gecko-dev/ipc/mscom/MainThreadHandoff.cpp

606 строки
17 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/mscom/MainThreadHandoff.h"
#include "mozilla/Attributes.h"
#include "mozilla/Move.h"
#include "mozilla/mscom/AgileReference.h"
#include "mozilla/mscom/InterceptorLog.h"
#include "mozilla/mscom/Registration.h"
#include "mozilla/mscom/Utils.h"
#include "mozilla/Assertions.h"
#include "mozilla/DebugOnly.h"
#include "nsThreadUtils.h"
#include "nsProxyRelease.h"
using mozilla::DebugOnly;
using mozilla::mscom::AgileReference;
namespace {
class MOZ_NON_TEMPORARY_CLASS InParamWalker : private ICallFrameWalker
{
public:
InParamWalker()
: mPreHandoff(true)
{
}
void SetHandoffDone()
{
mPreHandoff = false;
mAgileRefsItr = mAgileRefs.begin();
}
HRESULT Walk(ICallFrame* aFrame)
{
MOZ_ASSERT(aFrame);
if (!aFrame) {
return E_INVALIDARG;
}
return aFrame->WalkFrame(CALLFRAME_WALK_IN, this);
}
private:
// IUnknown
STDMETHODIMP QueryInterface(REFIID aIid, void** aOutInterface) override
{
if (!aOutInterface) {
return E_INVALIDARG;
}
*aOutInterface = nullptr;
if (aIid == IID_IUnknown || aIid == IID_ICallFrameWalker) {
*aOutInterface = static_cast<ICallFrameWalker*>(this);
return S_OK;
}
return E_NOINTERFACE;
}
STDMETHODIMP_(ULONG) AddRef() override
{
return 2;
}
STDMETHODIMP_(ULONG) Release() override
{
return 1;
}
// ICallFrameWalker
STDMETHODIMP OnWalkInterface(REFIID aIid, PVOID* aInterface, BOOL aIn,
BOOL aOut) override
{
MOZ_ASSERT(aIn);
if (!aIn) {
return E_UNEXPECTED;
}
IUnknown* origInterface = static_cast<IUnknown*>(*aInterface);
if (!origInterface) {
// Nothing to do
return S_OK;
}
if (mPreHandoff) {
mAgileRefs.AppendElement(AgileReference(aIid, origInterface));
return S_OK;
}
MOZ_ASSERT(mAgileRefsItr != mAgileRefs.end());
if (mAgileRefsItr == mAgileRefs.end()) {
return E_UNEXPECTED;
}
HRESULT hr = mAgileRefsItr->Resolve(aIid, aInterface);
MOZ_ASSERT(SUCCEEDED(hr));
if (SUCCEEDED(hr)) {
++mAgileRefsItr;
}
return hr;
}
InParamWalker(const InParamWalker&) = delete;
InParamWalker(InParamWalker&&) = delete;
InParamWalker& operator=(const InParamWalker&) = delete;
InParamWalker& operator=(InParamWalker&&) = delete;
private:
bool mPreHandoff;
AutoTArray<AgileReference, 1> mAgileRefs;
nsTArray<AgileReference>::iterator mAgileRefsItr;
};
class HandoffRunnable : public mozilla::Runnable
{
public:
explicit HandoffRunnable(ICallFrame* aCallFrame, IUnknown* aTargetInterface)
: Runnable("HandoffRunnable")
, mCallFrame(aCallFrame)
, mTargetInterface(aTargetInterface)
, mResult(E_UNEXPECTED)
{
DebugOnly<HRESULT> hr = mInParamWalker.Walk(aCallFrame);
MOZ_ASSERT(SUCCEEDED(hr));
}
NS_IMETHOD Run() override
{
mInParamWalker.SetHandoffDone();
// We declare hr a DebugOnly because if mInParamWalker.Walk() fails, then
// mCallFrame->Invoke will fail anyway.
