gecko-dev/js/src/jsinfer.h

1119 строки
40 KiB
C
Исходник Обычный вид История

//* -*- Mode: c++; c-basic-offset: 4; tab-width: 40; indent-tabs-mode: nil -*- */
/* vim: set ts=40 sw=4 et tw=99: */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Mozilla SpiderMonkey bytecode type inference
*
* The Initial Developer of the Original Code is
* Mozilla Foundation
* Portions created by the Initial Developer are Copyright (C) 2010
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Brian Hackett <bhackett@mozilla.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/* Definitions related to javascript type inference. */
#ifndef jsinfer_h___
#define jsinfer_h___
2011-07-02 03:24:32 +04:00
#include "jsalloc.h"
#include "jsarena.h"
#include "jstl.h"
#include "jsprvtd.h"
#include "jsvalue.h"
namespace js {
2011-05-09 21:00:29 +04:00
class CallArgs;
}
namespace js {
namespace types {
/* Forward declarations. */
2011-04-12 18:04:45 +04:00
class TypeSet;
struct TypeCallsite;
struct TypeObject;
struct TypeCompartment;
/* Type set entry for either a JSObject with singleton type or a non-singleton TypeObject. */
struct TypeObjectKey {
static intptr_t keyBits(TypeObjectKey *obj) { return (intptr_t) obj; }
static TypeObjectKey *getKey(TypeObjectKey *obj) { return obj; }
};
/*
* Information about a single concrete type. This is a non-zero value whose
* lower 3 bits indicate a particular primitive type below, and if those bits
* are zero then a pointer to a type object.
*/
class Type
{
jsuword data;
Type(jsuword data) : data(data) {}
public:
jsuword raw() const { return data; }
bool isPrimitive() const {
return data < JSVAL_TYPE_OBJECT;
}
bool isPrimitive(JSValueType type) const {
JS_ASSERT(type < JSVAL_TYPE_OBJECT);
return type == (JSValueType) data;
}
JSValueType primitive() const {
JS_ASSERT(isPrimitive());
return (JSValueType) data;
}
bool isAnyObject() const {
return data == JSVAL_TYPE_OBJECT;
}
bool isUnknown() const {
return data == JSVAL_TYPE_UNKNOWN;
}
/* Accessors for types that are either JSObject or TypeObject. */
bool isObject() const {
JS_ASSERT(!isAnyObject() && !isUnknown());
return data > JSVAL_TYPE_UNKNOWN;
}
TypeObjectKey *objectKey() const {
JS_ASSERT(isObject());
return (TypeObjectKey *) data;
}
/* Accessors for JSObject types */
bool isSingleObject() const {
return isObject() && !!(data & 1);
}
JSObject *singleObject() const {
JS_ASSERT(isSingleObject());
return (JSObject *) (data ^ 1);
}
/* Accessors for TypeObject types */
bool isTypeObject() const {
return isObject() && !(data & 1);
}
TypeObject *typeObject() const {
JS_ASSERT(isTypeObject());
return (TypeObject *) data;
}
bool operator == (Type o) const { return data == o.data; }
bool operator != (Type o) const { return data != o.data; }
static inline Type UndefinedType() { return Type(JSVAL_TYPE_UNDEFINED); }
static inline Type NullType() { return Type(JSVAL_TYPE_NULL); }
static inline Type BooleanType() { return Type(JSVAL_TYPE_BOOLEAN); }
static inline Type Int32Type() { return Type(JSVAL_TYPE_INT32); }
static inline Type DoubleType() { return Type(JSVAL_TYPE_DOUBLE); }
static inline Type StringType() { return Type(JSVAL_TYPE_STRING); }
static inline Type LazyArgsType() { return Type(JSVAL_TYPE_MAGIC); }
static inline Type AnyObjectType() { return Type(JSVAL_TYPE_OBJECT); }
static inline Type UnknownType() { return Type(JSVAL_TYPE_UNKNOWN); }
static inline Type PrimitiveType(JSValueType type) {
JS_ASSERT(type < JSVAL_TYPE_UNKNOWN);
return Type(type);
}
static inline Type ObjectType(JSObject *obj);
static inline Type ObjectType(TypeObject *obj);
static inline Type ObjectType(TypeObjectKey *obj);
};
/* Get the type of a jsval, or zero for an unknown special value. */
inline Type GetValueType(JSContext *cx, const Value &val);
/*
* Type inference memory management overview.
*
* Inference constructs a global web of constraints relating the contents of
* type sets particular to various scripts and type objects within a
* compartment. These constraints can consume a significant amount of memory,
* and to avoid this building up we clear out (almost, see 1.) all the
* constraints and most other type inference data on (almost, see 2.) every GC.
* JIT code which depends on this type information and is sensitive to
* subsequent changes is cleared at the same time.
