gecko-dev/image/imgFrame.cpp

1063 строки
28 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
2012-05-21 15:12:37 +04:00
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "imgFrame.h"
#include "ImageRegion.h"
#include "ShutdownTracker.h"
#include "prenv.h"
#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "gfxUtils.h"
#include "gfxAlphaRecovery.h"
static bool gDisableOptimize = false;
#include "GeckoProfiler.h"
#include "mozilla/Likely.h"
#include "MainThreadUtils.h"
#include "mozilla/MemoryReporting.h"
#include "nsMargin.h"
#include "nsThreadUtils.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/gfx/Tools.h"
namespace mozilla {
using namespace gfx;
namespace image {
static UserDataKey kVolatileBuffer;
static void
VolatileBufferRelease(void* vbuf)
{
delete static_cast<VolatileBufferPtr<unsigned char>*>(vbuf);
}
static int32_t
VolatileSurfaceStride(const IntSize& size, SurfaceFormat format)
{
// Stride must be a multiple of four or cairo will complain.
return (size.width * BytesPerPixel(format) + 0x3) & ~0x3;
}
static already_AddRefed<DataSourceSurface>
CreateLockedSurface(VolatileBuffer* vbuf,
const IntSize& size,
SurfaceFormat format)
{
VolatileBufferPtr<unsigned char>* vbufptr =
new VolatileBufferPtr<unsigned char>(vbuf);
MOZ_ASSERT(!vbufptr->WasBufferPurged(), "Expected image data!");
int32_t stride = VolatileSurfaceStride(size, format);
RefPtr<DataSourceSurface> surf =
Factory::CreateWrappingDataSourceSurface(*vbufptr, stride, size, format);
if (!surf) {
delete vbufptr;
return nullptr;
}
surf->AddUserData(&kVolatileBuffer, vbufptr, VolatileBufferRelease);
return surf.forget();
}
static already_AddRefed<VolatileBuffer>
AllocateBufferForImage(const IntSize& size, SurfaceFormat format)
{
int32_t stride = VolatileSurfaceStride(size, format);
RefPtr<VolatileBuffer> buf = new VolatileBuffer();
if (buf->Init(stride * size.height,
1 << gfxAlphaRecovery::GoodAlignmentLog2())) {
return buf.forget();
}
return nullptr;
}
// Returns true if an image of aWidth x aHeight is allowed and legal.
static bool
AllowedImageSize(int32_t aWidth, int32_t aHeight)
{
// reject over-wide or over-tall images
const int32_t k64KLimit = 0x0000FFFF;
if (MOZ_UNLIKELY(aWidth > k64KLimit || aHeight > k64KLimit )) {
NS_WARNING("image too big");
return false;
}
// protect against invalid sizes
if (MOZ_UNLIKELY(aHeight <= 0 || aWidth <= 0)) {
return false;
}
// check to make sure we don't overflow a 32-bit
CheckedInt32 requiredBytes = CheckedInt32(aWidth) * CheckedInt32(aHeight) * 4;
if (MOZ_UNLIKELY(!requiredBytes.isValid())) {
NS_WARNING("width or height too large");
return false;
}
#if defined(XP_MACOSX)
// CoreGraphics is limited to images < 32K in *height*, so clamp all surfaces
// on the Mac to that height
if (MOZ_UNLIKELY(aHeight > SHRT_MAX)) {
NS_WARNING("image too big");
return false;
}
#endif
return true;
}
static bool AllowedImageAndFrameDimensions(const nsIntSize& aImageSize,
const nsIntRect& aFrameRect)
{
if (!AllowedImageSize(aImageSize.width, aImageSize.height)) {
return false;
}
if (!AllowedImageSize(aFrameRect.width, aFrameRect.height)) {
return false;
}
nsIntRect imageRect(0, 0, aImageSize.width, aImageSize.height);
if (!imageRect.Contains(aFrameRect)) {
NS_WARNING("Animated image frame does not fit inside bounds of image");
}
return true;
}
