gecko-dev/dom/bindings/BindingUtils.h

1419 строки
39 KiB
C
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* vim: set ts=2 sw=2 et tw=79: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
#ifndef mozilla_dom_BindingUtils_h__
#define mozilla_dom_BindingUtils_h__
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
#include "mozilla/dom/DOMJSClass.h"
#include "mozilla/dom/DOMJSProxyHandler.h"
#include "mozilla/dom/NonRefcountedDOMObject.h"
#include "mozilla/dom/workers/Workers.h"
#include "mozilla/ErrorResult.h"
#include "jsapi.h"
#include "jsfriendapi.h"
#include "jswrapper.h"
#include "nsIXPConnect.h"
#include "qsObjectHelper.h"
#include "xpcpublic.h"
#include "nsTraceRefcnt.h"
#include "nsWrapperCacheInlines.h"
#include "mozilla/Likely.h"
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
// nsGlobalWindow implements nsWrapperCache, but doesn't always use it. Don't
// try to use it without fixing that first.
class nsGlobalWindow;
namespace mozilla {
namespace dom {
enum ErrNum {
#define MSG_DEF(_name, _argc, _str) \
_name,
#include "mozilla/dom/Errors.msg"
#undef MSG_DEF
Err_Limit
};
bool
ThrowErrorMessage(JSContext* aCx, const ErrNum aErrorNumber, ...);
template<bool mainThread>
inline bool
Throw(JSContext* cx, nsresult rv)
{
using mozilla::dom::workers::exceptions::ThrowDOMExceptionForNSResult;
// XXX Introduce exception machinery.
if (mainThread) {
xpc::Throw(cx, rv);
} else {
if (!JS_IsExceptionPending(cx)) {
ThrowDOMExceptionForNSResult(cx, rv);
}
}
return false;
}
template<bool mainThread>
inline bool
ThrowMethodFailedWithDetails(JSContext* cx, const ErrorResult& rv,
const char* /* ifaceName */,
const char* /* memberName */)
{
return Throw<mainThread>(cx, rv.ErrorCode());
}
// Returns true if the JSClass is used for DOM objects.
inline bool
IsDOMClass(const JSClass* clasp)
{
return clasp->flags & JSCLASS_IS_DOMJSCLASS;
}
inline bool
IsDOMClass(const js::Class* clasp)
{
return IsDOMClass(Jsvalify(clasp));
}
// Returns true if the JSClass is used for DOM interface and interface
// prototype objects.
inline bool
IsDOMIfaceAndProtoClass(const JSClass* clasp)
{
return clasp->flags & JSCLASS_IS_DOMIFACEANDPROTOJSCLASS;
}
inline bool
IsDOMIfaceAndProtoClass(const js::Class* clasp)
{
return IsDOMIfaceAndProtoClass(Jsvalify(clasp));
}
// It's ok for eRegularDOMObject and eProxyDOMObject to be the same, but
// eNonDOMObject should always be different from the other two. This enum
// shouldn't be used to differentiate between non-proxy and proxy bindings.
enum DOMObjectSlot {
eNonDOMObject = -1,
eRegularDOMObject = DOM_OBJECT_SLOT,
eProxyDOMObject = DOM_PROXY_OBJECT_SLOT
};
template <class T>
inline T*
UnwrapDOMObject(JSObject* obj, DOMObjectSlot slot)
{
MOZ_ASSERT(slot != eNonDOMObject,
"Don't pass non-DOM objects to this function");
#ifdef DEBUG
if (IsDOMClass(js::GetObjectClass(obj))) {
MOZ_ASSERT(slot == eRegularDOMObject);
} else {
MOZ_ASSERT(IsDOMProxy(obj));
MOZ_ASSERT(slot == eProxyDOMObject);
}
#endif
JS::Value val = js::GetReservedSlot(obj, slot);
// XXXbz/khuey worker code tries to unwrap interface objects (which have
// nothing here). That needs to stop.
// XXX We don't null-check UnwrapObject's result; aren't we going to crash
// anyway?
if (val.isUndefined()) {
return NULL;
}
return static_cast<T*>(val.toPrivate());
}
// Only use this with a new DOM binding object (either proxy or regular).
inline const DOMClass*
GetDOMClass(JSObject* obj)
{
js::Class* clasp = js::GetObjectClass(obj);
if (IsDOMClass(clasp)) {
return &DOMJSClass::FromJSClass(clasp)->mClass;
}
MOZ_ASSERT(IsDOMProxy(obj));
js::BaseProxyHandler* handler = js::GetProxyHandler(obj);
return &static_cast<DOMProxyHandler*>(handler)->mClass;
}
inline DOMObjectSlot
GetDOMClass(JSObject* obj, const DOMClass*& result)
{
js::Class* clasp = js::GetObjectClass(obj);
if (IsDOMClass(clasp)) {
result = &DOMJSClass::FromJSClass(clasp)->mClass;
return eRegularDOMObject;
}
if (js::IsObjectProxyClass(clasp) || js::IsFunctionProxyClass(clasp)) {
js::BaseProxyHandler* handler = js::GetProxyHandler(obj);
if (handler->family() == ProxyFamily()) {
result = &static_cast<DOMProxyHandler*>(handler)->mClass;
return eProxyDOMObject;
}
}
return eNonDOMObject;
}
inline bool
UnwrapDOMObjectToISupports(JSObject* obj, nsISupports*& result)
{
const DOMClass* clasp;
DOMObjectSlot slot = GetDOMClass(obj, clasp);
if (slot == eNonDOMObject || !clasp->mDOMObjectIsISupports) {
return false;
}
result = UnwrapDOMObject<nsISupports>(obj, slot);
return true;
}
inline bool
IsDOMObject(JSObject* obj)
{
js::Class* clasp = js::GetObjectClass(obj);
return IsDOMClass(clasp) || IsDOMProxy(obj, clasp);
}
// Some callers don't want to set an exception when unwrapping fails
// (for example, overload resolution uses unwrapping to tell what sort
// of thing it's looking at).