*
* Type constraints may be either transient --- destroyed along with the type
* constraints --- or persistent. Persistent constraints describe properties
* of type objects, locals, args, and observed types in scripts, and may or
* may not survive GCs.
*
* Notes:
*
* 1. Some type constraints are persistent, and relate type objects to each
* other. These survive GCs as long as some target type object is live.
*
* 2. If a GC happens while we are in the middle of or working with analysis
* information (both type information and other transient information stored in
* ScriptAnalysis), we do not destroy analysis information or collect
* TypeObjects or JSScripts. This is controlled with AutoEnterAnalysis and
* AutoEnterTypeInference.
*/
/*
* A constraint which listens to additions to a type set and propagates those
* changes to other type sets.
*/
class TypeConstraint
{
public:
#ifdef DEBUG
const char *kind_;
const char *kind() const { return kind_; }
#else
const char *kind() const { return NULL; }
#endif
/* Next constraint listening to the same type set. */
TypeConstraint *next;
TypeConstraint(const char *kind)
: next(NULL)
{
#ifdef DEBUG
this->kind_ = kind;
#endif
}
/* Register a new type for the set this constraint is listening to. */
virtual void newType(JSContext *cx, TypeSet *source, Type type) = 0;
/*
* For constraints attached to an object property's type set, mark the
* property as having been configured or received an own property.
*/
virtual void newPropertyState(JSContext *cx, TypeSet *source) {}
/*
* For constraints attached to the index type set of an object (JSID_VOID),
* mark a change in one of the object's dynamic property flags. If force is
* set, recompilation is always triggered.
*/
virtual void newObjectState(JSContext *cx, TypeObject *object, bool force) {}
/*
* If this is a persistent constraint, the target object of the constraint.
* Such constraints describe relationships between TypeObjects which are
* independent of the analysis of any script.
*/
virtual TypeObject * persistentObject() { return NULL; }
virtual size_t allocatedSize() { return 0; }
};
/* Coarse flags for the contents of a type set. */
enum {
TYPE_FLAG_UNDEFINED = 0x1,
TYPE_FLAG_NULL = 0x2,
TYPE_FLAG_BOOLEAN = 0x4,
TYPE_FLAG_INT32 = 0x8,
TYPE_FLAG_DOUBLE = 0x10,
TYPE_FLAG_STRING = 0x20,
TYPE_FLAG_LAZYARGS = 0x40,
TYPE_FLAG_ANYOBJECT = 0x80,
TYPE_FLAG_UNKNOWN = 0x100,
/* Flag for type sets which are cleared on GC. */
TYPE_FLAG_INTERMEDIATE_SET = 0x0200,
/* Flags for type sets which are on object properties. */
/* Whether this property has ever been directly written. */
TYPE_FLAG_OWN_PROPERTY = 0x0400,
/*
* Whether the property has ever been deleted or reconfigured to behave
* differently from a normal native property (e.g. made non-writable or
* given a scripted getter or setter).
*/
TYPE_FLAG_CONFIGURED_PROPERTY = 0x0800,
/* Whether there are any persistent constraints on this set. */
TYPE_FLAG_HAS_PERSISTENT_CONSTRAINTS = 0x1000,
/*
* Whether the property is definitely in a particular inline slot on all
* objects from which it has not been deleted or reconfigured. Implies
* OWN_PROPERTY and unlike OWN/CONFIGURED property, this cannot change.
*/
TYPE_FLAG_DEFINITE_PROPERTY = 0x08000,
/* If the property is definite, mask and shift storing the slot. */
TYPE_FLAG_DEFINITE_MASK = 0xf0000,
TYPE_FLAG_DEFINITE_SHIFT = 16,
/* Mask of non-type flags on a type set. */
TYPE_FLAG_BASE_MASK = 0xffffffff ^ ((TYPE_FLAG_UNKNOWN << 1) - 1)
};
typedef uint32 TypeFlags;
/* Bitmask for possible dynamic properties of the JSObjects with some type. */
enum {
/*
* Whether any objects this represents are not dense arrays. This also
* includes dense arrays whose length property does not fit in an int32.
*/
OBJECT_FLAG_NON_DENSE_ARRAY = 1 << 0,
/* Whether any objects this represents are not packed arrays. */
OBJECT_FLAG_NON_PACKED_ARRAY = 1 << 1,
/* Whether any objects this represents are not typed arrays. */
OBJECT_FLAG_NON_TYPED_ARRAY = 1 << 2,
/* Whether any represented script has had arguments objects created. */
OBJECT_FLAG_CREATED_ARGUMENTS = 1 << 3,
/* Whether any represented script is considered uninlineable. */
OBJECT_FLAG_UNINLINEABLE = 1 << 4,
/* Whether any objects have an equality hook. */
OBJECT_FLAG_SPECIAL_EQUALITY = 1 << 5,
/* Whether any objects have been iterated over. */
OBJECT_FLAG_ITERATED = 1 << 6,
/*
* Flags which can be determined from a JS object. Setting these flags
* on an object with a lazy type does not require the type to be
* instantiated.