imgFrame::imgFrame()
: mMonitor("imgFrame")
, mDecoded(0, 0, 0, 0)
, mLockCount(0)
, mTimeout(100)
, mDisposalMethod(DisposalMethod::NOT_SPECIFIED)
, mBlendMethod(BlendMethod::OVER)
, mHasNoAlpha(false)
, mAborted(false)
, mOptimizable(false)
, mPalettedImageData(nullptr)
, mPaletteDepth(0)
, mNonPremult(false)
, mSinglePixel(false)
, mCompositingFailed(false)
{
static bool hasCheckedOptimize = false;
if (!hasCheckedOptimize) {
if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) {
gDisableOptimize = true;
}
hasCheckedOptimize = true;
}
}
imgFrame::~imgFrame()
{
#ifdef DEBUG
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mAborted || IsImageCompleteInternal());
#endif
free(mPalettedImageData);
mPalettedImageData = nullptr;
}
nsresult
imgFrame::InitForDecoder(const nsIntSize& aImageSize,
const nsIntRect& aRect,
SurfaceFormat aFormat,
uint8_t aPaletteDepth /* = 0 */,
bool aNonPremult /* = false */)
{
// Assert for properties that should be verified by decoders,
// warn for properties related to bad content.
if (!AllowedImageAndFrameDimensions(aImageSize, aRect)) {
NS_WARNING("Should have legal image size");
mAborted = true;
return NS_ERROR_FAILURE;
}
mImageSize = aImageSize;
mOffset.MoveTo(aRect.x, aRect.y);
mSize.SizeTo(aRect.width, aRect.height);
mFormat = aFormat;
mPaletteDepth = aPaletteDepth;
mNonPremult = aNonPremult;
if (aPaletteDepth != 0) {
// We're creating for a paletted image.
if (aPaletteDepth > 8) {
NS_WARNING("Should have legal palette depth");
NS_ERROR("This Depth is not supported");
mAborted = true;
return NS_ERROR_FAILURE;
}
// Use the fallible allocator here. Paletted images always use 1 byte per
// pixel, so calculating the amount of memory we need is straightforward.
mPalettedImageData =
static_cast<uint8_t*>(malloc(PaletteDataLength() +
(mSize.width * mSize.height)));
if (!mPalettedImageData) {
NS_WARNING("malloc for paletted image data should succeed");
}
NS_ENSURE_TRUE(mPalettedImageData, NS_ERROR_OUT_OF_MEMORY);
} else {
MOZ_ASSERT(!mImageSurface, "Called imgFrame::InitForDecoder() twice?");
mVBuf = AllocateBufferForImage(mSize, mFormat);
if (!mVBuf) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (mVBuf->OnHeap()) {
int32_t stride = VolatileSurfaceStride(mSize, mFormat);
VolatileBufferPtr<uint8_t> ptr(mVBuf);
memset(ptr, 0, stride * mSize.height);
}
mImageSurface = CreateLockedSurface(mVBuf, mSize, mFormat);
if (!mImageSurface) {
NS_WARNING("Failed to create VolatileDataSourceSurface");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
}
return NS_OK;
}
nsresult
imgFrame::InitWithDrawable(gfxDrawable* aDrawable,
const nsIntSize& aSize,
const SurfaceFormat aFormat,
GraphicsFilter aFilter,
uint32_t aImageFlags)
{
// Assert for properties that should be verified by decoders,
// warn for properties related to bad content.
if (!AllowedImageSize(aSize.width, aSize.height)) {
NS_WARNING("Should have legal image size");
mAborted = true;
return NS_ERROR_FAILURE;
}
mImageSize = aSize;
mOffset.MoveTo(0, 0);
mSize.SizeTo(aSize.width, aSize.height);
mFormat = aFormat;
mPaletteDepth = 0;
RefPtr<DrawTarget> target;
bool canUseDataSurface =
gfxPlatform::GetPlatform()->CanRenderContentToDataSurface();
if (canUseDataSurface) {
// It's safe to use data surfaces for content on this platform, so we can
// get away with using volatile buffers.