// U must be something that a T* can be assigned to (e.g. T* or an nsRefPtr<T>).
template <prototypes::ID PrototypeID, class T, typename U>
inline nsresult
UnwrapObject(JSContext* cx, JSObject* obj, U& value)
{
/* First check to see whether we have a DOM object */
const DOMClass* domClass;
DOMObjectSlot slot = GetDOMClass(obj, domClass);
if (slot == eNonDOMObject) {
/* Maybe we have a security wrapper or outer window? */
if (!js::IsWrapper(obj)) {
/* Not a DOM object, not a wrapper, just bail */
return NS_ERROR_XPC_BAD_CONVERT_JS;
}
obj = xpc::Unwrap(cx, obj, false);
if (!obj) {
return NS_ERROR_XPC_SECURITY_MANAGER_VETO;
}
MOZ_ASSERT(!js::IsWrapper(obj));
slot = GetDOMClass(obj, domClass);
if (slot == eNonDOMObject) {
/* We don't have a DOM object */
return NS_ERROR_XPC_BAD_CONVERT_JS;
}
}
/* This object is a DOM object. Double-check that it is safely
castable to T by checking whether it claims to inherit from the
class identified by protoID. */
if (domClass->mInterfaceChain[PrototypeTraits<PrototypeID>::Depth] ==
PrototypeID) {
value = UnwrapDOMObject<T>(obj, slot);
return NS_OK;
}
/* It's the wrong sort of DOM object */
return NS_ERROR_XPC_BAD_CONVERT_JS;
}
inline bool
IsArrayLike(JSContext* cx, JSObject* obj)
{
MOZ_ASSERT(obj);
// For simplicity, check for security wrappers up front. In case we
// have a security wrapper, don't forget to enter the compartment of
// the underlying object after unwrapping.
Maybe<JSAutoCompartment> ac;
if (js::IsWrapper(obj)) {
obj = xpc::Unwrap(cx, obj, false);
if (!obj) {
// Let's say it's not
return false;
}
ac.construct(cx, obj);
}
// XXXbz need to detect platform objects (including listbinding
// ones) with indexGetters here!
return JS_IsArrayObject(cx, obj) || JS_IsTypedArrayObject(obj, cx);
}
inline bool
IsPlatformObject(JSContext* cx, JSObject* obj)
{
// XXXbz Should be treating list-binding objects as platform objects
// too? The one consumer so far wants non-array-like platform
// objects, so listbindings that have an indexGetter should test
// false from here. Maybe this function should have a different
// name?
MOZ_ASSERT(obj);
// Fast-path the common case
JSClass* clasp = js::GetObjectJSClass(obj);
if (IsDOMClass(clasp)) {
return true;
}
// Now for simplicity check for security wrappers before anything else
if (js::IsWrapper(obj)) {
obj = xpc::Unwrap(cx, obj, false);
if (!obj) {
// Let's say it's not
return false;
}
clasp = js::GetObjectJSClass(obj);
}
return IS_WRAPPER_CLASS(js::Valueify(clasp)) || IsDOMClass(clasp) ||
JS_IsArrayBufferObject(obj, cx);
}
// U must be something that a T* can be assigned to (e.g. T* or an nsRefPtr<T>).
template <class T, typename U>
inline nsresult
UnwrapObject(JSContext* cx, JSObject* obj, U& value)
{
return UnwrapObject<static_cast<prototypes::ID>(
PrototypeIDMap<T>::PrototypeID), T>(cx, obj, value);
}
// The items in the protoAndIfaceArray are indexed by the prototypes::id::ID and
// constructors::id::ID enums, in that order. The end of the prototype objects
// should be the start of the interface objects.
