<const char16_t> scccea;
scccea = arr; // error
Span<const char16_t> scccl(u"literal"); // error
Span<const char16_t>* sccel;
*sccel = u"literal"; // error
cs = Span(u"literal"); // error
Bug 1405582 - Span: delete implicit constructors for char* and char16_t*. r=froydnj,hsivonen Delete Span's implicit constructors for char* and char16_t* pointers to avoid accidental construction in cases where a pointer does not point to a zero-terminated string. Use the MakeStringSpan() function instead. I deleted both the const and non-const char* and char16_t* constructors, in the name of cross-compiler consistency. If we only delete the const char* and char16_t* constructors, for some reason, MSVC complains that `Span<char> s(charArray)` uses a deleted constructor while clang nor gcc permit it. I don't know if this is a compiler bug in MSVC or clang and gcc. Also, do not permit MakeSpan() for string literals (const char and char16_t arrays) because the Span length would include the zero terminator, which may surprise callers. Use MakeStringSpan() to create a Span whose length that excludes the string literal's zero terminator or use the MakeSpan() overload that accepts a pointer and length and specify the string literal's full length. The following Span usages are prevented: Span<const char> span("literal"); // error Span<char> span(charArray); // error Span<const char> span; span = "literal"; // error span = charArray; // error MakeSpan("literal"); // error The following Span usages are still permitted: assert(MakeStringSpan("literal") == 8); // OK: span length is calculated with strlen() and excludes the zero terminator MakeStringSpan(charArray); // OK: span length is calculated with strlen() and excludes the zero terminator MakeSpan(charArray); // OK: span length is the char array size including any zero terminator MozReview-Commit-ID: Et71CpjsiyI --HG-- extra : rebase_source : f6f8bdb28726f0f2368fdfdd039fb1d7dcf2914e extra : source : 0547d8924ffc7713d6cf32cc06eeeaf00e0d69a3
2017-09-20 10:38:07 +03:00
#endif
}
}
SPAN_TEST(from_convertible_Span_constructor){{Span<DerivedClass> avd;
Span<const DerivedClass> avcd = avd;
static_cast<void>(avcd);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
Span<DerivedClass> avd;
Span<BaseClass> avb = avd;
static_cast<void>(avb);
#endif
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
Span<int> s;
Span<unsigned int> s2 = s;
static_cast<void>(s2);
}
{
Span<int> s;
Span<const unsigned int> s2 = s;
static_cast<void>(s2);
}
{
Span<int> s;
Span<short> s2 = s;
static_cast<void>(s2);
}
#endif
}
SPAN_TEST(copy_move_and_assignment) {
Span<int> s1;
ASSERT_TRUE(s1.empty());
int arr[] = {3, 4, 5};
Span<const int> s2 = arr;
ASSERT_EQ(s2.Length(), 3U);
ASSERT_EQ(s2.data(), &arr[0]);
s2 = s1;
ASSERT_TRUE(s2.empty());
auto get_temp_Span = [&]() -> Span<int> { return {&arr[1], 2}; };
auto use_Span = [&](Span<const int> s) {
ASSERT_EQ(s.Length(), 2U);
ASSERT_EQ(s.data(), &arr[1]);
};
use_Span(get_temp_Span());
s1 = get_temp_Span();
ASSERT_EQ(s1.Length(), 2U);
ASSERT_EQ(s1.data(), &arr[1]);
}
SPAN_TEST(first) {
int arr[5] = {1, 2, 3, 4, 5};