MOZ_ASSERT(!mImageSurface, "Called imgFrame::InitWithDrawable() twice?");
mVBuf = AllocateBufferForImage(mSize, mFormat);
if (!mVBuf) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
int32_t stride = VolatileSurfaceStride(mSize, mFormat);
VolatileBufferPtr<uint8_t> ptr(mVBuf);
if (!ptr) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (mVBuf->OnHeap()) {
memset(ptr, 0, stride * mSize.height);
}
mImageSurface = CreateLockedSurface(mVBuf, mSize, mFormat);
target = gfxPlatform::GetPlatform()->
CreateDrawTargetForData(ptr, mSize, stride, mFormat);
} else {
// We can't use data surfaces for content, so we'll create an offscreen
// surface instead. This means if someone later calls RawAccessRef(), we
// may have to do an expensive readback, but we warned callers about that in
// the documentation for this method.
MOZ_ASSERT(!mOptSurface, "Called imgFrame::InitWithDrawable() twice?");
target = gfxPlatform::GetPlatform()->
CreateOffscreenContentDrawTarget(mSize, mFormat);
}
if (!target) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
// Draw using the drawable the caller provided.
nsIntRect imageRect(0, 0, mSize.width, mSize.height);
nsRefPtr<gfxContext> ctx = new gfxContext(target);
gfxUtils::DrawPixelSnapped(ctx, aDrawable, mSize,
ImageRegion::Create(imageRect),
mFormat, aFilter, aImageFlags);
if (canUseDataSurface && !mImageSurface) {
NS_WARNING("Failed to create VolatileDataSourceSurface");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (!canUseDataSurface) {
// We used an offscreen surface, which is an "optimized" surface from
// imgFrame's perspective.
mOptSurface = target->Snapshot();
}
// If we reach this point, we should regard ourselves as complete.
mDecoded = GetRect();
MOZ_ASSERT(IsImageComplete());
return NS_OK;
}
nsresult
imgFrame::Optimize()
{
MOZ_ASSERT(NS_IsMainThread());
mMonitor.AssertCurrentThreadOwns();
MOZ_ASSERT(mLockCount == 1,
"Should only optimize when holding the lock exclusively");
// Don't optimize during shutdown because gfxPlatform may not be available.
if (ShutdownTracker::ShutdownHasStarted()) {
return NS_OK;
}
if (!mOptimizable || gDisableOptimize) {
return NS_OK;
}
if (mPalettedImageData || mOptSurface || mSinglePixel) {
return NS_OK;
}
// Don't do single-color opts on non-premult data.
// Cairo doesn't support non-premult single-colors.