MOZ_STATIC_ASSERT((size_t)constructors::id::_ID_Start ==
(size_t)prototypes::id::_ID_Count,
"Overlapping or discontiguous indexes.");
const size_t kProtoAndIfaceCacheCount = constructors::id::_ID_Count;
inline void
AllocateProtoAndIfaceCache(JSObject* obj)
{
MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL);
MOZ_ASSERT(js::GetReservedSlot(obj, DOM_PROTOTYPE_SLOT).isUndefined());
// Important: The () at the end ensure zero-initialization
JSObject** protoAndIfaceArray = new JSObject*[kProtoAndIfaceCacheCount]();
js::SetReservedSlot(obj, DOM_PROTOTYPE_SLOT,
JS::PrivateValue(protoAndIfaceArray));
}
inline void
TraceProtoAndIfaceCache(JSTracer* trc, JSObject* obj)
{
MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL);
if (!HasProtoAndIfaceArray(obj))
return;
JSObject** protoAndIfaceArray = GetProtoAndIfaceArray(obj);
for (size_t i = 0; i < kProtoAndIfaceCacheCount; ++i) {
JSObject* proto = protoAndIfaceArray[i];
if (proto) {
JS_CALL_OBJECT_TRACER(trc, proto, "protoAndIfaceArray[i]");
}
}
}
inline void
DestroyProtoAndIfaceCache(JSObject* obj)
{
MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL);
JSObject** protoAndIfaceArray = GetProtoAndIfaceArray(obj);
delete [] protoAndIfaceArray;
}
/**
* Add constants to an object.
*/
bool
DefineConstants(JSContext* cx, JSObject* obj, ConstantSpec* cs);
struct JSNativeHolder
{
JSNative mNative;
const NativePropertyHooks* mPropertyHooks;
};
/*
* Create a DOM interface object (if constructorClass is non-null) and/or a
* DOM interface prototype object (if protoClass is non-null).
*
* global is used as the parent of the interface object and the interface
* prototype object
* protoProto is the prototype to use for the interface prototype object.
* protoClass is the JSClass to use for the interface prototype object.
* This is null if we should not create an interface prototype
* object.
* protoCache a pointer to a JSObject pointer where we should cache the
* interface prototype object. This must be null if protoClass is and
* vice versa.
* constructorClass is the JSClass to use for the interface object.
* This is null if we should not create an interface object or
* if it should be a function object.
* constructor holds the JSNative to back the interface object which should be a
* Function, unless constructorClass is non-null in which case it is
* ignored. If this is null and constructorClass is also null then
* we should not create an interface object at all.
* ctorNargs is the length of the constructor function; 0 if no constructor
* constructorCache a pointer to a JSObject pointer where we should cache the
* interface object. This must be null if both constructorClass
* and constructor are null, and non-null otherwise.
* domClass is the DOMClass of instance objects for this class. This can be
* null if this is not a concrete proto.
* properties contains the methods, attributes and constants to be defined on
* objects in any compartment.
* chromeProperties contains the methods, attributes and constants to be defined
* on objects in chrome compartments. This must be null if the
* interface doesn't have any ChromeOnly properties or if the
* object is being created in non-chrome compartment.
*
* At least one of protoClass, constructorClass or constructor should be
* non-null. If constructorClass or constructor are non-null, the resulting
* interface object will be defined on the given global with property name
* |name|, which must also be non-null.
*/
void
CreateInterfaceObjects(JSContext* cx, JSObject* global, JSObject* protoProto,
JSClass* protoClass, JSObject** protoCache,
JSClass* constructorClass, JSNativeHolder* constructor,
unsigned ctorNargs, JSObject** constructorCache,
const DOMClass* domClass,
const NativeProperties* regularProperties,
const NativeProperties* chromeOnlyProperties,
const char* name);
/*
* Define the unforgeable attributes on an object.
*/
bool
DefineUnforgeableAttributes(JSContext* cx, JSObject* obj,
Prefable<JSPropertySpec>* props);
inline bool
MaybeWrapValue(JSContext* cx, JSObject* obj, JS::Value* vp)
{
if (vp->isObject() &&
js::GetObjectCompartment(&vp->toObject()) != js::GetObjectCompartment(obj)) {
return JS_WrapValue(cx, vp);
}
return true;
}
template <class T>
inline bool
WrapNewBindingObject(JSContext* cx, JSObject* scope, T* value, JS::Value* vp)
{
JSObject* obj = value->GetWrapper();
if (obj && js::GetObjectCompartment(obj) == js::GetObjectCompartment(scope)) {
*vp = JS::ObjectValue(*obj);
return true;
}
if (!obj) {
bool triedToWrap;
obj = value->WrapObject(cx, scope, &triedToWrap);
if (!obj) {
// At this point, obj is null, so just return false. We could
// try to communicate triedToWrap to the caller, but in practice
// callers seem to be testing JS_IsExceptionPending(cx) to
// figure out whether WrapObject() threw instead.
return false;
}
}
// When called via XrayWrapper, we end up here while running in the
// chrome compartment. But the obj we have would be created in
// whatever the content compartment is. So at this point we need to
// make sure it's correctly wrapped for the compartment of |scope|.
// cx should already be in the compartment of |scope| here.
MOZ_ASSERT(js::IsObjectInContextCompartment(scope, cx));
*vp = JS::ObjectValue(*obj);
return JS_WrapValue(cx, vp);
}
// Helper for smart pointers (nsAutoPtr/nsRefPtr/nsCOMPtr).
template <template <typename> class SmartPtr, class T>
inline bool
WrapNewBindingObject(JSContext* cx, JSObject* scope, const SmartPtr<T>& value,
JS::Value* vp)
{
return WrapNewBindingObject(cx, scope, value.get(), vp);
}
template <class T>
inline bool
WrapNewBindingNonWrapperCachedObject(JSContext* cx, JSObject* scope, T* value,
JS::Value* vp)
{
// We try to wrap in the compartment of the underlying object of "scope"
JSObject* obj;
{
// scope for the JSAutoCompartment so that we restore the compartment
// before we call JS_WrapValue.