{
Span<int, 5> av = arr;
ASSERT_EQ(av.First<2>().Length(), 2U);
ASSERT_EQ(av.First(2).Length(), 2U);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.First<0>().Length(), 0U);
ASSERT_EQ(av.First(0).Length(), 0U);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.First<5>().Length(), 5U);
ASSERT_EQ(av.First(5).Length(), 5U);
}
#if 0
{
Span<int, 5> av = arr;
# ifdef CONFIRM_COMPILATION_ERRORS
ASSERT_EQ(av.First<6>().Length() , 6U);
ASSERT_EQ(av.First<-1>().Length() , -1);
# endif
CHECK_THROW(av.First(6).Length(), fail_fast);
}
#endif
{
Span<int> av;
ASSERT_EQ(av.First<0>().Length(), 0U);
ASSERT_EQ(av.First(0).Length(), 0U);
}
}
SPAN_TEST(last) {
int arr[5] = {1, 2, 3, 4, 5};
{
Span<int, 5> av = arr;
ASSERT_EQ(av.Last<2>().Length(), 2U);
ASSERT_EQ(av.Last(2).Length(), 2U);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.Last<0>().Length(), 0U);
ASSERT_EQ(av.Last(0).Length(), 0U);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.Last<5>().Length(), 5U);
ASSERT_EQ(av.Last(5).Length(), 5U);
}
#if 0
{
Span<int, 5> av = arr;
# ifdef CONFIRM_COMPILATION_ERRORS
ASSERT_EQ(av.Last<6>().Length() , 6U);
# endif
CHECK_THROW(av.Last(6).Length(), fail_fast);
}
#endif
{
Span<int> av;
ASSERT_EQ(av.Last<0>().Length(), 0U);
ASSERT_EQ(av.Last(0).Length(), 0U);
}
}
SPAN_TEST(from_to) {
int arr[5] = {1, 2, 3, 4, 5};
{
Span<int, 5> av = arr;
ASSERT_EQ(av.From(3).Length(), 2U);
ASSERT_EQ(av.From(2)[1], 4);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.From(5).Length(), 0U);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.From(0).Length(), 5U);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.To(3).Length(), 3U);
ASSERT_EQ(av.To(3)[1], 2);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.To(0).Length(), 0U);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.To(5).Length(), 5U);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.FromTo(1, 4).Length(), 3U);
ASSERT_EQ(av.FromTo(1, 4)[1], 3);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.FromTo(2, 2).Length(), 0U);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.FromTo(0, 5).Length(), 5U);
}
}
SPAN_TEST(Subspan) {
int arr[5] = {1, 2, 3, 4, 5};
{
Span<int, 5> av = arr;
ASSERT_EQ((av.Subspan<2, 2>().Length()), 2U);
ASSERT_EQ(av.Subspan(2, 2).Length(), 2U);
ASSERT_EQ(av.Subspan(2, 3).Length(), 3U);
}
{
Span<int, 5> av = arr;
ASSERT_EQ((av.Subspan<0, 0>().Length()), 0U);
ASSERT_EQ(av.Subspan(0, 0).Length(), 0U);
}
{
Span<int, 5> av = arr;
ASSERT_EQ((av.Subspan<0, 5>().Length()), 5U);
ASSERT_EQ(av.Subspan(0, 5).Length(), 5U);
CHECK_THROW(av.Subspan(0, 6).Length(), fail_fast);
CHECK_THROW(av.Subspan(1, 5).Length(), fail_fast);
}
{
Span<int, 5> av = arr;
ASSERT_EQ((av.Subspan<4, 0>().Length()), 0U);
ASSERT_EQ(av.Subspan(4, 0).Length(), 0U);
ASSERT_EQ(av.Subspan(5, 0).Length(), 0U);
CHECK_THROW(av.Subspan(6, 0).Length(), fail_fast);
}
{
Span<int> av;
ASSERT_EQ((av.Subspan<0, 0>().Length()), 0U);
ASSERT_EQ(av.Subspan(0, 0).Length(), 0U);
CHECK_THROW((av.Subspan<1, 0>().Length()), fail_fast);
}
{
Span<int> av;
ASSERT_EQ(av.Subspan(0).Length(), 0U);
CHECK_THROW(av.Subspan(1).Length(), fail_fast);