DebugOnly<HRESULT> hr = mInParamWalker.Walk(mCallFrame);
MOZ_ASSERT(SUCCEEDED(hr));
mResult = mCallFrame->Invoke(mTargetInterface);
return NS_OK;
}
HRESULT GetResult() const
{
return mResult;
}
private:
ICallFrame* mCallFrame;
InParamWalker mInParamWalker;
IUnknown* mTargetInterface;
HRESULT mResult;
};
} // anonymous namespace
namespace mozilla {
namespace mscom {
/* static */ HRESULT
MainThreadHandoff::Create(IHandlerProvider* aHandlerProvider,
IInterceptorSink** aOutput)
{
RefPtr<MainThreadHandoff> handoff(new MainThreadHandoff(aHandlerProvider));
return handoff->QueryInterface(IID_IInterceptorSink, (void**) aOutput);
}
MainThreadHandoff::MainThreadHandoff(IHandlerProvider* aHandlerProvider)
: mRefCnt(0)
, mHandlerProvider(aHandlerProvider)
{
}
MainThreadHandoff::~MainThreadHandoff()
{
MOZ_ASSERT(NS_IsMainThread());
}
HRESULT
MainThreadHandoff::QueryInterface(REFIID riid, void** ppv)
{
IUnknown* punk = nullptr;
if (!ppv) {
return E_INVALIDARG;
}
if (riid == IID_IUnknown || riid == IID_ICallFrameEvents ||
riid == IID_IInterceptorSink) {
punk = static_cast<IInterceptorSink*>(this);
} else if (riid == IID_ICallFrameWalker) {
punk = static_cast<ICallFrameWalker*>(this);
}
*ppv = punk;
if (!punk) {
return E_NOINTERFACE;
}
punk->AddRef();
return S_OK;
}
ULONG
MainThreadHandoff::AddRef()
{
return (ULONG) InterlockedIncrement((LONG*)&mRefCnt);
}
ULONG
MainThreadHandoff::Release()
{
ULONG newRefCnt = (ULONG) InterlockedDecrement((LONG*)&mRefCnt);
if (newRefCnt == 0) {
// It is possible for the last Release() call to happen off-main-thread.
// If so, we need to dispatch an event to delete ourselves.
if (NS_IsMainThread()) {
delete this;
} else {
// We need to delete this object on the main thread, but we aren't on the
// main thread right now, so we send a reference to ourselves to the main
// thread to be re-released there.
RefPtr<MainThreadHandoff> self = this;
NS_ReleaseOnMainThread(
"MainThreadHandoff", self.forget());
}
}
return newRefCnt;
}
HRESULT
MainThreadHandoff::FixIServiceProvider(ICallFrame* aFrame)
{
MOZ_ASSERT(aFrame);
CALLFRAMEPARAMINFO iidOutParamInfo;
HRESULT hr = aFrame->GetParamInfo(1, &iidOutParamInfo);
if (FAILED(hr)) {
return hr;
}
VARIANT varIfaceOut;
hr = aFrame->GetParam(2, &varIfaceOut);
if (FAILED(hr)) {
return hr;
}
MOZ_ASSERT(varIfaceOut.vt == (VT_UNKNOWN | VT_BYREF));
if (varIfaceOut.vt != (VT_UNKNOWN | VT_BYREF)) {
return DISP_E_BADVARTYPE;
}
IID** iidOutParam = reinterpret_cast<IID**>(
static_cast<BYTE*>(aFrame->GetStackLocation()) +
iidOutParamInfo.stackOffset);
return OnWalkInterface(**iidOutParam,
reinterpret_cast<void**>(varIfaceOut.ppunkVal), FALSE,
TRUE);
}
HRESULT
MainThreadHandoff::OnCall(ICallFrame* aFrame)
{
// (1) Get info about the method call
HRESULT hr;
IID iid;
ULONG method;
hr = aFrame->GetIIDAndMethod(&iid, &method);
if (FAILED(hr)) {
return hr;
}
RefPtr<IInterceptor> interceptor;
hr = mInterceptor->Resolve(IID_IInterceptor,
(void**)getter_AddRefs(interceptor));
if (FAILED(hr)) {
return hr;
}
InterceptorTargetPtr<IUnknown> targetInterface;
hr = interceptor->GetTargetForIID(iid, targetInterface);
if (FAILED(hr)) {
return hr;
}
// (2) Execute the method call synchronously on the main thread
RefPtr<HandoffRunnable> handoffInfo(new HandoffRunnable(aFrame,
targetInterface.get()));
MainThreadInvoker invoker;
if (!invoker.Invoke(do_AddRef(handoffInfo))) {
MOZ_ASSERT(false);
return E_UNEXPECTED;
}
hr = handoffInfo->GetResult();
MOZ_ASSERT(SUCCEEDED(hr));
if (FAILED(hr)) {
return hr;
}
// (3) Log *before* wrapping outputs so that the log will contain pointers to
// the true target interface, not the wrapped ones.