if (mNonPremult) {
return NS_OK;
}
/* Figure out if the entire image is a constant color */
if (gfxPrefs::ImageSingleColorOptimizationEnabled() &&
mImageSurface->Stride() == mSize.width * 4) {
uint32_t* imgData = (uint32_t*) ((uint8_t*) mVBufPtr);
uint32_t firstPixel = * (uint32_t*) imgData;
uint32_t pixelCount = mSize.width * mSize.height + 1;
while (--pixelCount && *imgData++ == firstPixel)
;
if (pixelCount == 0) {
// all pixels were the same
if (mFormat == SurfaceFormat::B8G8R8A8 ||
mFormat == SurfaceFormat::B8G8R8X8) {
mSinglePixel = true;
mSinglePixelColor.a = ((firstPixel >> 24) & 0xFF) * (1.0f / 255.0f);
mSinglePixelColor.r = ((firstPixel >> 16) & 0xFF) * (1.0f / 255.0f);
mSinglePixelColor.g = ((firstPixel >> 8) & 0xFF) * (1.0f / 255.0f);
mSinglePixelColor.b = ((firstPixel >> 0) & 0xFF) * (1.0f / 255.0f);
mSinglePixelColor.r /= mSinglePixelColor.a;
mSinglePixelColor.g /= mSinglePixelColor.a;
mSinglePixelColor.b /= mSinglePixelColor.a;
// blow away the older surfaces (if they exist), to release their memory
mVBuf = nullptr;
mVBufPtr = nullptr;
mImageSurface = nullptr;
mOptSurface = nullptr;
return NS_OK;
}
}
// if it's not RGB24/ARGB32, don't optimize, but we never hit this at the
// moment
}
#ifdef ANDROID
SurfaceFormat optFormat = gfxPlatform::GetPlatform()
->Optimal2DFormatForContent(gfxContentType::COLOR);
if (mFormat != SurfaceFormat::B8G8R8A8 &&
optFormat == SurfaceFormat::R5G6B5) {
RefPtr<VolatileBuffer> buf =
AllocateBufferForImage(mSize, optFormat);
if (!buf) {
return NS_OK;
}
RefPtr<DataSourceSurface> surf =
CreateLockedSurface(buf, mSize, optFormat);
if (!surf) {
return NS_ERROR_OUT_OF_MEMORY;
}
DataSourceSurface::MappedSurface mapping;
if (!surf->Map(DataSourceSurface::MapType::WRITE, &mapping)) {
gfxCriticalError() << "imgFrame::Optimize failed to map surface";
return NS_ERROR_FAILURE;
}
RefPtr<DrawTarget> target =
Factory::CreateDrawTargetForData(BackendType::CAIRO,
mapping.mData,
mSize,
mapping.mStride,
optFormat);
if (!target) {
gfxWarning() << "imgFrame::Optimize failed in CreateDrawTargetForData";
return NS_ERROR_OUT_OF_MEMORY;
}
Rect rect(0, 0, mSize.width, mSize.height);
target->DrawSurface(mImageSurface, rect, rect);
target->Flush();
surf->Unmap();
mImageSurface = surf;
mVBuf = buf;
mFormat = optFormat;
}
#else
mOptSurface = gfxPlatform::GetPlatform()
->ScreenReferenceDrawTarget()->OptimizeSourceSurface(mImageSurface);
if (mOptSurface == mImageSurface) {
mOptSurface = nullptr;
}
#endif
if (mOptSurface) {
mVBuf = nullptr;
mVBufPtr = nullptr;
mImageSurface = nullptr;
}
#ifdef MOZ_WIDGET_ANDROID
// On Android, free mImageSurface unconditionally if we're discardable. This
// allows the operating system to free our volatile buffer.
// XXX(seth): We'd eventually like to do this on all platforms, but right now
// converting raw memory to a SourceSurface is expensive on some backends.
mImageSurface = nullptr;
#endif
return NS_OK;
}
DrawableFrameRef
imgFrame::DrawableRef()
{
return DrawableFrameRef(this);
}
RawAccessFrameRef
imgFrame::RawAccessRef()
{
return RawAccessFrameRef(this);
}
void
imgFrame::SetRawAccessOnly()
{
AssertImageDataLocked();
// Lock our data and throw away the key.
LockImageData();
}
imgFrame::SurfaceWithFormat
imgFrame::SurfaceForDrawing(bool aDoPadding,
bool aDoPartialDecode,
bool aDoTile,
gfxContext* aContext,
const nsIntMargin& aPadding,
gfxRect& aImageRect,
ImageRegion& aRegion,
SourceSurface* aSurface)
{
MOZ_ASSERT(NS_IsMainThread());
mMonitor.AssertCurrentThreadOwns();
IntSize size(int32_t(aImageRect.Width()), int32_t(aImageRect.Height()));
if (!aDoPadding && !aDoPartialDecode) {
NS_ASSERTION(!mSinglePixel, "This should already have been handled");
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, size), mFormat);
}
gfxRect available = gfxRect(mDecoded.x, mDecoded.y, mDecoded.width,
mDecoded.height);
if (aDoTile || mSinglePixel) {
// Create a temporary surface.