Maybe<JSAutoCompartment> ac;
if (js::IsWrapper(scope)) {
scope = xpc::Unwrap(cx, scope, false);
if (!scope)
return false;
ac.construct(cx, scope);
}
obj = value->WrapObject(cx, scope);
}
// We can end up here in all sorts of compartments, per above. Make
// sure to JS_WrapValue!
*vp = JS::ObjectValue(*obj);
return JS_WrapValue(cx, vp);
}
// Helper for smart pointers (nsAutoPtr/nsRefPtr/nsCOMPtr).
template <template <typename> class SmartPtr, typename T>
inline bool
WrapNewBindingNonWrapperCachedObject(JSContext* cx, JSObject* scope,
const SmartPtr<T>& value, JS::Value* vp)
{
return WrapNewBindingNonWrapperCachedObject(cx, scope, value.get(), vp);
}
/**
* A method to handle new-binding wrap failure, by possibly falling back to
* wrapping as a non-new-binding object.
*/
bool
DoHandleNewBindingWrappingFailure(JSContext* cx, JSObject* scope,
nsISupports* value, JS::Value* vp);
/**
* An easy way to call the above when you have a value which
* multiply-inherits from nsISupports.
*/
template <class T>
bool
HandleNewBindingWrappingFailure(JSContext* cx, JSObject* scope, T* value,
JS::Value* vp)
{
nsCOMPtr<nsISupports> val;
CallQueryInterface(value, getter_AddRefs(val));
return DoHandleNewBindingWrappingFailure(cx, scope, val, vp);
}
// Helper for smart pointers (nsAutoPtr/nsRefPtr/nsCOMPtr).
template <template <typename> class SmartPtr, class T>
MOZ_ALWAYS_INLINE bool
HandleNewBindingWrappingFailure(JSContext* cx, JSObject* scope,
const SmartPtr<T>& value, JS::Value* vp)
{
return HandleNewBindingWrappingFailure(cx, scope, value.get(), vp);
}
struct EnumEntry {
const char* value;
size_t length;
};
template<bool Fatal>
inline bool
EnumValueNotFound(JSContext* cx, const jschar* chars, size_t length,
const char* type)
{
return false;
}
template<>
inline bool
EnumValueNotFound<false>(JSContext* cx, const jschar* chars, size_t length,
const char* type)
{
// TODO: Log a warning to the console.
return true;
}
template<>
inline bool
EnumValueNotFound<true>(JSContext* cx, const jschar* chars, size_t length,
const char* type)
{
NS_LossyConvertUTF16toASCII deflated(static_cast<const PRUnichar*>(chars),
length);
return ThrowErrorMessage(cx, MSG_INVALID_ENUM_VALUE, deflated.get(), type);
}
template<bool InvalidValueFatal>
inline int
FindEnumStringIndex(JSContext* cx, JS::Value v, const EnumEntry* values,
const char* type, bool* ok)
{
// JS_StringEqualsAscii is slow as molasses, so don't use it here.
JSString* str = JS_ValueToString(cx, v);
if (!str) {
*ok = false;
return 0;
}
JS::Anchor<JSString*> anchor(str);
size_t length;
const jschar* chars = JS_GetStringCharsAndLength(cx, str, &length);
if (!chars) {
*ok = false;
return 0;
}
int i = 0;
for (const EnumEntry* value = values; value->value; ++value, ++i) {
if (length != value->length) {
continue;
}
bool equal = true;
const char* val = value->value;
for (size_t j = 0; j != length; ++j) {
if (unsigned(val[j]) != unsigned(chars[j])) {
equal = false;
break;
}
}
if (equal) {
*ok = true;
return i;
}
}
*ok = EnumValueNotFound<InvalidValueFatal>(cx, chars, length, type);
return -1;
}
inline nsWrapperCache*
GetWrapperCache(nsWrapperCache* cache)
{
return cache;
}
inline nsWrapperCache*
GetWrapperCache(nsGlobalWindow* not_allowed);
inline nsWrapperCache*
GetWrapperCache(void* p)
{
return NULL;
}
struct ParentObject {
template<class T>
ParentObject(T* aObject) :
mObject(aObject),
mWrapperCache(GetWrapperCache(aObject))
{}
template<class T, template<typename> class SmartPtr>
ParentObject(const SmartPtr<T>& aObject) :
mObject(aObject.get()),
mWrapperCache(GetWrapperCache(aObject.get()))
{}
ParentObject(nsISupports* aObject, nsWrapperCache* aCache) :
mObject(aObject),
mWrapperCache(aCache)
{}
nsISupports* const mObject;
nsWrapperCache* const mWrapperCache;
};
inline nsWrapperCache*
GetWrapperCache(const ParentObject& aParentObject)
{
return aParentObject.mWrapperCache;
}
template<class T>
inline T*
GetParentPointer(T* aObject)
{
return aObject;
}
inline nsISupports*
GetParentPointer(const ParentObject& aObject)
{
return aObject.mObject;
}
template<class T>
inline void
ClearWrapper(T* p, nsWrapperCache* cache)
{
cache->ClearWrapper();
}
template<class T>
inline void
ClearWrapper(T* p, void*)
{
nsWrapperCache* cache;
CallQueryInterface(p, &cache);
ClearWrapper(p, cache);
}
// Can only be called with the immediate prototype of the instance object. Can
// only be called on the prototype of an object known to be a DOM instance.