InterceptorLog::Event(aFrame, targetInterface.get());
// (4) Scan the function call for outparams that contain interface pointers.
// Those will need to be wrapped with MainThreadHandoff so that they too will
// be exeuted on the main thread.
hr = aFrame->GetReturnValue();
if (FAILED(hr)) {
// If the call resulted in an error then there's not going to be anything
// that needs to be wrapped.
return S_OK;
}
if (iid == IID_IServiceProvider) {
// The only possible method index for IID_IServiceProvider is for
// QueryService at index 3; its other methods are inherited from IUnknown
// and are not processed here.
MOZ_ASSERT(method == 3);
// (5) If our interface is IServiceProvider, we need to manually ensure
// that the correct IID is provided for the interface outparam in
// IServiceProvider::QueryService.
hr = FixIServiceProvider(aFrame);
if (FAILED(hr)) {
return hr;
}
} else if (const ArrayData* arrayData = FindArrayData(iid, method)) {
// (6) Unfortunately ICallFrame::WalkFrame does not correctly handle array
// outparams. Instead, we find out whether anybody has called
// mscom::RegisterArrayData to supply array parameter information and use it
// if available. This is a terrible hack, but it works for the short term. In
// the longer term we want to be able to use COM proxy/stub metadata to
// resolve array information for us.
hr = FixArrayElements(aFrame, *arrayData);
if (FAILED(hr)) {
return hr;
}
} else {
// (7) Scan the outputs looking for any outparam interfaces that need wrapping.
// NB: WalkFrame does not correctly handle array outparams. It processes the
// first element of an array but not the remaining elements (if any).
hr = aFrame->WalkFrame(CALLFRAME_WALK_OUT, this);
if (FAILED(hr)) {
return hr;
}
}
return S_OK;
}
static PVOID
ResolveArrayPtr(VARIANT& aVariant)
{
if (!(aVariant.vt & VT_BYREF)) {
return nullptr;
}
return aVariant.byref;
}
static PVOID*
ResolveInterfacePtr(PVOID aArrayPtr, VARTYPE aVartype, LONG aIndex)
{
if (aVartype != (VT_VARIANT | VT_BYREF)) {
IUnknown** ifaceArray = reinterpret_cast<IUnknown**>(aArrayPtr);
return reinterpret_cast<PVOID*>(&ifaceArray[aIndex]);
}
VARIANT* variantArray = reinterpret_cast<VARIANT*>(aArrayPtr);
VARIANT& element = variantArray[aIndex];
return &element.byref;
}
HRESULT
MainThreadHandoff::FixArrayElements(ICallFrame* aFrame,
const ArrayData& aArrayData)
{
// Extract the array length
VARIANT paramVal;
VariantInit(&paramVal);
HRESULT hr = aFrame->GetParam(aArrayData.mLengthParamIndex, &paramVal);
MOZ_ASSERT(SUCCEEDED(hr) &&
(paramVal.vt == (VT_I4 | VT_BYREF) ||
paramVal.vt == (VT_UI4 | VT_BYREF)));
if (FAILED(hr) || (paramVal.vt != (VT_I4 | VT_BYREF) &&
paramVal.vt != (VT_UI4 | VT_BYREF))) {
return hr;
}
const LONG arrayLength = *(paramVal.plVal);
if (!arrayLength) {
// Nothing to do
return S_OK;
}
// Extract the array parameter
VariantInit(&paramVal);
PVOID arrayPtr = nullptr;
hr = aFrame->GetParam(aArrayData.mArrayParamIndex, &paramVal);
if (hr == DISP_E_BADVARTYPE) {
// ICallFrame::GetParam is not able to coerce the param into a VARIANT.
// That's ok, we can try to do it ourselves.