// Give this surface an alpha channel because there are
// transparent pixels in the padding or undecoded area
RefPtr<DrawTarget> target =
gfxPlatform::GetPlatform()->
CreateOffscreenContentDrawTarget(size, SurfaceFormat::B8G8R8A8);
if (!target) {
return SurfaceWithFormat();
}
// Fill 'available' with whatever we've got
if (mSinglePixel) {
target->FillRect(ToRect(aRegion.Intersect(available).Rect()),
ColorPattern(mSinglePixelColor),
DrawOptions(1.0f, CompositionOp::OP_SOURCE));
} else {
SurfacePattern pattern(aSurface,
ExtendMode::REPEAT,
Matrix::Translation(mDecoded.x, mDecoded.y));
target->FillRect(ToRect(aRegion.Intersect(available).Rect()), pattern);
}
RefPtr<SourceSurface> newsurf = target->Snapshot();
return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, size),
target->GetFormat());
}
// Not tiling, and we have a surface, so we can account for
// padding and/or a partial decode just by twiddling parameters.
gfxPoint paddingTopLeft(aPadding.left, aPadding.top);
aRegion = aRegion.Intersect(available) - paddingTopLeft;
aContext->Multiply(gfxMatrix::Translation(paddingTopLeft));
aImageRect = gfxRect(0, 0, mSize.width, mSize.height);
IntSize availableSize(mDecoded.width, mDecoded.height);
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize),
mFormat);
}
bool imgFrame::Draw(gfxContext* aContext, const ImageRegion& aRegion,
GraphicsFilter aFilter, uint32_t aImageFlags)
{
PROFILER_LABEL("imgFrame", "Draw",
js::ProfileEntry::Category::GRAPHICS);
MOZ_ASSERT(NS_IsMainThread());
NS_ASSERTION(!aRegion.Rect().IsEmpty(), "Drawing empty region!");
NS_ASSERTION(!aRegion.IsRestricted() ||
!aRegion.Rect().Intersect(aRegion.Restriction()).IsEmpty(),
"We must be allowed to sample *some* source pixels!");
NS_ASSERTION(!mPalettedImageData, "Directly drawing a paletted image!");
MonitorAutoLock lock(mMonitor);
nsIntMargin padding(mOffset.y,
mImageSize.width - (mOffset.x + mSize.width),
mImageSize.height - (mOffset.y + mSize.height),
mOffset.x);
bool doPadding = padding != nsIntMargin(0,0,0,0);
bool doPartialDecode = !IsImageCompleteInternal();
if (mSinglePixel && !doPadding && !doPartialDecode) {
if (mSinglePixelColor.a == 0.0) {
return true;
}
RefPtr<DrawTarget> dt = aContext->GetDrawTarget();
dt->FillRect(ToRect(aRegion.Rect()),
ColorPattern(mSinglePixelColor),
DrawOptions(1.0f, aContext->CurrentOp()));
return true;
}
RefPtr<SourceSurface> surf = GetSurfaceInternal();
if (!surf && !mSinglePixel) {
return false;
}
gfxRect imageRect(0, 0, mImageSize.width, mImageSize.height);
bool doTile = !imageRect.Contains(aRegion.Rect()) &&
!(aImageFlags & imgIContainer::FLAG_CLAMP);
ImageRegion region(aRegion);
// SurfaceForDrawing changes the current transform, and we need it to still
// be changed when we call gfxUtils::DrawPixelSnapped. We still need to
// restore it before returning though.