JSBool
InstanceClassHasProtoAtDepth(JSHandleObject protoObject, uint32_t protoID,
uint32_t depth);
// Only set allowNativeWrapper to false if you really know you need it, if in
// doubt use true. Setting it to false disables security wrappers.
bool
XPCOMObjectToJsval(JSContext* cx, JSObject* scope, xpcObjectHelper &helper,
const nsIID* iid, bool allowNativeWrapper, JS::Value* rval);
template<class T>
inline bool
WrapObject(JSContext* cx, JSObject* scope, T* p, nsWrapperCache* cache,
const nsIID* iid, JS::Value* vp)
{
if (xpc_FastGetCachedWrapper(cache, scope, vp))
return true;
qsObjectHelper helper(p, cache);
return XPCOMObjectToJsval(cx, scope, helper, iid, true, vp);
}
template<class T>
inline bool
WrapObject(JSContext* cx, JSObject* scope, T* p, const nsIID* iid,
JS::Value* vp)
{
return WrapObject(cx, scope, p, GetWrapperCache(p), iid, vp);
}
template<class T>
inline bool
WrapObject(JSContext* cx, JSObject* scope, T* p, JS::Value* vp)
{
return WrapObject(cx, scope, p, NULL, vp);
}
template<class T>
inline bool
WrapObject(JSContext* cx, JSObject* scope, nsCOMPtr<T> &p, const nsIID* iid,
JS::Value* vp)
{
return WrapObject(cx, scope, p.get(), iid, vp);
}
template<class T>
inline bool
WrapObject(JSContext* cx, JSObject* scope, nsCOMPtr<T> &p, JS::Value* vp)
{
return WrapObject(cx, scope, p, NULL, vp);
}
template<class T>
inline bool
WrapObject(JSContext* cx, JSObject* scope, nsRefPtr<T> &p, const nsIID* iid,
JS::Value* vp)
{
return WrapObject(cx, scope, p.get(), iid, vp);
}
template<class T>
inline bool
WrapObject(JSContext* cx, JSObject* scope, nsRefPtr<T> &p, JS::Value* vp)
{
return WrapObject(cx, scope, p, NULL, vp);
}
template<>
inline bool
WrapObject<JSObject>(JSContext* cx, JSObject* scope, JSObject* p, JS::Value* vp)
{
vp->setObjectOrNull(p);
return true;
}
bool
WrapCallbackInterface(JSContext *cx, JSObject *scope, nsISupports* callback,
JS::Value* vp);
#ifdef _MSC_VER
#define HAS_MEMBER_CHECK(_name) \
template<typename V> static yes& Check(char (*)[(&V::_name == 0) + 1])
#else
#define HAS_MEMBER_CHECK(_name) \
template<typename V> static yes& Check(char (*)[sizeof(&V::_name) + 1])
#endif
#define HAS_MEMBER(_name) \
template<typename T> \
class Has##_name##Member { \
typedef char yes[1]; \
typedef char no[2]; \
HAS_MEMBER_CHECK(_name); \
template<typename V> static no& Check(...); \
\
public: \
static bool const Value = sizeof(Check<T>(nullptr)) == sizeof(yes); \
};
HAS_MEMBER(AddRef)
HAS_MEMBER(Release)
HAS_MEMBER(QueryInterface)
template<typename T>
struct IsRefCounted
{
static bool const Value = HasAddRefMember<T>::Value &&
HasReleaseMember<T>::Value;
};
template<typename T>
struct IsISupports
{
static bool const Value = IsRefCounted<T>::Value &&
HasQueryInterfaceMember<T>::Value;
};
HAS_MEMBER(WrapObject)
// HasWrapObject<T>::Value will be true if T has a WrapObject member but it's
// not nsWrapperCache::WrapObject.
template<typename T>
struct HasWrapObject
{
private:
typedef char yes[1];
typedef char no[2];
typedef JSObject* (nsWrapperCache::*WrapObject)(JSContext*, JSObject*, bool*);
template<typename U, U> struct SFINAE;
template <typename V> static no& Check(SFINAE<WrapObject, &V::WrapObject>*);
template <typename V> static yes& Check(...);
public:
static bool const Value = HasWrapObjectMember<T>::Value &&
sizeof(Check<T>(nullptr)) == sizeof(yes);
};
template<typename T>
static inline JSObject*
WrapNativeISupportsParent(JSContext* cx, JSObject* scope, T* p,
nsWrapperCache* cache)
{
qsObjectHelper helper(ToSupports(p), cache);
JS::Value v;
return XPCOMObjectToJsval(cx, scope, helper, nullptr, false, &v) ?