*/
OBJECT_FLAG_DETERMINED_MASK =
OBJECT_FLAG_NON_DENSE_ARRAY |
OBJECT_FLAG_NON_PACKED_ARRAY |
OBJECT_FLAG_NON_TYPED_ARRAY |
OBJECT_FLAG_SPECIAL_EQUALITY,
/* Flags set for objects we are not tracking any information for. */
OBJECT_FLAG_UNKNOWN_MASK = uint32(-1)
};
typedef uint32 TypeObjectFlags;
/* Information about the set of types associated with an lvalue. */
class TypeSet
{
/* Flags for the possible coarse types in this set. */
TypeFlags typeFlags;
/* Possible objects this type set can represent. */
TypeObjectKey **objectSet;
unsigned objectCount;
public:
/* Chain of constraints which propagate changes out from this type set. */
TypeConstraint *constraintList;
TypeSet()
: typeFlags(0), objectSet(NULL), objectCount(0), constraintList(NULL)
{}
void print(JSContext *cx);
inline bool sweep(JSContext *cx);
inline void destroy();
size_t dynamicSize();
/* Whether this set contains a specific type. */
inline bool hasType(Type type);
TypeFlags baseFlags() { return typeFlags & ~TYPE_FLAG_BASE_MASK; }
bool hasAnyFlag(TypeFlags flags) { return !!(typeFlags & flags); }
bool unknown() { return !!(typeFlags & TYPE_FLAG_UNKNOWN); }
bool unknownObject() { return !!(typeFlags & (TYPE_FLAG_UNKNOWN | TYPE_FLAG_ANYOBJECT)); }
bool isDefiniteProperty() { return typeFlags & TYPE_FLAG_DEFINITE_PROPERTY; }
unsigned definiteSlot() {
JS_ASSERT(isDefiniteProperty());
return typeFlags >> TYPE_FLAG_DEFINITE_SHIFT;
}
/*
* Add a type to this set, calling any constraint handlers if this is a new
* possible type.
*/
inline void addType(JSContext *cx, Type type);
/* Mark this type set as representing an own property or configured property. */
inline void setOwnProperty(JSContext *cx, bool configured);
/*
* Iterate through the objects in this set. getObjectCount overapproximates
* in the hash case (see SET_ARRAY_SIZE in jsinferinlines.h), and getObject
* may return NULL.
*/
inline unsigned getObjectCount();
inline TypeObjectKey *getObject(unsigned i);
inline JSObject *getSingleObject(unsigned i);
inline TypeObject *getTypeObject(unsigned i);
bool intermediate() { return typeFlags & TYPE_FLAG_INTERMEDIATE_SET; }
void setIntermediate() { JS_ASSERT(!typeFlags); typeFlags = TYPE_FLAG_INTERMEDIATE_SET; }
void setOwnProperty(bool configurable) {
typeFlags |= TYPE_FLAG_OWN_PROPERTY;
if (configurable)
typeFlags |= TYPE_FLAG_CONFIGURED_PROPERTY;
}
void setDefinite(unsigned slot) {
JS_ASSERT(slot <= (TYPE_FLAG_DEFINITE_MASK >> TYPE_FLAG_DEFINITE_SHIFT));
typeFlags |= TYPE_FLAG_DEFINITE_PROPERTY | (slot << TYPE_FLAG_DEFINITE_SHIFT);
}
/* Add specific kinds of constraints to this set. */
inline void add(JSContext *cx, TypeConstraint *constraint, bool callExisting = true);
void addSubset(JSContext *cx, TypeSet *target);
void addGetProperty(JSContext *cx, JSScript *script, jsbytecode *pc,
TypeSet *target, jsid id);
void addSetProperty(JSContext *cx, JSScript *script, jsbytecode *pc,
TypeSet *target, jsid id);
void addCallProperty(JSContext *cx, JSScript *script, jsbytecode *pc, jsid id);
void addNewObject(JSContext *cx, TypeObject *fun, TypeSet *target);
void addCall(JSContext *cx, TypeCallsite *site);
void addArith(JSContext *cx, TypeSet *target, TypeSet *other = NULL);
void addTransformThis(JSContext *cx, JSScript *script, TypeSet *target);
void addPropagateThis(JSContext *cx, JSScript *script, jsbytecode *pc, Type type);
void addFilterPrimitives(JSContext *cx, TypeSet *target, bool onlyNullVoid);
void addSubsetBarrier(JSContext *cx, JSScript *script, jsbytecode *pc, TypeSet *target);
void addLazyArguments(JSContext *cx, TypeSet *target);
void addBaseSubset(JSContext *cx, TypeObject *object, TypeSet *target);
/*
* Make an intermediate type set with the specified debugging name,
* not embedded in another structure.