// XXXjwatt In general having functions require someone further up the stack
// to undo transform changes that they make is bad practice. We should
// change how this code works.
gfxContextMatrixAutoSaveRestore autoSR(aContext);
SurfaceWithFormat surfaceResult =
SurfaceForDrawing(doPadding, doPartialDecode, doTile, aContext,
padding, imageRect, region, surf);
if (surfaceResult.IsValid()) {
gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable,
imageRect.Size(), region, surfaceResult.mFormat,
aFilter, aImageFlags);
}
return true;
}
nsresult
imgFrame::ImageUpdated(const nsIntRect& aUpdateRect)
{
MonitorAutoLock lock(mMonitor);
return ImageUpdatedInternal(aUpdateRect);
}
nsresult
imgFrame::ImageUpdatedInternal(const nsIntRect& aUpdateRect)
{
mMonitor.AssertCurrentThreadOwns();
mDecoded.UnionRect(mDecoded, aUpdateRect);
// clamp to bounds, in case someone sends a bogus updateRect (I'm looking at
// you, gif decoder)
nsIntRect boundsRect(mOffset, mSize);
mDecoded.IntersectRect(mDecoded, boundsRect);
// If the image is now complete, wake up anyone who's waiting.
if (IsImageCompleteInternal()) {
mMonitor.NotifyAll();
}
return NS_OK;
}
void
imgFrame::Finish(Opacity aFrameOpacity /* = Opacity::SOME_TRANSPARENCY */,
DisposalMethod aDisposalMethod /* = DisposalMethod::KEEP */,
int32_t aRawTimeout /* = 0 */,
BlendMethod aBlendMethod /* = BlendMethod::OVER */)
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
if (aFrameOpacity == Opacity::OPAQUE) {
mHasNoAlpha = true;
}
mDisposalMethod = aDisposalMethod;
mTimeout = aRawTimeout;
mBlendMethod = aBlendMethod;
ImageUpdatedInternal(GetRect());
}
nsIntRect
imgFrame::GetRect() const
{
return gfx::IntRect(mOffset, mSize);
}
int32_t
imgFrame::GetStride() const
{
mMonitor.AssertCurrentThreadOwns();
if (mImageSurface) {
return mImageSurface->Stride();
}
return VolatileSurfaceStride(mSize, mFormat);
}
SurfaceFormat
imgFrame::GetFormat() const
{
MonitorAutoLock lock(mMonitor);
return mFormat;
}
uint32_t
imgFrame::GetImageBytesPerRow() const
{
mMonitor.AssertCurrentThreadOwns();
if (mVBuf) {
return mSize.width * BytesPerPixel(mFormat);
}
if (mPaletteDepth) {
return mSize.width;
}
return 0;
}
uint32_t
imgFrame::GetImageDataLength() const
{
return GetImageBytesPerRow() * mSize.height;
}
void
imgFrame::GetImageData(uint8_t** aData, uint32_t* aLength) const
{
MonitorAutoLock lock(mMonitor);
GetImageDataInternal(aData, aLength);
}
void
imgFrame::GetImageDataInternal(uint8_t** aData, uint32_t* aLength) const
{
mMonitor.AssertCurrentThreadOwns();
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
if (mImageSurface) {
*aData = mVBufPtr;
MOZ_ASSERT(*aData,
"mImageSurface is non-null, but mVBufPtr is null in GetImageData");
} else if (mPalettedImageData) {
*aData = mPalettedImageData + PaletteDataLength();
MOZ_ASSERT(*aData,
"mPalettedImageData is non-null, but result is null in GetImageData");
} else {
MOZ_ASSERT(false,
"Have neither mImageSurface nor mPalettedImageData in GetImageData");
*aData = nullptr;
}
*aLength = GetImageDataLength();
}
uint8_t*
imgFrame::GetImageData() const
{
uint8_t* data;
uint32_t length;
GetImageData(&data, &length);
return data;
}
bool
imgFrame::GetIsPaletted() const
{
return mPalettedImageData != nullptr;
}
void
imgFrame::GetPaletteData(uint32_t** aPalette, uint32_t* length) const
{
AssertImageDataLocked();
if (!mPalettedImageData) {
*aPalette = nullptr;
*length = 0;
} else {
*aPalette = (uint32_t*) mPalettedImageData;
*length = PaletteDataLength();
}
}
uint32_t*
imgFrame::GetPaletteData() const
{
uint32_t* data;
uint32_t length;
GetPaletteData(&data, &length);
return data;
}
nsresult
imgFrame::LockImageData()
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount >= 0, "Unbalanced locks and unlocks");
if (mLockCount < 0) {
return NS_ERROR_FAILURE;
}
mLockCount++;
// If we are not the first lock, there's nothing to do.