JSVAL_TO_OBJECT(v) :
nullptr;
}
template<typename T, bool isISupports=IsISupports<T>::Value >
struct WrapNativeParentFallback
{
static inline JSObject* Wrap(JSContext* cx, JSObject* scope, T* parent,
nsWrapperCache* cache)
{
MOZ_NOT_REACHED("Don't know how to deal with triedToWrap == false for "
"non-nsISupports classes");
return nullptr;
}
};
template<typename T >
struct WrapNativeParentFallback<T, true >
{
static inline JSObject* Wrap(JSContext* cx, JSObject* scope, T* parent,
nsWrapperCache* cache)
{
return WrapNativeISupportsParent(cx, scope, parent, cache);
}
};
template<typename T, bool hasWrapObject=HasWrapObject<T>::Value >
struct WrapNativeParentHelper
{
static inline JSObject* Wrap(JSContext* cx, JSObject* scope, T* parent,
nsWrapperCache* cache)
{
MOZ_ASSERT(cache);
JSObject* obj;
if ((obj = cache->GetWrapper())) {
return obj;
}
bool triedToWrap;
obj = parent->WrapObject(cx, scope, &triedToWrap);
if (!triedToWrap) {
obj = WrapNativeParentFallback<T>::Wrap(cx, scope, parent, cache);
}
return obj;
}
};
template<typename T>
struct WrapNativeParentHelper<T, false >
{
static inline JSObject* Wrap(JSContext* cx, JSObject* scope, T* parent,
nsWrapperCache* cache)
{
JSObject* obj;
if (cache && (obj = cache->GetWrapper())) {
#ifdef DEBUG
NS_ASSERTION(WrapNativeISupportsParent(cx, scope, parent, cache) == obj,
"Unexpected object in nsWrapperCache");
#endif
return obj;
}
return WrapNativeISupportsParent(cx, scope, parent, cache);
}
};
template<typename T>
static inline JSObject*
WrapNativeParent(JSContext* cx, JSObject* scope, T* p, nsWrapperCache* cache)
{
if (!p) {
return scope;
}
return WrapNativeParentHelper<T>::Wrap(cx, scope, p, cache);
}
template<typename T>
static inline JSObject*
WrapNativeParent(JSContext* cx, JSObject* scope, const T& p)
{
return WrapNativeParent(cx, scope, GetParentPointer(p), GetWrapperCache(p));
}
static inline bool
InternJSString(JSContext* cx, jsid& id, const char* chars)
{
if (JSString *str = ::JS_InternString(cx, chars)) {
id = INTERNED_STRING_TO_JSID(cx, str);
return true;
}
return false;
}
// Spec needs a name property
template <typename Spec>
static bool
InitIds(JSContext* cx, Prefable<Spec>* prefableSpecs, jsid* ids)
{
MOZ_ASSERT(prefableSpecs);
MOZ_ASSERT(prefableSpecs->specs);
do {
// We ignore whether the set of ids is enabled and just intern all the IDs,
// because this is only done once per application runtime.
Spec* spec = prefableSpecs->specs;
do {
if (!InternJSString(cx, *ids, spec->name)) {
return false;
}
} while (++ids, (++spec)->name);
// We ran out of ids for that pref. Put a JSID_VOID in on the id
// corresponding to the list terminator for the pref.
*ids = JSID_VOID;
++ids;
} while ((++prefableSpecs)->specs);
return true;
}
JSBool
QueryInterface(JSContext* cx, unsigned argc, JS::Value* vp);
JSBool
ThrowingConstructor(JSContext* cx, unsigned argc, JS::Value* vp);
bool
GetPropertyOnPrototype(JSContext* cx, JSObject* proxy, jsid id, bool* found,
JS::Value* vp);
bool
HasPropertyOnPrototype(JSContext* cx, JSObject* proxy, DOMProxyHandler* handler,
jsid id);
template<class T>
class NonNull
{
public:
NonNull()
#ifdef DEBUG
: inited(false)
#endif
{}
operator T&() {
MOZ_ASSERT(inited);
MOZ_ASSERT(ptr, "NonNull<T> was set to null");
return *ptr;
}
operator const T&() const {
MOZ_ASSERT(inited);
MOZ_ASSERT(ptr, "NonNull<T> was set to null");
return *ptr;
}
void operator=(T* t) {
ptr = t;
MOZ_ASSERT(ptr);
#ifdef DEBUG
inited = true;
#endif
}
template<typename U>
void operator=(U* t) {
ptr = t->ToAStringPtr();
MOZ_ASSERT(ptr);
#ifdef DEBUG
inited = true;
#endif
}
T** Slot() {
#ifdef DEBUG
inited = true;
#endif
return &ptr;
}
protected:
T* ptr;
#ifdef DEBUG
bool inited;
#endif
};
template<class T>
class OwningNonNull
{
public:
OwningNonNull()
#ifdef DEBUG
: inited(false)
#endif
{}
operator T&() {
MOZ_ASSERT(inited);
MOZ_ASSERT(ptr, "OwningNonNull<T> was set to null");
return *ptr;
}
void operator=(T* t) {
init(t);
}
void operator=(const already_AddRefed<T>& t) {
init(t);
}
protected:
template<typename U>
void init(U t) {
ptr = t;
MOZ_ASSERT(ptr);
#ifdef DEBUG
inited = true;
#endif
}
nsRefPtr<T> ptr;
#ifdef DEBUG
bool inited;
#endif
};
// Helper for OwningNonNull
template <class T>
inline bool