}
{
Span<int> av = arr;
ASSERT_EQ(av.Subspan(0).Length(), 5U);
ASSERT_EQ(av.Subspan(1).Length(), 4U);
ASSERT_EQ(av.Subspan(4).Length(), 1U);
ASSERT_EQ(av.Subspan(5).Length(), 0U);
CHECK_THROW(av.Subspan(6).Length(), fail_fast);
auto av2 = av.Subspan(1);
for (int i = 0; i < 4; ++i) ASSERT_EQ(av2[i], i + 2);
}
{
Span<int, 5> av = arr;
ASSERT_EQ(av.Subspan(0).Length(), 5U);
ASSERT_EQ(av.Subspan(1).Length(), 4U);
ASSERT_EQ(av.Subspan(4).Length(), 1U);
ASSERT_EQ(av.Subspan(5).Length(), 0U);
CHECK_THROW(av.Subspan(6).Length(), fail_fast);
auto av2 = av.Subspan(1);
for (int i = 0; i < 4; ++i) ASSERT_EQ(av2[i], i + 2);
}
}
SPAN_TEST(at_call) {
int arr[4] = {1, 2, 3, 4};
{
Span<int> s = arr;
ASSERT_EQ(s.at(0), 1);
CHECK_THROW(s.at(5), fail_fast);
}
{
int arr2d[2] = {1, 6};
Span<int, 2> s = arr2d;
ASSERT_EQ(s.at(0), 1);
ASSERT_EQ(s.at(1), 6);
CHECK_THROW(s.at(2), fail_fast);
}
}
SPAN_TEST(operator_function_call) {
int arr[4] = {1, 2, 3, 4};
{
Span<int> s = arr;
ASSERT_EQ(s(0), 1);
CHECK_THROW(s(5), fail_fast);
}
{
int arr2d[2] = {1, 6};
Span<int, 2> s = arr2d;
ASSERT_EQ(s(0), 1);
ASSERT_EQ(s(1), 6);
CHECK_THROW(s(2), fail_fast);
}
}
SPAN_TEST(iterator_default_init) {
Span<int>::iterator it1;
Span<int>::iterator it2;
ASSERT_EQ(it1, it2);
}
SPAN_TEST(const_iterator_default_init) {
Span<int>::const_iterator it1;
Span<int>::const_iterator it2;
ASSERT_EQ(it1, it2);
}
SPAN_TEST(iterator_conversions) {
Span<int>::iterator badIt;
Span<int>::const_iterator badConstIt;
ASSERT_EQ(badIt, badConstIt);
int a[] = {1, 2, 3, 4};
Span<int> s = a;
auto it = s.begin();
auto cit = s.cbegin();
ASSERT_EQ(it, cit);
ASSERT_EQ(cit, it);
Span<int>::const_iterator cit2 = it;
ASSERT_EQ(cit2, cit);
Span<int>::const_iterator cit3 = it + 4;
ASSERT_EQ(cit3, s.cend());
}
SPAN_TEST(iterator_comparisons) {
int a[] = {1, 2, 3, 4};
{
Span<int> s = a;
Span<int>::iterator it = s.begin();
auto it2 = it + 1;
Span<int>::const_iterator cit = s.cbegin();
ASSERT_EQ(it, cit);
ASSERT_EQ(cit, it);
ASSERT_EQ(it, it);
ASSERT_EQ(cit, cit);
ASSERT_EQ(cit, s.begin());
ASSERT_EQ(s.begin(), cit);
ASSERT_EQ(s.cbegin(), cit);
ASSERT_EQ(it, s.begin());
ASSERT_EQ(s.begin(), it);
ASSERT_NE(it, it2);
ASSERT_NE(it2, it);
ASSERT_NE(it, s.end());
ASSERT_NE(it2, s.end());
ASSERT_NE(s.end(), it);
ASSERT_NE(it2, cit);
ASSERT_NE(cit, it2);
ASSERT_LT(it, it2);
ASSERT_LE(it, it2);
ASSERT_LE(it2, s.end());
ASSERT_LT(it, s.end());
ASSERT_LE(it, cit);
ASSERT_LE(cit, it);
ASSERT_LT(cit, it2);
ASSERT_LE(cit, it2);
ASSERT_LT(cit, s.end());
ASSERT_LE(cit, s.end());
ASSERT_GT(it2, it);
ASSERT_GE(it2, it);
ASSERT_GT(s.end(), it2);
ASSERT_GE(s.end(), it2);
ASSERT_GT(it2, cit);
ASSERT_GE(it2, cit);
}
}
SPAN_TEST(begin_end) {
{
int a[] = {1, 2, 3, 4};
Span<int> s = a;
Span<int>::iterator it = s.begin();
Span<int>::iterator it2 = std::begin(s);
ASSERT_EQ(it, it2);
it = s.end();
it2 = std::end(s);
ASSERT_EQ(it, it2);
}
{
int a[] = {1, 2, 3, 4};
Span<int> s = a;
auto it = s.begin();
auto first = it;
ASSERT_EQ(it, first);
ASSERT_EQ(*it, 1);
auto beyond = s.end();
ASSERT_NE(it, beyond);
CHECK_THROW(*beyond, fail_fast);
ASSERT_EQ(beyond - first, 4U);
