gecko-dev/security/certverifier/CTLogVerifier.cpp

374 строки
11 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "CTLogVerifier.h"
#include <stdint.h>
#include "CTSerialization.h"
#include "hasht.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/Assertions.h"
#include "pkix/pkixnss.h"
#include "pkixutil.h"
namespace mozilla { namespace ct {
using namespace mozilla::pkix;
// A TrustDomain used to extract the SCT log signature parameters
// given its subjectPublicKeyInfo.
// Only RSASSA-PKCS1v15 with SHA-256 and ECDSA (using the NIST P-256 curve)
// with SHA-256 are allowed.
// RSA keys must be at least 2048 bits.
// See See RFC 6962, Section 2.1.4.
class SignatureParamsTrustDomain final : public TrustDomain
{
public:
SignatureParamsTrustDomain()
: mSignatureAlgorithm(DigitallySigned::SignatureAlgorithm::Anonymous)
{
}
Result GetCertTrust(EndEntityOrCA, const CertPolicyId&, Input,
TrustLevel&) override
{
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
Result FindIssuer(Input, IssuerChecker&, Time) override
{
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
Result CheckRevocation(EndEntityOrCA, const CertID&, Time, Duration,
const Input*, const Input*) override
{
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
Result IsChainValid(const DERArray&, Time, const CertPolicyId&) override
{
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
Result DigestBuf(Input, DigestAlgorithm, uint8_t*, size_t) override
{
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
Result CheckSignatureDigestAlgorithm(DigestAlgorithm, EndEntityOrCA,
Time) override
{
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
Result CheckECDSACurveIsAcceptable(EndEntityOrCA, NamedCurve curve) override
{
MOZ_ASSERT(mSignatureAlgorithm ==
DigitallySigned::SignatureAlgorithm::Anonymous);
if (curve != NamedCurve::secp256r1) {
return Result::ERROR_UNSUPPORTED_ELLIPTIC_CURVE;
}
mSignatureAlgorithm = DigitallySigned::SignatureAlgorithm::ECDSA;
return Success;
}
Result VerifyECDSASignedDigest(const SignedDigest&, Input) override
{
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
Result CheckRSAPublicKeyModulusSizeInBits(EndEntityOrCA,
unsigned int modulusSizeInBits)
override
{
MOZ_ASSERT(mSignatureAlgorithm ==
DigitallySigned::SignatureAlgorithm::Anonymous);
// Require RSA keys of at least 2048 bits. See RFC 6962, Section 2.1.4.
if (modulusSizeInBits < 2048) {
return Result::ERROR_INADEQUATE_KEY_SIZE;
}
mSignatureAlgorithm = DigitallySigned::SignatureAlgorithm::RSA;
return Success;
}
Result VerifyRSAPKCS1SignedDigest(const SignedDigest&, Input) override
{
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
Result CheckValidityIsAcceptable(Time, Time, EndEntityOrCA,
KeyPurposeId) override
{
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
Result NetscapeStepUpMatchesServerAuth(Time, bool&) override
{
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
void NoteAuxiliaryExtension(AuxiliaryExtension, Input) override
{
}
DigitallySigned::SignatureAlgorithm mSignatureAlgorithm;
};
CTLogVerifier::CTLogVerifier()
: mSignatureAlgorithm(DigitallySigned::SignatureAlgorithm::Anonymous)
, mOperatorId(-1)
, mDisqualified(false)
, mDisqualificationTime(UINT64_MAX)
{
}
Result
CTLogVerifier::Init(Input subjectPublicKeyInfo,
CTLogOperatorId operatorId,
CTLogStatus logStatus,
uint64_t disqualificationTime)
{
switch (logStatus) {
case CTLogStatus::Included:
mDisqualified = false;
mDisqualificationTime = UINT64_MAX;
break;
case CTLogStatus::Disqualified:
mDisqualified = true;
mDisqualificationTime = disqualificationTime;