if (mLockCount != 1) {
return NS_OK;
}
// If we're the first lock, but have an image surface, we're OK.
if (mImageSurface) {
mVBufPtr = mVBuf;
return NS_OK;
}
// Paletted images don't have surfaces, so there's nothing to do.
if (mPalettedImageData) {
return NS_OK;
}
MOZ_ASSERT_UNREACHABLE("It's illegal to re-lock an optimized imgFrame");
return NS_ERROR_FAILURE;
}
void
imgFrame::AssertImageDataLocked() const
{
#ifdef DEBUG
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
#endif
}
class UnlockImageDataRunnable : public nsRunnable
{
public:
explicit UnlockImageDataRunnable(imgFrame* aTarget)
: mTarget(aTarget)
{
MOZ_ASSERT(mTarget);
}
NS_IMETHOD Run() { return mTarget->UnlockImageData(); }
private:
nsRefPtr<imgFrame> mTarget;
};
nsresult
imgFrame::UnlockImageData()
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Unlocking an unlocked image!");
if (mLockCount <= 0) {
return NS_ERROR_FAILURE;
}
MOZ_ASSERT(mLockCount > 1 || IsImageCompleteInternal() || mAborted,
"Should have marked complete or aborted before unlocking");
// If we're about to become unlocked, we don't need to hold on to our data
// surface anymore. (But we don't need to do anything for paletted images,
// which don't have surfaces.)
if (mLockCount == 1 && !mPalettedImageData) {
// We can't safely optimize off-main-thread, so create a runnable to do it.
if (!NS_IsMainThread()) {
nsCOMPtr<nsIRunnable> runnable = new UnlockImageDataRunnable(this);
NS_DispatchToMainThread(runnable);
return NS_OK;
}
// If we're using a surface format with alpha but the image has no alpha,
// change the format. This doesn't change the underlying data at all, but
// allows DrawTargets to avoid blending when drawing known opaque images.
if (mHasNoAlpha && mFormat == SurfaceFormat::B8G8R8A8 && mImageSurface) {
mFormat = SurfaceFormat::B8G8R8X8;
mImageSurface = CreateLockedSurface(mVBuf, mSize, mFormat);
}
// Convert the data surface to a GPU surface or a single color if possible.
// This will also release mImageSurface if possible.
Optimize();
// Allow the OS to release our data surface.