CALLFRAMEPARAMINFO paramInfo;
hr = aFrame->GetParamInfo(aArrayData.mArrayParamIndex, &paramInfo);
if (FAILED(hr)) {
return hr;
}
PVOID stackBase = aFrame->GetStackLocation();
if (aArrayData.mFlag == ArrayData::Flag::eAllocatedByServer) {
// In order for the server to allocate the array's buffer and store it in
// an outparam, the parameter must be typed as Type***. Since the base
// of the array is Type*, we must dereference twice.
arrayPtr = **reinterpret_cast<PVOID**>(reinterpret_cast<PBYTE>(stackBase) +
paramInfo.stackOffset);
} else {
// We dereference because we need to obtain the value of a parameter
// from a stack offset. This pointer is the base of the array.
arrayPtr = *reinterpret_cast<PVOID*>(reinterpret_cast<PBYTE>(stackBase) +
paramInfo.stackOffset);
}
} else if (FAILED(hr)) {
return hr;
} else {
arrayPtr = ResolveArrayPtr(paramVal);
}
MOZ_ASSERT(arrayPtr);
if (!arrayPtr) {
return DISP_E_BADVARTYPE;
}
// We walk the elements of the array and invoke OnWalkInterface to wrap each
// one, just as ICallFrame::WalkFrame would do.
for (LONG index = 0; index < arrayLength; ++index) {
hr = OnWalkInterface(aArrayData.mArrayParamIid,
ResolveInterfacePtr(arrayPtr, paramVal.vt, index),
FALSE, TRUE);
if (FAILED(hr)) {
return hr;
}
}
return S_OK;
}
HRESULT
MainThreadHandoff::SetInterceptor(IWeakReference* aInterceptor)
{
mInterceptor = aInterceptor;
return S_OK;
}
HRESULT
Bug 1303060: Changes to a11y to enable the serving of a COM handler; r=tbsaunde MozReview-Commit-ID: GTQF3x1pBtX A general outline of the COM handler (a.k.a. the "smart proxy"): COM handlers are pieces of code that are loaded by the COM runtime along with a proxy and are layered above that proxy. This enables the COM handler to interpose itself between the caller and the proxy, thus providing the opportunity for the handler to manipulate an interface's method calls before those calls reach the proxy. Handlers are regular COM components that live in DLLs and are declared in the Windows registry. In order to allow for the specifying of a handler (and an optional payload to be sent with the proxy), the mscom library allows its clients to specify an implementation of the IHandlerProvider interface. IHandlerProvider consists of 5 functions: * GetHandler returns the CLSID of the component that should be loaded into the COM client's process. If GetHandler returns a failure code, then no handler is loaded. * GetHandlerPayloadSize and WriteHandlerPayload are for obtaining the payload data. These calls are made on a background thread but need to do their work on the main thread. We declare the payload struct in IDL. MIDL generates two functions, IA2Payload_Encode and IA2Payload_Decode, which are used by mscom::StructToStream to read and write that struct to and from buffers. * The a11y payload struct also includes an interface, IGeckoBackChannel, that allows the handler to communicate directly with Gecko. IGeckoBackChannel currently provides two methods: one to allow the handler to request fresh cache information, and the other to provide Gecko with its IHandlerControl interface. * MarshalAs accepts an IID that specifies the interface that is about to be proxied. We may want to send a more sophisticated proxy than the one that is requested. The desired IID is returned by this function. In the case of a11y interfaces, we should always return IAccessible2_3 if we are asked for one of its parent interfaces. This allows us to eliminate round trips to resolve more sophisticated interfaces later on. * NewInstance, which is needed to ensure that all descendent proxies are also imbued with the same handler code. The main focus of this patch is as follows: 1. Provide an implementation of the IHandlerProvider interface; 2. Populate the handler payload (ie, the cache) with data; 3. Modify CreateHolderFromAccessible to specify the HandlerPayload object; 4. Receive the IHandlerControl interface from the handler DLL and move it into the chrome process. Some more information about IHandlerControl: There is one IHandlerControl per handler DLL instance. It is the interface that we call in Gecko when we need to dispatch an event to the handler. In order to ensure that events are dispatched in the correct order, we need to dispatch those events from the chrome main thread so that they occur in sequential order with calls to NotifyWinEvent. --HG-- extra : rebase_source : acb44dead7cc5488424720e1bf58862b7b30374f
2017-04-05 00:23:55 +03:00
MainThreadHandoff::GetHandler(NotNull<CLSID*> aHandlerClsid)