break;
case CTLogStatus::Unknown:
default:
MOZ_ASSERT_UNREACHABLE("Unsupported CTLogStatus");
return Result::FATAL_ERROR_INVALID_ARGS;
}
SignatureParamsTrustDomain trustDomain;
Result rv = CheckSubjectPublicKeyInfo(subjectPublicKeyInfo, trustDomain,
EndEntityOrCA::MustBeEndEntity);
if (rv != Success) {
return rv;
}
mSignatureAlgorithm = trustDomain.mSignatureAlgorithm;
rv = InputToBuffer(subjectPublicKeyInfo, mSubjectPublicKeyInfo);
if (rv != Success) {
return rv;
}
if (mSignatureAlgorithm == DigitallySigned::SignatureAlgorithm::ECDSA) {
SECItem spkiSECItem = {
siBuffer,
mSubjectPublicKeyInfo.begin(),
static_cast<unsigned int>(mSubjectPublicKeyInfo.length())
};
UniqueCERTSubjectPublicKeyInfo spki(
SECKEY_DecodeDERSubjectPublicKeyInfo(&spkiSECItem));
if (!spki) {
return MapPRErrorCodeToResult(PR_GetError());
}
mPublicECKey.reset(SECKEY_ExtractPublicKey(spki.get()));
if (!mPublicECKey) {
return MapPRErrorCodeToResult(PR_GetError());
}
UniquePK11SlotInfo slot(PK11_GetInternalSlot());
if (!slot) {
return MapPRErrorCodeToResult(PR_GetError());
}
CK_OBJECT_HANDLE handle = PK11_ImportPublicKey(slot.get(),
mPublicECKey.get(), false);
if (handle == CK_INVALID_HANDLE) {
return MapPRErrorCodeToResult(PR_GetError());
}
} else {
mPublicECKey.reset(nullptr);
}
if (!mKeyId.resizeUninitialized(SHA256_LENGTH)) {
return Result::FATAL_ERROR_NO_MEMORY;
}
rv = DigestBufNSS(subjectPublicKeyInfo, DigestAlgorithm::sha256,
mKeyId.begin(), mKeyId.length());
if (rv != Success) {
return rv;
}
mOperatorId = operatorId;
return Success;
}
Result
CTLogVerifier::Verify(const LogEntry& entry,
const SignedCertificateTimestamp& sct)
{
if (mKeyId.empty() || sct.logId != mKeyId) {
return Result::FATAL_ERROR_INVALID_ARGS;
}
if (!SignatureParametersMatch(sct.signature)) {
return Result::FATAL_ERROR_INVALID_ARGS;
}
Buffer serializedLogEntry;
Result rv = EncodeLogEntry(entry, serializedLogEntry);
if (rv != Success) {
return rv;
}
Input logEntryInput;
rv = BufferToInput(serializedLogEntry, logEntryInput);
if (rv != Success) {
return rv;
}
// sct.extensions may be empty. If it is, sctExtensionsInput will remain in
// its default state, which is valid but of length 0.
Input sctExtensionsInput;
if (sct.extensions.length() > 0) {
rv = sctExtensionsInput.Init(sct.extensions.begin(),
sct.extensions.length());
if (rv != Success) {
return rv;
}
}
Buffer serializedData;
rv = EncodeV1SCTSignedData(sct.timestamp, logEntryInput, sctExtensionsInput,
serializedData);
if (rv != Success) {
return rv;
}
return VerifySignature(serializedData, sct.signature.signatureData);
}
Result
CTLogVerifier::VerifySignedTreeHead(const SignedTreeHead& sth)
{
if (!SignatureParametersMatch(sth.signature)) {
return Result::FATAL_ERROR_INVALID_ARGS;
}
Buffer serializedData;
Result rv = EncodeTreeHeadSignature(sth, serializedData);
if (rv != Success) {
return rv;
}
return VerifySignature(serializedData, sth.signature.signatureData);
}
bool
CTLogVerifier::SignatureParametersMatch(const DigitallySigned& signature)
{
return signature.SignatureParametersMatch(
DigitallySigned::HashAlgorithm::SHA256, mSignatureAlgorithm);
}
static Result
FasterVerifyECDSASignedDigestNSS(const SignedDigest& sd,
UniqueSECKEYPublicKey& pubkey)
{
MOZ_ASSERT(pubkey);
if (!pubkey) {
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
// The signature is encoded as a DER SEQUENCE of two INTEGERs. PK11_Verify
// expects the signature as only the two integers r and s (so no encoding -
// just two series of bytes each half as long as SECKEY_SignatureLen(pubkey)).