WrapNewBindingObject(JSContext* cx, JSObject* scope, OwningNonNull<T>& value,
JS::Value* vp)
{
return WrapNewBindingObject(cx, scope, &static_cast<T&>(value), vp);
}
// A struct that has the same layout as an nsDependentString but much
// faster constructor and destructor behavior
struct FakeDependentString {
FakeDependentString() :
mFlags(nsDependentString::F_TERMINATED)
{
}
void SetData(const nsDependentString::char_type* aData,
nsDependentString::size_type aLength) {
MOZ_ASSERT(mFlags == nsDependentString::F_TERMINATED);
mData = aData;
mLength = aLength;
}
void Truncate() {
mData = nsDependentString::char_traits::sEmptyBuffer;
mLength = 0;
}
void SetNull() {
Truncate();
mFlags |= nsDependentString::F_VOIDED;
}
const nsAString* ToAStringPtr() const {
return reinterpret_cast<const nsDependentString*>(this);
}
nsAString* ToAStringPtr() {
return reinterpret_cast<nsDependentString*>(this);
}
operator const nsAString& () const {
return *reinterpret_cast<const nsDependentString*>(this);
}
private:
const nsDependentString::char_type* mData;
nsDependentString::size_type mLength;
uint32_t mFlags;
// A class to use for our static asserts to ensure our object layout
// matches that of nsDependentString.
class DependentStringAsserter;
friend class DependentStringAsserter;
class DepedentStringAsserter : public nsDependentString {
public:
static void StaticAsserts() {
MOZ_STATIC_ASSERT(sizeof(FakeDependentString) == sizeof(nsDependentString),
"Must have right object size");
MOZ_STATIC_ASSERT(offsetof(FakeDependentString, mData) ==
offsetof(DepedentStringAsserter, mData),
"Offset of mData should match");
MOZ_STATIC_ASSERT(offsetof(FakeDependentString, mLength) ==
offsetof(DepedentStringAsserter, mLength),
"Offset of mLength should match");
MOZ_STATIC_ASSERT(offsetof(FakeDependentString, mFlags) ==
offsetof(DepedentStringAsserter, mFlags),
"Offset of mFlags should match");
}
};
};
enum StringificationBehavior {
eStringify,
eEmpty,
eNull
};
// pval must not be null and must point to a rooted JS::Value
static inline bool
ConvertJSValueToString(JSContext* cx, const JS::Value& v, JS::Value* pval,
StringificationBehavior nullBehavior,
StringificationBehavior undefinedBehavior,
FakeDependentString& result)
{
JSString *s;
if (v.isString()) {
s = v.toString();
} else {
StringificationBehavior behavior;
if (v.isNull()) {
behavior = nullBehavior;
} else if (v.isUndefined()) {
behavior = undefinedBehavior;
} else {
behavior = eStringify;
}
if (behavior != eStringify) {
if (behavior == eEmpty) {
result.Truncate();
} else {
result.SetNull();
}
return true;
}
s = JS_ValueToString(cx, v);
if (!s) {
return false;
}
pval->setString(s); // Root the new string.
}
size_t len;
const jschar *chars = JS_GetStringCharsZAndLength(cx, s, &len);
if (!chars) {
return false;
}
result.SetData(chars, len);
return true;
}
// Class for representing optional arguments.
template<typename T>
class Optional {
public:
Optional() {}
bool WasPassed() const {
return !mImpl.empty();
}
void Construct() {
mImpl.construct();
}
template <class T1, class T2>
void Construct(const T1 &t1, const T2 &t2) {
mImpl.construct(t1, t2);
}
const T& Value() const {
return mImpl.ref();
}
T& Value() {
return mImpl.ref();
}
private:
// Forbid copy-construction and assignment
Optional(const Optional& other) MOZ_DELETE;
const Optional &operator=(const Optional &other) MOZ_DELETE;
Maybe<T> mImpl;
};
// Specialization for strings.
template<>
class Optional<nsAString> {
public:
Optional() : mPassed(false) {}
bool WasPassed() const {
return mPassed;
}
void operator=(const nsAString* str) {
MOZ_ASSERT(str);
mStr = str;
mPassed = true;
}
void operator=(const FakeDependentString* str) {
MOZ_ASSERT(str);
mStr = str->ToAStringPtr();
mPassed = true;
}
const nsAString& Value() const {
MOZ_ASSERT(WasPassed());
return *mStr;
}
private:
// Forbid copy-construction and assignment
Optional(const Optional& other) MOZ_DELETE;
const Optional &operator=(const Optional &other) MOZ_DELETE;
bool mPassed;
const nsAString* mStr;
};
// Class for representing sequences in arguments. We use an auto array that can
// hold 16 elements, to avoid having to allocate in common cases. This needs to
// be fallible because web content controls the length of the array, and can
// easily try to create very large lengths.