{
if (!mHandlerProvider) {
return E_NOTIMPL;
}
return mHandlerProvider->GetHandler(aHandlerClsid);
}
HRESULT
Bug 1303060: Changes to a11y to enable the serving of a COM handler; r=tbsaunde MozReview-Commit-ID: GTQF3x1pBtX A general outline of the COM handler (a.k.a. the "smart proxy"): COM handlers are pieces of code that are loaded by the COM runtime along with a proxy and are layered above that proxy. This enables the COM handler to interpose itself between the caller and the proxy, thus providing the opportunity for the handler to manipulate an interface's method calls before those calls reach the proxy. Handlers are regular COM components that live in DLLs and are declared in the Windows registry. In order to allow for the specifying of a handler (and an optional payload to be sent with the proxy), the mscom library allows its clients to specify an implementation of the IHandlerProvider interface. IHandlerProvider consists of 5 functions: * GetHandler returns the CLSID of the component that should be loaded into the COM client's process. If GetHandler returns a failure code, then no handler is loaded. * GetHandlerPayloadSize and WriteHandlerPayload are for obtaining the payload data. These calls are made on a background thread but need to do their work on the main thread. We declare the payload struct in IDL. MIDL generates two functions, IA2Payload_Encode and IA2Payload_Decode, which are used by mscom::StructToStream to read and write that struct to and from buffers. * The a11y payload struct also includes an interface, IGeckoBackChannel, that allows the handler to communicate directly with Gecko. IGeckoBackChannel currently provides two methods: one to allow the handler to request fresh cache information, and the other to provide Gecko with its IHandlerControl interface. * MarshalAs accepts an IID that specifies the interface that is about to be proxied. We may want to send a more sophisticated proxy than the one that is requested. The desired IID is returned by this function. In the case of a11y interfaces, we should always return IAccessible2_3 if we are asked for one of its parent interfaces. This allows us to eliminate round trips to resolve more sophisticated interfaces later on. * NewInstance, which is needed to ensure that all descendent proxies are also imbued with the same handler code. The main focus of this patch is as follows: 1. Provide an implementation of the IHandlerProvider interface; 2. Populate the handler payload (ie, the cache) with data; 3. Modify CreateHolderFromAccessible to specify the HandlerPayload object; 4. Receive the IHandlerControl interface from the handler DLL and move it into the chrome process. Some more information about IHandlerControl: There is one IHandlerControl per handler DLL instance. It is the interface that we call in Gecko when we need to dispatch an event to the handler. In order to ensure that events are dispatched in the correct order, we need to dispatch those events from the chrome main thread so that they occur in sequential order with calls to NotifyWinEvent. --HG-- extra : rebase_source : acb44dead7cc5488424720e1bf58862b7b30374f
2017-04-05 00:23:55 +03:00
MainThreadHandoff::GetHandlerPayloadSize(NotNull<DWORD*> aOutPayloadSize)
{
if (!mHandlerProvider) {
return E_NOTIMPL;
}
return mHandlerProvider->GetHandlerPayloadSize(aOutPayloadSize);
}
HRESULT
Bug 1303060: Changes to a11y to enable the serving of a COM handler; r=tbsaunde MozReview-Commit-ID: GTQF3x1pBtX A general outline of the COM handler (a.k.a. the "smart proxy"): COM handlers are pieces of code that are loaded by the COM runtime along with a proxy and are layered above that proxy. This enables the COM handler to interpose itself between the caller and the proxy, thus providing the opportunity for the handler to manipulate an interface's method calls before those calls reach the proxy. Handlers are regular COM components that live in DLLs and are declared in the Windows registry. In order to allow for the specifying of a handler (and an optional payload to be sent with the proxy), the mscom library allows its clients to specify an implementation of the IHandlerProvider interface. IHandlerProvider consists of 5 functions: * GetHandler returns the CLSID of the component that should be loaded into the COM client's process. If GetHandler returns a failure code, then no handler is loaded. * GetHandlerPayloadSize and WriteHandlerPayload are for obtaining the payload data. These calls are made on a