*/
static TypeSet *make(JSContext *cx, const char *name);
/*
* Methods for JIT compilation. If a script is currently being compiled
* (see AutoEnterCompilation) these will add constraints ensuring that if
* the return value change in the future due to new type information, the
* currently compiled script will be marked for recompilation.
*/
/* Completely freeze the contents of this type set. */
void addFreeze(JSContext *cx);
/* Get any type tag which all values in this set must have. */
JSValueType getKnownTypeTag(JSContext *cx);
bool isLazyArguments(JSContext *cx) { return getKnownTypeTag(cx) == JSVAL_TYPE_MAGIC; }
/* Whether the type set or a particular object has any of a set of flags. */
bool hasObjectFlags(JSContext *cx, TypeObjectFlags flags);
static bool HasObjectFlags(JSContext *cx, TypeObject *object, TypeObjectFlags flags);
/* Watch for slot reallocations on a particular object. */
static void WatchObjectReallocation(JSContext *cx, JSObject *object);
/*
* For type sets on a property, return true if the property has any 'own'
* values assigned. If configurable is set, return 'true' if the property
* has additionally been reconfigured as non-configurable, non-enumerable
* or non-writable (this only applies to properties that have changed after
* having been created, not to e.g. properties non-writable on creation).
*/
bool isOwnProperty(JSContext *cx, bool configurable);
/* Get whether this type set is non-empty. */
bool knownNonEmpty(JSContext *cx);
/*
* Get the typed array type of all objects in this set. Returns
* TypedArray::TYPE_MAX if the set contains different array types.
*/
int getTypedArrayType(JSContext *cx);
/* Get the single value which can appear in this type set, otherwise NULL. */
JSObject *getSingleton(JSContext *cx, bool freeze = true);
static bool
SweepTypeSet(JSContext *cx, JSCompartment *compartment, TypeSet *types);
private:
void clearObjects();
};
/*
* Handler which persists information about the intermediate types in a script
* (those appearing on stack values, which are destroyed on GC). These are
* attached to the JSScript and persist until it is destroyed; every time the
* types in the script are analyzed these are replayed to reconstruct
* the intermediate info they store.
*
* This is mostly for dynamic type results like integer overflows or holes read
* out of objects, but also allows specialized type constraints on intermediate
* values to be regenerated after GC.
*/
class TypeIntermediate
{
public:
/* Next intermediate information for the script. */
TypeIntermediate *next;
TypeIntermediate() : next(NULL) {}
/* Replay this type information on a script whose types have just been analyzed. */
virtual void replay(JSContext *cx, JSScript *script) = 0;
/* Sweep this intermediate info, returning false to unlink and destroy this. */
virtual bool sweep(JSContext *cx, JSCompartment *compartment) = 0;
/* Whether this subsumes a dynamic type pushed by the bytecode at offset. */
virtual bool hasDynamicResult(uint32 offset, Type type) { return false; }
virtual size_t allocatedSize() = 0;
};
/*
* Type barriers overview.
*
* Type barriers are a technique for using dynamic type information to improve
* the inferred types within scripts. At certain opcodes --- those with the
* JOF_TYPESET format --- we will construct a type set storing the set of types
* which we have observed to be pushed at that opcode, and will only use those
* observed types when doing propagation downstream from the bytecode. For
* example, in the following script:
*
* function foo(x) {
* return x.f + 10;
* }
*
* Suppose we know the type of 'x' and that the type of its 'f' property is
* either an int or float. To account for all possible behaviors statically,
* we would mark the result of the 'x.f' access as an int or float, as well
* as the result of the addition and the return value of foo (and everywhere
* the result of 'foo' is used). When dealing with polymorphic code, this is
* undesirable behavior --- the type imprecision surrounding the polymorphism
* will tend to leak to many places in the program.
*
* Instead, we will keep track of the types that have been dynamically observed
* to have been produced by the 'x.f', and only use those observed types
* downstream from the access. If the 'x.f' has only ever produced integers,
* we will treat its result as an integer and mark the result of foo as an
* integer.
*
* The set of observed types will be a subset of the set of possible types,
* and if the two sets are different, a type barriers will be added at the
* bytecode which checks the dynamic result every time the bytecode executes
* and makes sure it is in the set of observed types. If it is not, that
* observed set is updated, and the new type information is automatically
* propagated along the already-generated type constraints to the places
* where the result of the bytecode is used.