ASSERT_EQ(first - first, 0U);
ASSERT_EQ(beyond - beyond, 0U);
++it;
ASSERT_EQ(it - first, 1U);
ASSERT_EQ(*it, 2);
*it = 22;
ASSERT_EQ(*it, 22);
ASSERT_EQ(beyond - it, 3U);
it = first;
ASSERT_EQ(it, first);
while (it != s.end()) {
*it = 5;
++it;
}
ASSERT_EQ(it, beyond);
ASSERT_EQ(it - beyond, 0U);
for (auto& n : s) {
ASSERT_EQ(n, 5);
}
}
}
SPAN_TEST(cbegin_cend) {
#if 0
{
int a[] = { 1, 2, 3, 4 };
Span<int> s = a;
Span<int>::const_iterator cit = s.cbegin();
Span<int>::const_iterator cit2 = std::cbegin(s);
ASSERT_EQ(cit , cit2);
cit = s.cend();
cit2 = std::cend(s);
ASSERT_EQ(cit , cit2);
}
#endif
{
int a[] = {1, 2, 3, 4};
Span<int> s = a;
auto it = s.cbegin();
auto first = it;
ASSERT_EQ(it, first);
ASSERT_EQ(*it, 1);
auto beyond = s.cend();
ASSERT_NE(it, beyond);
CHECK_THROW(*beyond, fail_fast);
ASSERT_EQ(beyond - first, 4U);
ASSERT_EQ(first - first, 0U);
ASSERT_EQ(beyond - beyond, 0U);
++it;
ASSERT_EQ(it - first, 1U);
ASSERT_EQ(*it, 2);
ASSERT_EQ(beyond - it, 3U);
int last = 0;
it = first;
ASSERT_EQ(it, first);
while (it != s.cend()) {
ASSERT_EQ(*it, last + 1);
last = *it;
++it;
}
ASSERT_EQ(it, beyond);
ASSERT_EQ(it - beyond, 0U);
}
}
SPAN_TEST(rbegin_rend) {
{
int a[] = {1, 2, 3, 4};
Span<int> s = a;
auto it = s.rbegin();
auto first = it;
ASSERT_EQ(it, first);
ASSERT_EQ(*it, 4);
auto beyond = s.rend();
ASSERT_NE(it, beyond);
CHECK_THROW(*beyond, fail_fast);
ASSERT_EQ(beyond - first, 4U);
ASSERT_EQ(first - first, 0U);
ASSERT_EQ(beyond - beyond, 0U);
++it;
ASSERT_EQ(it - first, 1U);
ASSERT_EQ(*it, 3);
*it = 22;
ASSERT_EQ(*it, 22);
ASSERT_EQ(beyond - it, 3U);
it = first;
ASSERT_EQ(it, first);
while (it != s.rend()) {
*it = 5;
++it;
}
ASSERT_EQ(it, beyond);
ASSERT_EQ(it - beyond, 0U);
for (auto& n : s) {
ASSERT_EQ(n, 5);
}
}
}
SPAN_TEST(crbegin_crend) {
{
int a[] = {1, 2, 3, 4};
Span<int> s = a;
auto it = s.crbegin();
auto first = it;
ASSERT_EQ(it, first);
ASSERT_EQ(*it, 4);
auto beyond = s.crend();
ASSERT_NE(it, beyond);
CHECK_THROW(*beyond, fail_fast);
ASSERT_EQ(beyond - first, 4U);
ASSERT_EQ(first - first, 0U);
ASSERT_EQ(beyond - beyond, 0U);
++it;
ASSERT_EQ(it - first, 1U);
ASSERT_EQ(*it, 3);
ASSERT_EQ(beyond - it, 3U);
it = first;
ASSERT_EQ(it, first);
int last = 5;
while (it != s.crend()) {
ASSERT_EQ(*it, last - 1);
last = *it;
++it;
}
ASSERT_EQ(it, beyond);
ASSERT_EQ(it - beyond, 0U);
}
}
SPAN_TEST(comparison_operators) {
{
Span<int> s1 = nullptr;
Span<int> s2 = nullptr;
ASSERT_EQ(s1, s2);
ASSERT_FALSE(s1 != s2);
ASSERT_FALSE(s1 < s2);
ASSERT_LE(s1, s2);
ASSERT_FALSE(s1 > s2);
ASSERT_GE(s1, s2);
ASSERT_EQ(s2, s1);
ASSERT_FALSE(s2 != s1);
ASSERT_FALSE(s2 < s1);
ASSERT_LE(s2, s1);
ASSERT_FALSE(s2 > s1);
ASSERT_GE(s2, s1);
}
{
int arr[] = {2, 1};
Span<int> s1 = arr;
Span<int> s2 = arr;
ASSERT_EQ(s1, s2);
ASSERT_FALSE(s1 != s2);
ASSERT_FALSE(s1 < s2);
ASSERT_LE(s1, s2);
ASSERT_FALSE(s1 > s2);
ASSERT_GE(s1, s2);
ASSERT_EQ(s2, s1);
ASSERT_FALSE(s2 != s1);
ASSERT_FALSE(s2 < s1);
ASSERT_LE(s2, s1);
ASSERT_FALSE(s2 > s1);
ASSERT_GE(s2, s1);
}
{
int arr[] = {2, 1}; // bigger
Span<int> s1 = nullptr;
Span<int> s2 = arr;
ASSERT_NE(s1, s2);
ASSERT_NE(s2, s1);