background thread but need to do their work on the main thread. We declare the payload struct in IDL. MIDL generates two functions, IA2Payload_Encode and IA2Payload_Decode, which are used by mscom::StructToStream to read and write that struct to and from buffers. * The a11y payload struct also includes an interface, IGeckoBackChannel, that allows the handler to communicate directly with Gecko. IGeckoBackChannel currently provides two methods: one to allow the handler to request fresh cache information, and the other to provide Gecko with its IHandlerControl interface. * MarshalAs accepts an IID that specifies the interface that is about to be proxied. We may want to send a more sophisticated proxy than the one that is requested. The desired IID is returned by this function. In the case of a11y interfaces, we should always return IAccessible2_3 if we are asked for one of its parent interfaces. This allows us to eliminate round trips to resolve more sophisticated interfaces later on. * NewInstance, which is needed to ensure that all descendent proxies are also imbued with the same handler code. The main focus of this patch is as follows: 1. Provide an implementation of the IHandlerProvider interface; 2. Populate the handler payload (ie, the cache) with data; 3. Modify CreateHolderFromAccessible to specify the HandlerPayload object; 4. Receive the IHandlerControl interface from the handler DLL and move it into the chrome process. Some more information about IHandlerControl: There is one IHandlerControl per handler DLL instance. It is the interface that we call in Gecko when we need to dispatch an event to the handler. In order to ensure that events are dispatched in the correct order, we need to dispatch those events from the chrome main thread so that they occur in sequential order with calls to NotifyWinEvent. --HG-- extra : rebase_source : acb44dead7cc5488424720e1bf58862b7b30374f
2017-04-05 00:23:55 +03:00
MainThreadHandoff::WriteHandlerPayload(NotNull<IStream*> aStream)
{
if (!mHandlerProvider) {
return E_NOTIMPL;
}
return mHandlerProvider->WriteHandlerPayload(aStream);
}
REFIID
MainThreadHandoff::MarshalAs(REFIID aIid)
{
if (!mHandlerProvider) {
return aIid;
}
return mHandlerProvider->MarshalAs(aIid);
}
HRESULT
MainThreadHandoff::OnWalkInterface(REFIID aIid, PVOID* aInterface,
BOOL aIsInParam, BOOL aIsOutParam)
{
MOZ_ASSERT(aInterface && aIsOutParam);
if (!aInterface || !aIsOutParam) {
return E_UNEXPECTED;
}
// Adopt aInterface for the time being. We can't touch its refcount off
// the main thread, so we'll use STAUniquePtr so that we can safely
// Release() it if necessary.
STAUniquePtr<IUnknown> origInterface(static_cast<IUnknown*>(*aInterface));
*aInterface = nullptr;
if (!origInterface) {
// Nothing to wrap.
return S_OK;
}
// First make sure that aInterface isn't a proxy - we don't want to wrap
// those.
if (IsProxy(origInterface.get())) {
*aInterface = origInterface.release();
return S_OK;
}
RefPtr<IInterceptor> interceptor;
HRESULT hr = mInterceptor->Resolve(IID_IInterceptor,
(void**) getter_AddRefs(interceptor));
MOZ_ASSERT(SUCCEEDED(hr));
if (FAILED(hr)) {
return hr;
}
// Now make sure that origInterface isn't referring to the same IUnknown
// as an interface that we are already managing. We can determine this by
// querying (NOT casting!) both objects for IUnknown and then comparing the
// resulting pointers.
InterceptorTargetPtr<IUnknown> existingTarget;
hr = interceptor->GetTargetForIID(aIid, existingTarget);
if (SUCCEEDED(hr)) {
// We'll start by checking the raw pointers. If they are equal, then the
// objects are equal. OTOH, if they differ, we must compare their
// IUnknown pointers to know for sure.
bool areTargetsEqual = existingTarget.get() == origInterface.get();
if (!areTargetsEqual) {
// This check must be done on the main thread
auto checkFn = [&existingTarget, &origInterface, &areTargetsEqual]() -> void {
RefPtr<IUnknown> unkExisting;
HRESULT hrExisting =
existingTarget->QueryInterface(IID_IUnknown,
(void**)getter_AddRefs(unkExisting));
RefPtr<IUnknown> unkNew;
HRESULT hrNew =
origInterface->QueryInterface(IID_IUnknown,
(void**)getter_AddRefs(unkNew));
areTargetsEqual = SUCCEEDED(hrExisting) && SUCCEEDED(hrNew) &&
unkExisting == unkNew;
};
MainThreadInvoker invoker;
invoker.Invoke(NS_NewRunnableFunction("MainThreadHandoff::OnWalkInterface", checkFn));
}
if (areTargetsEqual) {
// The existing interface and the new interface both belong to the same
// target object. Let's just use the existing one.