*
* Observing new types at a bytecode removes type barriers at the bytecode
* (this removal happens lazily, see ScriptAnalysis::pruneTypeBarriers), and if
* all type barriers at a bytecode are removed --- the set of observed types
* grows to match the set of possible types --- then the result of the bytecode
* no longer needs to be dynamically checked (unless the set of possible types
* grows, triggering the generation of new type barriers).
*/
/*
* Barrier introduced at some bytecode. These are added when, during inference,
* we block a type from being propagated as would normally be done for a subset
* constraint. The propagation is technically possible, but we suspect it will
* not happen dynamically and this type needs to be watched for. These are only
* added at reads of properties and at scripted call sites.
*/
struct TypeBarrier
{
/* Next barrier on the same bytecode. */
TypeBarrier *next;
/* Target type set into which propagation was blocked. */
TypeSet *target;
/*
* Type which was not added to the target. If target ends up containing the
* type somehow, this barrier can be removed.
*/
Type type;
TypeBarrier(TypeSet *target, Type type)
: next(NULL), target(target), type(type)
{}
};
/* Type information about a property. */
struct Property
{
/* Identifier for this property, JSID_VOID for the aggregate integer index property. */
jsid id;
/* Possible types for this property, including types inherited from prototypes. */
TypeSet types;
Property(jsid id)
: id(id)
{}
static uint32 keyBits(jsid id) { return (uint32) JSID_BITS(id); }
static jsid getKey(Property *p) { return p->id; }
};
/*
* Information attached to a TypeObject if it is always constructed using 'new'
* on a particular script.
*/
struct TypeNewScript
{
JSScript *script;
/* Finalize kind to use for newly constructed objects. */
/* gc::FinalizeKind */ unsigned finalizeKind;
/* Shape to use for newly constructed objects. */
const Shape *shape;
/*
* Order in which properties become initialized. We need this in case a
* scripted setter is added to one of the object's prototypes while it is in
* the middle of being initialized, so we can walk the stack and fixup any
* objects which look for in-progress objects which were prematurely set
* with their final shape. Initialization can traverse stack frames,
* in which case FRAME_PUSH/FRAME_POP are used.
*/
struct Initializer {
enum Kind {
SETPROP,
FRAME_PUSH,
FRAME_POP,
DONE
} kind;
uint32 offset;
Initializer(Kind kind, uint32 offset)
: kind(kind), offset(offset)
{}
};
Initializer *initializerList;
};
/*
* Lazy type objects overview.
*
* Type objects which represent at most one JS object are constructed lazily.
* These include types for native functions, standard classes, scripted
* functions defined at the top level of global/eval scripts, and in some
* other cases. Typical web workloads often create many windows (and many
* copies of standard natives) and many scripts, with comparatively few
* non-singleton types.
*
* We can recover the type information for the object from examining it
* (with exceptions for certain object flags, see OBJECT_FLAG_DETERMINED_MASK),
* so don't need to track type information when updating the object. The type
* object is only constructed when we need to put constraints on any of its
* properties, in which case we fully instantiate the type's properties.
*
* If all outgoing constraints on the type are removed constraints by a GC,
* the type object and its properties are destroyed and the JS object reverts
* to having a lazy type.
*/
/* Type information about an object accessed by a script. */
struct TypeObject
{
#ifdef DEBUG
/* Name of this object. */
jsid name_;
#endif
/* Prototype shared by objects using this type. */
JSObject *proto;
/*
* Whether there is a singleton JS object with this type. That JS object
* must appear in type sets instead of this; we include the back reference
* here to allow reverting the JS object to a lazy type.
*/
JSObject *singleton;
/* Lazily filled array of empty shapes for each size of objects with this type. */
js::EmptyShape **emptyShapes;
/* Vector of TypeObjectFlags for the objects this type represents. */
TypeObjectFlags flags;
/* Whether this is a function. */
bool isFunction;
/* Mark bit for GC. */
bool marked;
/* If set, newScript information should not be installed on this object. */
bool newScriptCleared;
/*
* Whether we have ensured all type sets in the compartment contain
* ANYOBJECT instead of this object.
*/
bool setsMarkedUnknown;
/*
* If non-NULL, objects of this type have always been constructed using
* 'new' on the specified script, which adds some number of properties to
* the object in a definite order before the object escapes.
*/
TypeNewScript *newScript;
/*
* Whether this is an object (plain Object, Array, or typed array) keyed to
* an offset in the script containing this in its objects list.
*/
JSProtoKey initializerKey;
uint32 initializerOffset;
/*
* Estimate of the contribution of this object to the type sets it appears in.
* This is the sum of the sizes of those sets at the point when the object
* was added.