ASSERT_NE(s1, s2);
ASSERT_NE(s2, s1);
ASSERT_LT(s1, s2);
ASSERT_FALSE(s2 < s1);
ASSERT_LE(s1, s2);
ASSERT_FALSE(s2 <= s1);
ASSERT_GT(s2, s1);
ASSERT_FALSE(s1 > s2);
ASSERT_GE(s2, s1);
ASSERT_FALSE(s1 >= s2);
}
{
int arr1[] = {1, 2};
int arr2[] = {1, 2};
Span<int> s1 = arr1;
Span<int> s2 = arr2;
ASSERT_EQ(s1, s2);
ASSERT_FALSE(s1 != s2);
ASSERT_FALSE(s1 < s2);
ASSERT_LE(s1, s2);
ASSERT_FALSE(s1 > s2);
ASSERT_GE(s1, s2);
ASSERT_EQ(s2, s1);
ASSERT_FALSE(s2 != s1);
ASSERT_FALSE(s2 < s1);
ASSERT_LE(s2, s1);
ASSERT_FALSE(s2 > s1);
ASSERT_GE(s2, s1);
}
{
int arr[] = {1, 2, 3};
AssertSpanOfThreeInts(arr);
Span<int> s1 = {&arr[0], 2}; // shorter
Span<int> s2 = arr; // longer
ASSERT_NE(s1, s2);
ASSERT_NE(s2, s1);
ASSERT_NE(s1, s2);
ASSERT_NE(s2, s1);
ASSERT_LT(s1, s2);
ASSERT_FALSE(s2 < s1);
ASSERT_LE(s1, s2);
ASSERT_FALSE(s2 <= s1);
ASSERT_GT(s2, s1);
ASSERT_FALSE(s1 > s2);
ASSERT_GE(s2, s1);
ASSERT_FALSE(s1 >= s2);
}
{
int arr1[] = {1, 2}; // smaller
int arr2[] = {2, 1}; // bigger
Span<int> s1 = arr1;
Span<int> s2 = arr2;
ASSERT_NE(s1, s2);
ASSERT_NE(s2, s1);
ASSERT_NE(s1, s2);
ASSERT_NE(s2, s1);
ASSERT_LT(s1, s2);
ASSERT_FALSE(s2 < s1);
ASSERT_LE(s1, s2);
ASSERT_FALSE(s2 <= s1);
ASSERT_GT(s2, s1);
ASSERT_FALSE(s1 > s2);
ASSERT_GE(s2, s1);
ASSERT_FALSE(s1 >= s2);
}
}
SPAN_TEST(as_bytes) {
int a[] = {1, 2, 3, 4};
{
Span<const int> s = a;
ASSERT_EQ(s.Length(), 4U);
Span<const uint8_t> bs = AsBytes(s);
ASSERT_EQ(static_cast<const void*>(bs.data()),
static_cast<const void*>(s.data()));
ASSERT_EQ(bs.Length(), s.LengthBytes());
}
{
Span<int> s;
auto bs = AsBytes(s);
ASSERT_EQ(bs.Length(), s.Length());
ASSERT_EQ(bs.Length(), 0U);
ASSERT_EQ(bs.size_bytes(), 0U);
ASSERT_EQ(static_cast<const void*>(bs.data()),
static_cast<const void*>(s.data()));
ASSERT_EQ(bs.data(), reinterpret_cast<const uint8_t*>(SLICE_INT_PTR));
}
{
Span<int> s = a;
auto bs = AsBytes(s);
ASSERT_EQ(static_cast<const void*>(bs.data()),
static_cast<const void*>(s.data()));
ASSERT_EQ(bs.Length(), s.LengthBytes());
}
}
SPAN_TEST(as_writable_bytes) {
int a[] = {1, 2, 3, 4};
{
#ifdef CONFIRM_COMPILATION_ERRORS
// you should not be able to get writeable bytes for const objects
Span<const int> s = a;
ASSERT_EQ(s.Length(), 4U);
Span<const byte> bs = AsWritableBytes(s);
ASSERT_EQ(static_cast<void*>(bs.data()), static_cast<void*>(s.data()));
ASSERT_EQ(bs.Length(), s.LengthBytes());
#endif
}
{
Span<int> s;
auto bs = AsWritableBytes(s);
ASSERT_EQ(bs.Length(), s.Length());
ASSERT_EQ(bs.Length(), 0U);
ASSERT_EQ(bs.size_bytes(), 0U);
ASSERT_EQ(static_cast<void*>(bs.data()), static_cast<void*>(s.data()));
ASSERT_EQ(bs.data(), reinterpret_cast<uint8_t*>(SLICE_INT_PTR));
}
{
Span<int> s = a;
auto bs = AsWritableBytes(s);
ASSERT_EQ(static_cast<void*>(bs.data()), static_cast<void*>(s.data()));
ASSERT_EQ(bs.Length(), s.LengthBytes());
}
}
SPAN_TEST(as_chars) {
const uint8_t a[] = {1, 2, 3, 4};
Span<const uint8_t> u = Span(a);
Span<const char> c = AsChars(u);
ASSERT_EQ(static_cast<const void*>(u.data()),
static_cast<const void*>(c.data()));
ASSERT_EQ(u.size(), c.size());
}
SPAN_TEST(as_writable_chars) {
uint8_t a[] = {1, 2, 3, 4};