void* intercepted = nullptr;
hr = interceptor->GetInterceptorForIID(aIid, &intercepted);
MOZ_ASSERT(SUCCEEDED(hr));
if (FAILED(hr)) {
return hr;
}
*aInterface = intercepted;
return S_OK;
}
}
RefPtr<IHandlerProvider> payload;
if (mHandlerProvider) {
hr = mHandlerProvider->NewInstance(aIid,
ToInterceptorTargetPtr(origInterface),
Bug 1303060: Changes to a11y to enable the serving of a COM handler; r=tbsaunde MozReview-Commit-ID: GTQF3x1pBtX A general outline of the COM handler (a.k.a. the "smart proxy"): COM handlers are pieces of code that are loaded by the COM runtime along with a proxy and are layered above that proxy. This enables the COM handler to interpose itself between the caller and the proxy, thus providing the opportunity for the handler to manipulate an interface's method calls before those calls reach the proxy. Handlers are regular COM components that live in DLLs and are declared in the Windows registry. In order to allow for the specifying of a handler (and an optional payload to be sent with the proxy), the mscom library allows its clients to specify an implementation of the IHandlerProvider interface. IHandlerProvider consists of 5 functions: * GetHandler returns the CLSID of the component that should be loaded into the COM client's process. If GetHandler returns a failure code, then no handler is loaded. * GetHandlerPayloadSize and WriteHandlerPayload are for obtaining the payload data. These calls are made on a background thread but need to do their work on the main thread. We declare the payload struct in IDL. MIDL generates two functions, IA2Payload_Encode and IA2Payload_Decode, which are used by mscom::StructToStream to read and write that struct to and from buffers. * The a11y payload struct also includes an interface, IGeckoBackChannel, that allows the handler to communicate directly with Gecko. IGeckoBackChannel currently provides two methods: one to allow the handler to request fresh cache information, and the other to provide Gecko with its IHandlerControl interface. * MarshalAs accepts an IID that specifies the interface that is about to be proxied. We may want to send a more sophisticated proxy than the one that is requested. The desired IID is returned by this function. In the case of a11y interfaces, we should always return IAccessible2_3 if we are asked for one of its parent interfaces. This allows us to eliminate round trips to resolve more sophisticated interfaces later on. * NewInstance, which is needed to ensure that all descendent proxies are also imbued with the same handler code. The main focus of this patch is as follows: 1. Provide an implementation of the IHandlerProvider interface; 2. Populate the handler payload (ie, the cache) with data; 3. Modify CreateHolderFromAccessible to specify the HandlerPayload object; 4. Receive the IHandlerControl interface from the handler DLL and move it into the chrome process. Some more information about IHandlerControl: There is one IHandlerControl per handler DLL instance. It is the interface that we call in Gecko when we need to dispatch an event to the handler. In order to ensure that events are dispatched in the correct order, we need to dispatch those events from the chrome main thread so that they occur in sequential order with calls to NotifyWinEvent. --HG-- extra : rebase_source : acb44dead7cc5488424720e1bf58862b7b30374f
2017-04-05 00:23:55 +03:00
WrapNotNull((IHandlerProvider**)getter_AddRefs(payload)));
MOZ_ASSERT(SUCCEEDED(hr));
if (FAILED(hr)) {
return hr;
}
}
// Now create a new MainThreadHandoff wrapper...
RefPtr<IInterceptorSink> handoff;
hr = MainThreadHandoff::Create(payload, getter_AddRefs(handoff));
MOZ_ASSERT(SUCCEEDED(hr));
if (FAILED(hr)) {
return hr;
}
REFIID interceptorIid = payload ? payload->MarshalAs(aIid) : aIid;
RefPtr<IUnknown> wrapped;
hr = Interceptor::Create(Move(origInterface), handoff, interceptorIid,
getter_AddRefs(wrapped));
MOZ_ASSERT(SUCCEEDED(hr));
if (FAILED(hr)) {
return hr;
}
// And replace the original interface pointer with the wrapped one.
wrapped.forget(reinterpret_cast<IUnknown**>(aInterface));
return S_OK;
}
} // namespace mscom
} // namespace mozilla