*
* When the contribution exceeds the CONTRIBUTION_LIMIT, any type sets the
* object is added to are instead marked as unknown. If we get to this point
* we are probably not adding types which will let us do meaningful optimization
* later, and we want to ensure in such cases that our time/space complexity
* is linear, not worst-case cubic as it would otherwise be.
*/
uint32 contribution;
static const uint32 CONTRIBUTION_LIMIT = 2000;
/*
* Properties of this object. This may contain JSID_VOID, representing the
* types of all integer indexes of the object, or JSID_EMPTY, representing
* the types of new objects that can be created with different instances of
* this type. Correspondence between the properties of a TypeObject and the
* properties of script-visible JSObjects (not Call, Block, etc.) which
* have that type is as follows:
*
* - If the type has unknownProperties(), the possible properties and value
* types for associated JSObjects are unknown.
*
* - Otherwise, for any JSObject obj with TypeObject type, and any jsid id,
* after obj->getProperty(id) the property in type for id must reflect
* the result of the getProperty. The result is additionally allowed to
* be undefined for ids which are not in obj or its prototypes, and for
* properties of global objects defined with 'var' but not yet written.
*
* - Additionally, if id is a normal owned native property within obj, then
* after the setProperty or defineProperty which wrote its value, the
* property in type for id must reflect that type.
*
* We establish these by using write barriers on calls to setProperty and
* defineProperty which are on native properties, and read barriers on
* getProperty that go through a class hook or special PropertyOp.
*/
Property **propertySet;
unsigned propertyCount;
/* List of objects using this one as their prototype. */
TypeObject *instanceList;
/* Chain for objects sharing the same prototype. */
TypeObject *instanceNext;
2011-03-09 20:58:49 +03:00
/* Link in the list of objects associated with a script or global object. */
TypeObject *next;
/* If this is an interpreted function, the corresponding script. */
JSScript *functionScript;
TypeObject() {}
/* Make an object with the specified name. */
inline TypeObject(jsid id, JSObject *proto, bool isFunction);
bool unknownProperties() { return flags == OBJECT_FLAG_UNKNOWN_MASK; }
bool hasAnyFlags(TypeObjectFlags flags) { return (this->flags & flags) != 0; }
bool hasAllFlags(TypeObjectFlags flags) { return (this->flags & flags) == flags; }
/*
* Return an immutable, shareable, empty shape with the same clasp as this
* and the same slotSpan as this had when empty.
*
* If |this| is the scope of an object |proto|, the resulting scope can be
* used as the scope of a new object whose prototype is |proto|.
*/
inline bool canProvideEmptyShape(js::Class *clasp);
inline js::EmptyShape *getEmptyShape(JSContext *cx, js::Class *aclasp,
/* gc::FinalizeKind */ unsigned kind);
/*
* Get or create a property of this object. Only call this for properties which
* a script accesses explicitly. 'assign' indicates whether this is for an
* assignment, and the own types of the property will be used instead of
* aggregate types.
*/
inline TypeSet *getProperty(JSContext *cx, jsid id, bool assign);
inline bool hasProperty(JSContext *cx, jsid id);
inline const char * name();
inline unsigned getPropertyCount();
inline Property *getProperty(unsigned i);
/* Set flags on this object which are implied by the specified key. */
inline void setFlagsFromKey(JSContext *cx, JSProtoKey key);
/* Helpers */
bool addProperty(JSContext *cx, jsid id, Property **pprop);
bool addDefiniteProperties(JSContext *cx, JSObject *obj);
void addPrototype(JSContext *cx, TypeObject *proto);
void addPropertyType(JSContext *cx, jsid id, Type type);
void addPropertyType(JSContext *cx, jsid id, const Value &value);
void addPropertyType(JSContext *cx, const char *name, Type type);
void addPropertyType(JSContext *cx, const char *name, const Value &value);
void markPropertyConfigured(JSContext *cx, jsid id);
void aliasProperties(JSContext *cx, jsid first, jsid second);
void markSlotReallocation(JSContext *cx);
void setFlags(JSContext *cx, TypeObjectFlags flags);
void markUnknown(JSContext *cx);
void clearNewScript(JSContext *cx);
void storeToInstances(JSContext *cx, Property *base);
void getFromPrototypes(JSContext *cx, Property *base);
void print(JSContext *cx);
void trace(JSTracer *trc);
};
/* Whether to use a new type object when calling 'new' at script/pc. */
bool
UseNewType(JSContext *cx, JSScript *script, jsbytecode *pc);
/*
* Add any definite properties to type and compute its newScript according to
* the specified script which the type is the 'new' value for.
*/
void
CheckNewScriptProperties(JSContext *cx, TypeObject *type, JSScript *script);
/*
* Type information about a callsite. this is separated from the bytecode
* information itself so we can handle higher order functions not called
* directly via a bytecode.