Span<uint8_t> u = Span(a);
Span<char> c = AsWritableChars(u);
ASSERT_EQ(static_cast<void*>(u.data()), static_cast<void*>(c.data()));
ASSERT_EQ(u.size(), c.size());
}
SPAN_TEST(fixed_size_conversions) {
int arr[] = {1, 2, 3, 4};
// converting to an Span from an equal size array is ok
Span<int, 4> s4 = arr;
ASSERT_EQ(s4.Length(), 4U);
// converting to dynamic_range is always ok
{
Span<int> s = s4;
ASSERT_EQ(s.Length(), s4.Length());
static_cast<void>(s);
}
// initialization or assignment to static Span that REDUCES size is NOT ok
#ifdef CONFIRM_COMPILATION_ERRORS
{ Span<int, 2> s = arr; }
{
Span<int, 2> s2 = s4;
static_cast<void>(s2);
}
#endif
#if 0
// even when done dynamically
{
Span<int> s = arr;
auto f = [&]() {
Span<int, 2> s2 = s;
static_cast<void>(s2);
};
CHECK_THROW(f(), fail_fast);
}
#endif
// but doing so explicitly is ok
// you can convert statically
{
Span<int, 2> s2 = {arr, 2};
static_cast<void>(s2);
}
{
Span<int, 1> s1 = s4.First<1>();
static_cast<void>(s1);
}
// ...or dynamically
{
// NB: implicit conversion to Span<int,1> from Span<int>
Span<int, 1> s1 = s4.First(1);
static_cast<void>(s1);
}
#if 0
// initialization or assignment to static Span that requires size INCREASE is not ok.
int arr2[2] = {1, 2};
#endif
#ifdef CONFIRM_COMPILATION_ERRORS
{ Span<int, 4> s3 = arr2; }
{
Span<int, 2> s2 = arr2;
Span<int, 4> s4a = s2;
}
#endif
#if 0
{
auto f = [&]() {
Span<int, 4> _s4 = {arr2, 2};
static_cast<void>(_s4);
};
CHECK_THROW(f(), fail_fast);
}
// this should fail - we are trying to assign a small dynamic Span to a fixed_size larger one
Span<int> av = arr2;
auto f = [&]() {
Span<int, 4> _s4 = av;
static_cast<void>(_s4);
};
CHECK_THROW(f(), fail_fast);
#endif
}
#if 0
SPAN_TEST(interop_with_std_regex)
{
char lat[] = { '1', '2', '3', '4', '5', '6', 'E', 'F', 'G' };
Span<char> s = lat;
auto f_it = s.begin() + 7;
std::match_results<Span<char>::iterator> match;
std::regex_match(s.begin(), s.end(), match, std::regex(".*"));
ASSERT_EQ(match.ready());
ASSERT_TRUE(!match.empty());
ASSERT_TRUE(match[0].matched);
ASSERT_TRUE(match[0].first , s.begin());
ASSERT_EQ(match[0].second , s.end());
std::regex_search(s.begin(), s.end(), match, std::regex("F"));
ASSERT_TRUE(match.ready());
ASSERT_TRUE(!match.empty());
ASSERT_TRUE(match[0].matched);
ASSERT_EQ(match[0].first , f_it);
ASSERT_EQ(match[0].second , (f_it + 1));
}
SPAN_TEST(interop_with_gsl_at)
{
int arr[5] = { 1, 2, 3, 4, 5 };
Span<int> s{ arr };
ASSERT_EQ(at(s, 0) , 1 );
ASSERT_EQ(at(s, 1) , 2U);
}
#endif
SPAN_TEST(default_constructible) {
ASSERT_TRUE((std::is_default_constructible<Span<int>>::value));
ASSERT_TRUE((std::is_default_constructible<Span<int, 0>>::value));
ASSERT_TRUE((!std::is_default_constructible<Span<int, 42>>::value));
}
SPAN_TEST(type_inference) {
static constexpr int arr[5] = {1, 2, 3, 4, 5};
constexpr auto s = Span{arr};
static_assert(std::is_same_v<const Span<const int, 5>, decltype(s)>);
static_assert(arr == s.Elements());
}
SPAN_TEST(split_at_dynamic_with_dynamic_extent) {
static constexpr int arr[5] = {1, 2, 3, 4, 5};
constexpr Span<const int> s = Span{arr};
{ // Split at begin.