template<typename T>
class Sequence : public AutoFallibleTArray<T, 16>
{
public:
Sequence() : AutoFallibleTArray<T, 16>() {}
};
// Class for holding the type of members of a union. The union type has an enum
// to keep track of which of its UnionMembers has been constructed.
template<class T>
class UnionMember {
AlignedStorage2<T> storage;
public:
T& SetValue() {
new (storage.addr()) T();
return *storage.addr();
}
const T& Value() const {
return *storage.addr();
}
void Destroy() {
storage.addr()->~T();
}
};
inline bool
IdEquals(jsid id, const char* string)
{
return JSID_IS_STRING(id) &&
JS_FlatStringEqualsAscii(JSID_TO_FLAT_STRING(id), string);
}
inline bool
AddStringToIDVector(JSContext* cx, JS::AutoIdVector& vector, const char* name)
{
return vector.growBy(1) &&
InternJSString(cx, vector[vector.length() - 1], name);
}
// Implementation of the bits that XrayWrapper needs
/**
* This resolves indexed or named properties of obj.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
*/
bool
XrayResolveOwnProperty(JSContext* cx, JSObject* wrapper, JSObject* obj,
jsid id, bool set, JSPropertyDescriptor* desc);
/**
* This resolves operations, attributes and constants of the interfaces for obj.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
*/
bool
XrayResolveNativeProperty(JSContext* cx, JSObject* wrapper, JSObject* obj,
jsid id, JSPropertyDescriptor* desc);
/**
* This enumerates indexed or named properties of obj and operations, attributes
* and constants of the interfaces for obj.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
* flags are JSITER_* flags.
*/
bool
XrayEnumerateProperties(JSContext* cx, JSObject* wrapper, JSObject* obj,
unsigned flags, JS::AutoIdVector& props);
extern NativePropertyHooks sWorkerNativePropertyHooks;
// We use one constructor JSNative to represent all DOM interface objects (so
// we can easily detect when we need to wrap them in an Xray wrapper). We store
// the real JSNative in the mNative member of a JSNativeHolder in the
// CONSTRUCTOR_NATIVE_HOLDER_RESERVED_SLOT slot of the JSFunction object for a
// specific interface object. We also store the NativeProperties in the
// JSNativeHolder. The CONSTRUCTOR_XRAY_EXPANDO_SLOT is used to store the
// expando chain of the Xray for the interface object.
// Note that some interface objects are not yet a JSFunction but a normal
// JSObject with a DOMJSClass, those do not use these slots.
enum {
CONSTRUCTOR_NATIVE_HOLDER_RESERVED_SLOT = 0,
CONSTRUCTOR_XRAY_EXPANDO_SLOT
};
JSBool
Constructor(JSContext* cx, unsigned argc, JS::Value* vp);
inline bool
UseDOMXray(JSObject* obj)
{
const js::Class* clasp = js::GetObjectClass(obj);
return IsDOMClass(clasp) ||
IsDOMProxy(obj, clasp) ||
JS_IsNativeFunction(obj, Constructor) ||
IsDOMIfaceAndProtoClass(clasp);
}
#ifdef DEBUG
inline bool
HasConstructor(JSObject* obj)
{
return JS_IsNativeFunction(obj, Constructor) ||
js::GetObjectClass(obj)->construct;
}
#endif
// Transfer reference in ptr to smartPtr.
template<class T>
inline void
Take(nsRefPtr<T>& smartPtr, T* ptr)
{
smartPtr = dont_AddRef(ptr);
}
// Transfer ownership of ptr to smartPtr.
template<class T>
inline void
Take(nsAutoPtr<T>& smartPtr, T* ptr)
{
smartPtr = ptr;
}
inline void
MustInheritFromNonRefcountedDOMObject(NonRefcountedDOMObject*)
{
}
// Set the chain of expando objects for various consumers of the given object.
// For Paris Bindings only. See the relevant infrastructure in XrayWrapper.cpp.
JSObject* GetXrayExpandoChain(JSObject *obj);
void SetXrayExpandoChain(JSObject *obj, JSObject *chain);
struct MainThreadDictionaryBase
{
protected:
JSContext* ParseJSON(const nsAString& aJSON,
mozilla::Maybe<JSAutoRequest>& aAr,
mozilla::Maybe<JSAutoCompartment>& aAc,
JS::Value& aVal);
};
/**
* This creates a JSString containing the value that the toString function for
* obj should create according to the WebIDL specification, ignoring any
* modifications by script. The value is prefixed with pre and postfixed with
* post, unless this is called for an object that has a stringifier. It is
* specifically for use by Xray code.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
* pre is a string that should be prefixed to the value.
* post is a string that should be prefixed to the value.
* v contains the JSString for the value if the function returns true.
*/
bool
NativeToString(JSContext* cx, JSObject* wrapper, JSObject* obj, const char* pre,
const char* post, JS::Value* v);
} // namespace dom
} // namespace mozilla
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
#endif /* mozilla_dom_BindingUtils_h__ */