*/
struct TypeCallsite
{
JSScript *script;
jsbytecode *pc;
/* Whether this is a 'NEW' call. */
bool isNew;
/* Types of each argument to the call. */
TypeSet **argumentTypes;
unsigned argumentCount;
/* Types of the this variable. */
TypeSet *thisTypes;
/* Type set receiving the return value of this call. */
TypeSet *returnTypes;
inline TypeCallsite(JSContext *cx, JSScript *script, jsbytecode *pc,
bool isNew, unsigned argumentCount);
};
/* Persistent type information for a script, retained across GCs. */
struct TypeScript
{
inline JSScript *script();
/* Lazily constructed types of variables and JOF_TYPESET ops in this script. */
TypeSet *typeArray;
inline unsigned numTypeSets();
/* Any type objects associated with this script, including initializer objects. */
TypeObject *typeObjects;
/* Persistent information about stack types in this script. */
TypeIntermediate *intermediateList;
void addIntermediate(TypeIntermediate *type) {
type->next = intermediateList;
intermediateList = type;
}
/* Make sure there the type array has been constructed. */
inline bool ensureTypeArray(JSContext *cx);
inline TypeSet *bytecodeTypes(const jsbytecode *pc);
inline TypeSet *returnTypes();
inline TypeSet *thisTypes();
inline TypeSet *argTypes(unsigned i);
inline TypeSet *localTypes(unsigned i);
inline TypeSet *upvarTypes(unsigned i);
/* Follows slot layout in jsanalyze.h, can get this/arg/local type sets. */
inline TypeSet *slotTypes(unsigned slot);
private:
bool makeTypeArray(JSContext *cx);
public:
#ifdef DEBUG
/* Check that correct types were inferred for the values pushed by this bytecode. */
void checkBytecode(JSContext *cx, jsbytecode *pc, const js::Value *sp);
#endif
/* Get the default 'new' object for a given standard class, per the script's global. */
inline TypeObject *standardType(JSContext *cx, JSProtoKey key);
/* Get a type object for an allocation site in this script. */
inline TypeObject *initObject(JSContext *cx, const jsbytecode *pc, JSProtoKey key);
/*
* Monitor a bytecode pushing a value which is not accounted for by the
* inference type constraints, such as integer overflow.
*/
inline void monitorOverflow(JSContext *cx, jsbytecode *pc);
inline void monitorString(JSContext *cx, jsbytecode *pc);
inline void monitorUnknown(JSContext *cx, jsbytecode *pc);
/*
* Monitor a bytecode pushing any value. This must be called for any opcode
* which is JOF_TYPESET, and where either the script has not been analyzed
* by type inference or where the pc has type barriers. For simplicity, we
* always monitor JOF_TYPESET opcodes in the interpreter and stub calls,
* and only look at barriers when generating JIT code for the script.
*/
inline void monitor(JSContext *cx, jsbytecode *pc, const js::Value &val);
/* Monitor an assignment at a SETELEM on a non-integer identifier. */
inline void monitorAssign(JSContext *cx, jsbytecode *pc,
JSObject *obj, jsid id, const js::Value &val);
/* Add a type for a variable in this script. */
inline void setThis(JSContext *cx, Type type);
inline void setThis(JSContext *cx, const js::Value &value);
inline void setNewCalled(JSContext *cx);
inline void setLocal(JSContext *cx, unsigned local, Type type);
inline void setLocal(JSContext *cx, unsigned local, const js::Value &value);
inline void setArgument(JSContext *cx, unsigned arg, Type type);
inline void setArgument(JSContext *cx, unsigned arg, const js::Value &value);
inline void setUpvar(JSContext *cx, unsigned upvar, const js::Value &value);
void trace(JSTracer *trc);
void sweep(JSContext *cx);
void finalizeObjects();
void destroy();
};
struct ArrayTableKey;
2011-03-11 06:25:49 +03:00
typedef HashMap<ArrayTableKey,TypeObject*,ArrayTableKey,SystemAllocPolicy> ArrayTypeTable;
struct ObjectTableKey;
struct ObjectTableEntry;
2011-03-11 06:25:49 +03:00
typedef HashMap<ObjectTableKey,ObjectTableEntry,ObjectTableKey,SystemAllocPolicy> ObjectTypeTable;
/* Type information for a compartment. */
struct TypeCompartment
{
/* List of objects not associated with a script. */
TypeObject *objects;
/* Whether type inference is enabled in this compartment. */
bool inferenceEnabled;
/* Number of scripts in this compartment. */
unsigned scriptCount;
/* Object to use throughout the compartment as the default type of objects with no prototype. */
2011-03-09 20:58:49 +03:00
TypeObject typeEmpty;
/*
* Placeholder object added in type sets throughout the compartment to
* represent lazy arguments objects.