constexpr auto splitAt0Result = s.SplitAt(0);
static_assert(
std::is_same_v<Span<const int>, decltype(splitAt0Result.first)>);
static_assert(
std::is_same_v<Span<const int>, decltype(splitAt0Result.second)>);
ASSERT_EQ(s.Elements(), splitAt0Result.second.Elements());
ASSERT_EQ(0u, splitAt0Result.first.Length());
ASSERT_EQ(5u, splitAt0Result.second.Length());
}
{ // Split at end.
constexpr auto splitAt5Result = s.SplitAt(s.Length());
static_assert(
std::is_same_v<Span<const int>, decltype(splitAt5Result.first)>);
static_assert(
std::is_same_v<Span<const int>, decltype(splitAt5Result.second)>);
ASSERT_EQ(s.Elements(), splitAt5Result.first.Elements());
ASSERT_EQ(5u, splitAt5Result.first.Length());
ASSERT_EQ(0u, splitAt5Result.second.Length());
}
{
// Split inside.
constexpr auto splitAt3Result = s.SplitAt(3);
static_assert(
std::is_same_v<Span<const int>, decltype(splitAt3Result.first)>);
static_assert(
std::is_same_v<Span<const int>, decltype(splitAt3Result.second)>);
ASSERT_EQ(s.Elements(), splitAt3Result.first.Elements());
ASSERT_EQ(s.Elements() + 3, splitAt3Result.second.Elements());
ASSERT_EQ(3u, splitAt3Result.first.Length());
ASSERT_EQ(2u, splitAt3Result.second.Length());
}
}
SPAN_TEST(split_at_dynamic_with_static_extent) {
static constexpr int arr[5] = {1, 2, 3, 4, 5};
constexpr auto s = Span{arr};
{
// Split at begin.
constexpr auto splitAt0Result = s.SplitAt(0);
static_assert(
std::is_same_v<Span<const int>, decltype(splitAt0Result.first)>);
static_assert(
std::is_same_v<Span<const int>, decltype(splitAt0Result.second)>);
ASSERT_EQ(s.Elements(), splitAt0Result.second.Elements());
}
{
// Split at end.
constexpr auto splitAt5Result = s.SplitAt(s.Length());
static_assert(
std::is_same_v<Span<const int>, decltype(splitAt5Result.first)>);
static_assert(
std::is_same_v<Span<const int>, decltype(splitAt5Result.second)>);
ASSERT_EQ(s.Elements(), splitAt5Result.first.Elements());
}
{
// Split inside.
constexpr auto splitAt3Result = s.SplitAt(3);
static_assert(
std::is_same_v<Span<const int>, decltype(splitAt3Result.first)>);
static_assert(
std::is_same_v<Span<const int>, decltype(splitAt3Result.second)>);
ASSERT_EQ(s.Elements(), splitAt3Result.first.Elements());
ASSERT_EQ(s.Elements() + 3, splitAt3Result.second.Elements());
}
}
SPAN_TEST(split_at_static) {
static constexpr int arr[5] = {1, 2, 3, 4, 5};
constexpr auto s = Span{arr};
// Split at begin.
constexpr auto splitAt0Result = s.SplitAt<0>();
static_assert(
std::is_same_v<Span<const int, 0>, decltype(splitAt0Result.first)>);
static_assert(
std::is_same_v<Span<const int, 5>, decltype(splitAt0Result.second)>);
static_assert(splitAt0Result.second.Elements() == s.Elements());
// Split at end.
constexpr auto splitAt5Result = s.SplitAt<s.Length()>();
static_assert(std::is_same_v<Span<const int, s.Length()>,
decltype(splitAt5Result.first)>);
static_assert(
std::is_same_v<Span<const int, 0>, decltype(splitAt5Result.second)>);
static_assert(splitAt5Result.first.Elements() == s.Elements());
// Split inside.