// DSAU_DecodeDerSigToLen converts from the former format to the latter.
SECItem derSignatureSECItem(UnsafeMapInputToSECItem(sd.signature));
size_t signatureLen = SECKEY_SignatureLen(pubkey.get());
if (signatureLen == 0) {
return MapPRErrorCodeToResult(PR_GetError());
}
UniqueSECItem signatureSECItem(DSAU_DecodeDerSigToLen(&derSignatureSECItem,
signatureLen));
if (!signatureSECItem) {
return MapPRErrorCodeToResult(PR_GetError());
}
SECItem digestSECItem(UnsafeMapInputToSECItem(sd.digest));
SECStatus srv = PK11_Verify(pubkey.get(), signatureSECItem.get(),
&digestSECItem, nullptr);
if (srv != SECSuccess) {
return MapPRErrorCodeToResult(PR_GetError());
}
return Success;
}
Result
CTLogVerifier::VerifySignature(Input data, Input signature)
{
uint8_t digest[SHA256_LENGTH];
Result rv = DigestBufNSS(data, DigestAlgorithm::sha256, digest,
ArrayLength(digest));
if (rv != Success) {
return rv;
}
SignedDigest signedDigest;
signedDigest.digestAlgorithm = DigestAlgorithm::sha256;
rv = signedDigest.digest.Init(digest, ArrayLength(digest));
if (rv != Success) {
return rv;
}
rv = signedDigest.signature.Init(signature);
if (rv != Success) {
return rv;
}
Input spki;
rv = BufferToInput(mSubjectPublicKeyInfo, spki);
if (rv != Success) {
return rv;
}
switch (mSignatureAlgorithm) {
case DigitallySigned::SignatureAlgorithm::RSA:
rv = VerifyRSAPKCS1SignedDigestNSS(signedDigest, spki, nullptr);
break;
case DigitallySigned::SignatureAlgorithm::ECDSA:
rv = FasterVerifyECDSASignedDigestNSS(signedDigest, mPublicECKey);
break;
// We do not expect new values added to this enum any time soon,
// so just listing all the available ones seems to be the easiest way
// to suppress warning C4061 on MSVC (which expects all values of the
// enum to be explicitly handled).
case DigitallySigned::SignatureAlgorithm::Anonymous:
case DigitallySigned::SignatureAlgorithm::DSA:
default:
MOZ_ASSERT_UNREACHABLE("RSA/ECDSA expected");
return Result::FATAL_ERROR_INVALID_ARGS;
}
if (rv != Success) {
if (IsFatalError(rv)) {
return rv;
}
// If the error is non-fatal, we assume the signature was invalid.
return Result::ERROR_BAD_SIGNATURE;
}
return Success;
}
Result
CTLogVerifier::VerifySignature(const Buffer& data, const Buffer& signature)
{
Input dataInput;
Result rv = BufferToInput(data, dataInput);
if (rv != Success) {
return rv;
}
Input signatureInput;
rv = BufferToInput(signature, signatureInput);
if (rv != Success) {
return rv;
}
return VerifySignature(dataInput, signatureInput);
}
} } // namespace mozilla::ct