*/
TypeObject typeLazyArguments;
/*
* Bit set if all current types must be marked as unknown, and all scripts
* recompiled. Caused by OOM failure within inference operations.
*/
bool pendingNukeTypes;
/*
* Whether type sets have been nuked, and all future type sets should be as well.
* This is not strictly necessary to do, but avoids thrashing from repeated
* redundant type nuking.
*/
bool typesNuked;
/* Pending recompilations to perform before execution of JIT code can resume. */
Vector<JSScript*> *pendingRecompiles;
/*
* Number of recompilation events and inline frame expansions that have
* occurred in this compartment. If these change, code should not count on
* compiled code or the current stack being intact.
*/
unsigned recompilations;
unsigned frameExpansions;
/*
* Script currently being compiled. All constraints which look for type
* changes inducing recompilation are keyed to this script. Note: script
* compilation is not reentrant.
*/
JSScript *compiledScript;
/* Tables for determining types of singleton/JSON objects. */
ArrayTypeTable *arrayTypeTable;
ObjectTypeTable *objectTypeTable;
void fixArrayType(JSContext *cx, JSObject *obj);
void fixObjectType(JSContext *cx, JSObject *obj);
/* Constraint solving worklist structures. */
/*
* Worklist of types which need to be propagated to constraints. We use a
* worklist to avoid blowing the native stack.
*/
struct PendingWork
{
TypeConstraint *constraint;
TypeSet *source;
Type type;
};
PendingWork *pendingArray;
unsigned pendingCount;
unsigned pendingCapacity;
/* Whether we are currently resolving the pending worklist. */
bool resolving;
/* Logging fields */
/* Counts of stack type sets with some number of possible operand types. */
static const unsigned TYPE_COUNT_LIMIT = 4;
unsigned typeCounts[TYPE_COUNT_LIMIT];
unsigned typeCountOver;
void init(JSContext *cx);
~TypeCompartment();
/* Add a type to register with a list of constraints. */
inline void addPending(JSContext *cx, TypeConstraint *constraint, TypeSet *source, Type type);
void growPendingArray(JSContext *cx);
/* Resolve pending type registrations, excluding delayed ones. */
inline void resolvePending(JSContext *cx);
/* Prints results of this compartment if spew is enabled, checks for warnings. */
void print(JSContext *cx, JSCompartment *compartment);
/*
* Make a function or non-function object associated with an optional
* script. The 'key' parameter here may be an array, typed array, function
* or JSProto_Object to indicate a type whose class is unknown (not just
* js_ObjectClass).
*/
TypeObject *newTypeObject(JSContext *cx, JSScript *script,
const char *base, const char *postfix,
JSProtoKey key, JSObject *proto);
/* Make an initializer object. */
TypeObject *newInitializerTypeObject(JSContext *cx, JSScript *script,
uint32 offset, JSProtoKey key);
void nukeTypes(JSContext *cx);
void processPendingRecompiles(JSContext *cx);
/* Mark all types as needing destruction once inference has 'finished'. */
void setPendingNukeTypes(JSContext *cx);
/* Mark a script as needing recompilation once inference has finished. */
void addPendingRecompile(JSContext *cx, JSScript *script);
/* Monitor future effects on a bytecode. */
void monitorBytecode(JSContext *cx, JSScript *script, uint32 offset,
bool returnOnly = false);
/* Mark any type set containing obj as having a generic object type. */
void markSetsUnknown(JSContext *cx, TypeObject *obj);
2011-03-09 20:58:49 +03:00
void sweep(JSContext *cx);
void finalizeObjects();
2011-03-09 20:58:49 +03:00
};
enum SpewChannel {
ISpewOps, /* ops: New constraints and types. */
ISpewResult, /* result: Final type sets. */
SPEW_COUNT
};
#ifdef DEBUG
const char * InferSpewColorReset();
const char * InferSpewColor(TypeConstraint *constraint);
const char * InferSpewColor(TypeSet *types);
void InferSpew(SpewChannel which, const char *fmt, ...);
const char * TypeString(Type type);
/* Check that the type property for id in obj contains value. */
bool TypeHasProperty(JSContext *cx, TypeObject *obj, jsid id, const Value &value);
#else
inline const char * InferSpewColorReset() { return NULL; }
inline const char * InferSpewColor(TypeConstraint *constraint) { return NULL; }
inline const char * InferSpewColor(TypeSet *types) { return NULL; }
inline void InferSpew(SpewChannel which, const char *fmt, ...) {}
inline const char * TypeString(Type type) { return NULL; }
#endif
/* Print a warning, dump state and abort the program. */
void TypeFailure(JSContext *cx, const char *fmt, ...);
} /* namespace types */
} /* namespace js */
#endif // jsinfer_h___