constexpr auto splitAt3Result = s.SplitAt<3>();
static_assert(
std::is_same_v<Span<const int, 3>, decltype(splitAt3Result.first)>);
static_assert(
std::is_same_v<Span<const int, 2>, decltype(splitAt3Result.second)>);
static_assert(splitAt3Result.first.Elements() == s.Elements());
static_assert(splitAt3Result.second.Elements() == s.Elements() + 3);
}
SPAN_TEST(as_const_dynamic) {
static int arr[5] = {1, 2, 3, 4, 5};
auto span = Span{arr, 5};
auto constSpan = span.AsConst();
static_assert(std::is_same_v<Span<const int>, decltype(constSpan)>);
}
SPAN_TEST(as_const_static) {
{
static constexpr int constArr[5] = {1, 2, 3, 4, 5};
constexpr auto span = Span{constArr}; // is already a Span<const int>
constexpr auto constSpan = span.AsConst();
static_assert(
std::is_same_v<const Span<const int, 5>, decltype(constSpan)>);
}
{
static int arr[5] = {1, 2, 3, 4, 5};
auto span = Span{arr};
auto constSpan = span.AsConst();
static_assert(std::is_same_v<Span<const int, 5>, decltype(constSpan)>);
}
}
SPAN_TEST(construct_from_iterators_dynamic) {
const int constArr[5] = {1, 2, 3, 4, 5};
auto constSpan = Span{constArr};
// const from const
{
const auto wholeSpan = Span{constSpan.cbegin(), constSpan.cend()};
static_assert(std::is_same_v<decltype(wholeSpan), const Span<const int>>);
ASSERT_TRUE(constSpan == wholeSpan);
const auto emptyBeginSpan = Span{constSpan.cbegin(), constSpan.cbegin()};
ASSERT_TRUE(emptyBeginSpan.IsEmpty());
const auto emptyEndSpan = Span{constSpan.cend(), constSpan.cend()};
ASSERT_TRUE(emptyEndSpan.IsEmpty());
const auto subSpan = Span{constSpan.cbegin() + 1, constSpan.cend() - 1};
ASSERT_EQ(constSpan.Length() - 2, subSpan.Length());
ASSERT_EQ(constSpan.Elements() + 1, subSpan.Elements());
}
int arr[5] = {1, 2, 3, 4, 5};
auto span = Span{arr};
// const from non-const
{
const auto wholeSpan = Span{span.cbegin(), span.cend()};
static_assert(std::is_same_v<decltype(wholeSpan), const Span<const int>>);
// XXX Can't use span == wholeSpan because of difference in constness.
ASSERT_EQ(span.Elements(), wholeSpan.Elements());
ASSERT_EQ(span.Length(), wholeSpan.Length());
const auto emptyBeginSpan = Span{span.cbegin(), span.cbegin()};
ASSERT_TRUE(emptyBeginSpan.IsEmpty());
const auto emptyEndSpan = Span{span.cend(), span.cend()};
ASSERT_TRUE(emptyEndSpan.IsEmpty());
const auto subSpan = Span{span.cbegin() + 1, span.cend() - 1};
ASSERT_EQ(span.Length() - 2, subSpan.Length());
ASSERT_EQ(span.Elements() + 1, subSpan.Elements());
}
// non-const from non-const
{
const auto wholeSpan = Span{span.begin(), span.end()};
static_assert(std::is_same_v<decltype(wholeSpan), const Span<int>>);
ASSERT_TRUE(span == wholeSpan);
const auto emptyBeginSpan = Span{span.begin(), span.begin()};
ASSERT_TRUE(emptyBeginSpan.IsEmpty());
const auto emptyEndSpan = Span{span.end(), span.end()};
ASSERT_TRUE(emptyEndSpan.IsEmpty());
const auto subSpan = Span{span.begin() + 1, span.end() - 1};
ASSERT_EQ(span.Length() - 2, subSpan.Length());
}
}
SPAN_TEST(construct_from_iterators_static) {
static constexpr int arr[5] = {1, 2, 3, 4, 5};
constexpr auto constSpan = Span{arr};
// const
{
const auto wholeSpan = Span{constSpan.cbegin(), constSpan.cend()};
static_assert(std::is_same_v<decltype(wholeSpan), const Span<const int>>);
ASSERT_TRUE(constSpan == wholeSpan);
const auto emptyBeginSpan = Span{constSpan.cbegin(), constSpan.cbegin()};
ASSERT_TRUE(emptyBeginSpan.IsEmpty());
const auto emptyEndSpan = Span{constSpan.cend(), constSpan.cend()};
ASSERT_TRUE(emptyEndSpan.IsEmpty());
const auto subSpan = Span{constSpan.cbegin() + 1, constSpan.cend() - 1};
ASSERT_EQ(constSpan.Length() - 2, subSpan.Length());
ASSERT_EQ(constSpan.Elements() + 1, subSpan.Elements());
}
}
SPAN_TEST(construct_from_container_with_type_deduction) {
std::vector<int> vec = {1, 2, 3, 4, 5};
// from const
{
const auto& constVecRef = vec;
auto span = Span{constVecRef};
static_assert(std::is_same_v<decltype(span), Span<const int>>);
}
// from non-const
{
auto span = Span{vec};
static_assert(std::is_same_v<decltype(span), Span<int>>);
}
}