mVBufPtr = nullptr;
}
mLockCount--;
return NS_OK;
}
void
imgFrame::SetOptimizable()
{
AssertImageDataLocked();
MonitorAutoLock lock(mMonitor);
mOptimizable = true;
}
Color
imgFrame::SinglePixelColor() const
{
MOZ_ASSERT(NS_IsMainThread());
return mSinglePixelColor;
}
bool
imgFrame::IsSinglePixel() const
{
MOZ_ASSERT(NS_IsMainThread());
return mSinglePixel;
}
already_AddRefed<SourceSurface>
imgFrame::GetSurface()
{
MonitorAutoLock lock(mMonitor);
return GetSurfaceInternal();
}
already_AddRefed<SourceSurface>
imgFrame::GetSurfaceInternal()
{
mMonitor.AssertCurrentThreadOwns();
if (mOptSurface) {
if (mOptSurface->IsValid()) {
RefPtr<SourceSurface> surf(mOptSurface);
return surf.forget();
} else {
mOptSurface = nullptr;
}
}
if (mImageSurface) {
RefPtr<SourceSurface> surf(mImageSurface);
return surf.forget();
}
if (!mVBuf) {
return nullptr;
}
VolatileBufferPtr<char> buf(mVBuf);
if (buf.WasBufferPurged()) {
return nullptr;
}
return CreateLockedSurface(mVBuf, mSize, mFormat);
}
already_AddRefed<DrawTarget>
imgFrame::GetDrawTarget()
{
MonitorAutoLock lock(mMonitor);
uint8_t* data;
uint32_t length;
GetImageDataInternal(&data, &length);
if (!data) {
return nullptr;
}
int32_t stride = GetStride();
return gfxPlatform::GetPlatform()->
CreateDrawTargetForData(data, mSize, stride, mFormat);
}
AnimationData
imgFrame::GetAnimationData() const
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
uint8_t* data;
if (mPalettedImageData) {
data = mPalettedImageData;
} else {
uint32_t length;
GetImageDataInternal(&data, &length);
}
bool hasAlpha = mFormat == SurfaceFormat::B8G8R8A8;
return AnimationData(data, PaletteDataLength(), mTimeout, GetRect(),
mBlendMethod, mDisposalMethod, hasAlpha);
}
ScalingData
imgFrame::GetScalingData() const
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
MOZ_ASSERT(!GetIsPaletted(), "GetScalingData can't handle paletted images");
uint8_t* data;
uint32_t length;
GetImageDataInternal(&data, &length);
return ScalingData(data, mSize, GetImageBytesPerRow(), mFormat);
}
void
imgFrame::Abort()
{
MonitorAutoLock lock(mMonitor);
mAborted = true;
// Wake up anyone who's waiting.
mMonitor.NotifyAll();
}
bool
imgFrame::IsImageComplete() const
{
MonitorAutoLock lock(mMonitor);
return IsImageCompleteInternal();
}
void
imgFrame::WaitUntilComplete() const
{
MonitorAutoLock lock(mMonitor);
while (true) {
// Return if we're aborted or complete.
if (mAborted || IsImageCompleteInternal()) {
return;
}
// Not complete yet, so we'll have to wait.
mMonitor.Wait();
}
}
bool
imgFrame::IsImageCompleteInternal() const
{
mMonitor.AssertCurrentThreadOwns();
return mDecoded.IsEqualInterior(nsIntRect(mOffset.x, mOffset.y,
mSize.width, mSize.height));
}
bool imgFrame::GetCompositingFailed() const
{
MOZ_ASSERT(NS_IsMainThread());
return mCompositingFailed;
}
void
imgFrame::SetCompositingFailed(bool val)
{
MOZ_ASSERT(NS_IsMainThread());
mCompositingFailed = val;
}
void
imgFrame::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
size_t& aHeapSizeOut,
size_t& aNonHeapSizeOut) const
{
MonitorAutoLock lock(mMonitor);
if (mPalettedImageData) {
aHeapSizeOut += aMallocSizeOf(mPalettedImageData);
}
if (mImageSurface) {
aHeapSizeOut += aMallocSizeOf(mImageSurface);
}
if (mOptSurface) {
aHeapSizeOut += aMallocSizeOf(mOptSurface);
}
if (mVBuf) {
aHeapSizeOut += aMallocSizeOf(mVBuf);
aHeapSizeOut += mVBuf->HeapSizeOfExcludingThis(aMallocSizeOf);
aNonHeapSizeOut += mVBuf->NonHeapSizeOfExcludingThis();
}
}
} // namespace image
} // namespace mozilla