gecko-dev/dom/animation/ComputedTimingFunction.cpp

209 строки
6.7 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ComputedTimingFunction.h"
#include "nsAlgorithm.h" // For clamped()
#include "nsStyleUtil.h"
namespace mozilla {
void
ComputedTimingFunction::Init(const nsTimingFunction &aFunction)
{
mType = aFunction.mType;
if (nsTimingFunction::IsSplineType(mType)) {
mTimingFunction.Init(aFunction.mFunc.mX1, aFunction.mFunc.mY1,
aFunction.mFunc.mX2, aFunction.mFunc.mY2);
} else {
mStepsOrFrames = aFunction.mStepsOrFrames;
}
}
static inline double
StepTiming(uint32_t aSteps,
double aPortion,
ComputedTimingFunction::BeforeFlag aBeforeFlag,
nsTimingFunction::Type aType)
{
MOZ_ASSERT(aType == nsTimingFunction::Type::StepStart ||
aType == nsTimingFunction::Type::StepEnd, "invalid type");
// Calculate current step using step-end behavior
int32_t step = floor(aPortion * aSteps);
// step-start is one step ahead
if (aType == nsTimingFunction::Type::StepStart) {
step++;
}
// If the "before flag" is set and we are at a transition point,
// drop back a step
if (aBeforeFlag == ComputedTimingFunction::BeforeFlag::Set &&
fmod(aPortion * aSteps, 1) == 0) {
step--;
}
// Convert to a progress value
double result = double(step) / double(aSteps);
// We should not produce a result outside [0, 1] unless we have an
// input outside that range. This takes care of steps that would otherwise
// occur at boundaries.
if (result < 0.0 && aPortion >= 0.0) {
return 0.0;
}
if (result > 1.0 && aPortion <= 1.0) {
return 1.0;
}
return result;
}
static inline double
FramesTiming(uint32_t aFrames, double aPortion)
{
MOZ_ASSERT(aFrames > 1, "the number of frames must be greater than 1");
int32_t currentFrame = floor(aPortion * aFrames);
double result = double(currentFrame) / double(aFrames - 1);
// Don't overshoot the natural range of the animation (by producing an output
// progress greater than 1.0) when we are at the exact end of its interval
// (i.e. the input progress is 1.0).
if (result > 1.0 && aPortion <= 1.0) {
return 1.0;
}
return result;
}
double
ComputedTimingFunction::GetValue(
double aPortion,
ComputedTimingFunction::BeforeFlag aBeforeFlag) const
{
if (HasSpline()) {
// Check for a linear curve.
// (GetSplineValue(), below, also checks this but doesn't work when
// aPortion is outside the range [0.0, 1.0]).
if (mTimingFunction.X1() == mTimingFunction.Y1() &&
mTimingFunction.X2() == mTimingFunction.Y2()) {
return aPortion;
}
// Ensure that we return 0 or 1 on both edges.
if (aPortion == 0.0) {
return 0.0;
}
if (aPortion == 1.0) {
return 1.0;
}
// For negative values, try to extrapolate with tangent (p1 - p0) or,
// if p1 is coincident with p0, with (p2 - p0).
if (aPortion < 0.0) {
if (mTimingFunction.X1() > 0.0) {
return aPortion * mTimingFunction.Y1() / mTimingFunction.X1();
} else if (mTimingFunction.Y1() == 0 && mTimingFunction.X2() > 0.0) {
return aPortion * mTimingFunction.Y2() / mTimingFunction.X2();
}
// If we can't calculate a sensible tangent, don't extrapolate at all.
return 0.0;
}
// For values greater than 1, try to extrapolate with tangent (p2 - p3) or,
// if p2 is coincident with p3, with (p1 - p3).
if (aPortion > 1.0) {
if (mTimingFunction.X2() < 1.0) {
return 1.0 + (aPortion - 1.0) *
(mTimingFunction.Y2() - 1) / (mTimingFunction.X2() - 1);
} else if (mTimingFunction.Y2() == 1 && mTimingFunction.X1() < 1.0) {
return 1.0 + (aPortion - 1.0) *
(mTimingFunction.Y1() - 1) / (mTimingFunction.X1() - 1);
}
// If we can't calculate a sensible tangent, don't extrapolate at all.
return 1.0;
}
return mTimingFunction.GetSplineValue(aPortion);
}
return mType == nsTimingFunction::Type::Frames
? FramesTiming(mStepsOrFrames, aPortion)
: StepTiming(mStepsOrFrames, aPortion, aBeforeFlag, mType);
}
int32_t
ComputedTimingFunction::Compare(const ComputedTimingFunction& aRhs) const
{
if (mType != aRhs.mType) {
return int32_t(mType) - int32_t(aRhs.mType);
}
if (mType == nsTimingFunction::Type::CubicBezier) {
int32_t order = mTimingFunction.Compare(aRhs.mTimingFunction);
if (order != 0) {
return order;
}
} else if (mType == nsTimingFunction::Type::StepStart ||
mType == nsTimingFunction::Type::StepEnd ||
mType == nsTimingFunction::Type::Frames) {
if (mStepsOrFrames != aRhs.mStepsOrFrames) {
return int32_t(mStepsOrFrames) - int32_t(aRhs.mStepsOrFrames);
}
}
return 0;
}
void
ComputedTimingFunction::AppendToString(nsAString& aResult) const
{
switch (mType) {
case nsTimingFunction::Type::CubicBezier:
nsStyleUtil::AppendCubicBezierTimingFunction(mTimingFunction.X1(),
mTimingFunction.Y1(),
mTimingFunction.X2(),
mTimingFunction.Y2(),
aResult);
break;
case nsTimingFunction::Type::StepStart:
case nsTimingFunction::Type::StepEnd:
nsStyleUtil::AppendStepsTimingFunction(mType, mStepsOrFrames, aResult);
break;
case nsTimingFunction::Type::Frames:
nsStyleUtil::AppendFramesTimingFunction(mStepsOrFrames, aResult);
break;
default:
nsStyleUtil::AppendCubicBezierKeywordTimingFunction(mType, aResult);
break;
}
}
/* static */ int32_t
ComputedTimingFunction::Compare(const Maybe<ComputedTimingFunction>& aLhs,
const Maybe<ComputedTimingFunction>& aRhs)
{
// We can't use |operator<| for const Maybe<>& here because
// 'ease' is prior to 'linear' which is represented by Nothing().
// So we have to convert Nothing() as 'linear' and check it first.
nsTimingFunction::Type lhsType = aLhs.isNothing() ?
nsTimingFunction::Type::Linear : aLhs->GetType();
nsTimingFunction::Type rhsType = aRhs.isNothing() ?
nsTimingFunction::Type::Linear : aRhs->GetType();
if (lhsType != rhsType) {
return int32_t(lhsType) - int32_t(rhsType);
}
// Both of them are Nothing().
if (lhsType == nsTimingFunction::Type::Linear) {
return 0;
}
// Other types.
return aLhs->Compare(aRhs.value());
}
} // namespace mozilla