gecko-dev/widget/gonk/nativewindow/GonkBufferQueueKK.cpp

1247 строки
44 KiB
C++
Исходник Обычный вид История

/*
* Copyright (C) 2012 The Android Open Source Project
* Copyright (C) 2013 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "GonkBufferQueue"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
#define GL_GLEXT_PROTOTYPES
#define EGL_EGLEXT_PROTOTYPES
#include <utils/Log.h>
#include <utils/Trace.h>
#include <utils/CallStack.h>
#include <cutils/compiler.h>
#include "mozilla/layers/GrallocTextureClient.h"
#include "mozilla/layers/ImageBridgeChild.h"
#include "GonkBufferQueueKK.h"
#define ATRACE_BUFFER_INDEX(index)
using namespace mozilla;
using namespace mozilla::gfx;
using namespace mozilla::layers;
namespace android {
// Get an ID that's unique within this process.
static int32_t createProcessUniqueId() {
static volatile int32_t globalCounter = 0;
return android_atomic_inc(&globalCounter);
}
static const char* scalingModeName(int scalingMode) {
switch (scalingMode) {
case NATIVE_WINDOW_SCALING_MODE_FREEZE: return "FREEZE";
case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW: return "SCALE_TO_WINDOW";
case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP: return "SCALE_CROP";
default: return "Unknown";
}
}
GonkBufferQueue::GonkBufferQueue(bool allowSynchronousMode,
const sp<IGraphicBufferAlloc>& allocator) :
mDefaultWidth(1),
mDefaultHeight(1),
mMaxAcquiredBufferCount(1),
mDefaultMaxBufferCount(2),
mOverrideMaxBufferCount(0),
// mSynchronousMode(true), // GonkBufferQueue always works in sync mode.
mConsumerControlledByApp(false),
mDequeueBufferCannotBlock(false),
mUseAsyncBuffer(true),
mConnectedApi(NO_CONNECTED_API),
mAbandoned(false),
mFrameCounter(0),
mBufferHasBeenQueued(false),
mDefaultBufferFormat(PIXEL_FORMAT_RGBA_8888),
mConsumerUsageBits(0),
mTransformHint(0)
{
// Choose a name using the PID and a process-unique ID.
mConsumerName = String8::format("unnamed-%d-%d", getpid(), createProcessUniqueId());
ALOGV("GonkBufferQueue");
}
GonkBufferQueue::~GonkBufferQueue() {
ALOGV("~GonkBufferQueue");
}
status_t GonkBufferQueue::setDefaultMaxBufferCountLocked(int count) {
if (count < 2 || count > NUM_BUFFER_SLOTS)
return BAD_VALUE;
mDefaultMaxBufferCount = count;
mDequeueCondition.broadcast();
return NO_ERROR;
}
void GonkBufferQueue::setConsumerName(const String8& name) {
Mutex::Autolock lock(mMutex);
mConsumerName = name;
}
status_t GonkBufferQueue::setDefaultBufferFormat(uint32_t defaultFormat) {
Mutex::Autolock lock(mMutex);
mDefaultBufferFormat = defaultFormat;
return NO_ERROR;
}
status_t GonkBufferQueue::setConsumerUsageBits(uint32_t usage) {
Mutex::Autolock lock(mMutex);
mConsumerUsageBits = usage;
return NO_ERROR;
}
status_t GonkBufferQueue::setTransformHint(uint32_t hint) {
ALOGV("setTransformHint: %02x", hint);
Mutex::Autolock lock(mMutex);
mTransformHint = hint;
return NO_ERROR;
}
TemporaryRef<TextureClient>
GonkBufferQueue::getTextureClientFromBuffer(ANativeWindowBuffer* buffer)
{
Mutex::Autolock _l(mMutex);
if (buffer == NULL) {
ALOGE("getSlotFromBufferLocked: encountered NULL buffer");
return nullptr;
}
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
if (mSlots[i].mGraphicBuffer != NULL && mSlots[i].mGraphicBuffer->handle == buffer->handle) {
return mSlots[i].mTextureClient;
}
}
ALOGE("getSlotFromBufferLocked: unknown buffer: %p", buffer->handle);
return nullptr;
}
int GonkBufferQueue::getSlotFromTextureClientLocked(
TextureClient* client) const
{
if (client == NULL) {
ALOGE("getSlotFromBufferLocked: encountered NULL buffer");
return BAD_VALUE;
}
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
if (mSlots[i].mTextureClient == client) {
return i;
}
}
ALOGE("getSlotFromBufferLocked: unknown TextureClient: %p", client);
return BAD_VALUE;
}
status_t GonkBufferQueue::setBufferCount(int bufferCount) {
ALOGV("setBufferCount: count=%d", bufferCount);
sp<IConsumerListener> listener;
{
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ALOGE("setBufferCount: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
if (bufferCount > NUM_BUFFER_SLOTS) {
ALOGE("setBufferCount: bufferCount too large (max %d)",
NUM_BUFFER_SLOTS);
return BAD_VALUE;
}
// Error out if the user has dequeued buffers
for (int i=0 ; i<NUM_BUFFER_SLOTS; i++) {
if (mSlots[i].mBufferState == BufferSlot::DEQUEUED) {
ALOGE("setBufferCount: client owns some buffers");
return -EINVAL;
}
}
if (bufferCount == 0) {
mOverrideMaxBufferCount = 0;
mDequeueCondition.broadcast();
return NO_ERROR;
}
// fine to assume async to false before we're setting the buffer count
const int minBufferSlots = getMinMaxBufferCountLocked(false);
if (bufferCount < minBufferSlots) {
ALOGE("setBufferCount: requested buffer count (%d) is less than "
"minimum (%d)", bufferCount, minBufferSlots);
return BAD_VALUE;
}
// here we're guaranteed that the client doesn't have dequeued buffers
// and will release all of its buffer references. We don't clear the
// queue, however, so currently queued buffers still get displayed.
// XXX: Should this use drainQueueAndFreeBuffersLocked instead?
freeAllBuffersLocked();
mOverrideMaxBufferCount = bufferCount;
mDequeueCondition.broadcast();
listener = mConsumerListener;
} // scope for lock
if (listener != NULL) {
listener->onBuffersReleased();
}
return NO_ERROR;
}
int GonkBufferQueue::query(int what, int* outValue)
{
ATRACE_CALL();
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ALOGE("query: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
int value;
switch (what) {
case NATIVE_WINDOW_WIDTH:
value = mDefaultWidth;
break;
case NATIVE_WINDOW_HEIGHT:
value = mDefaultHeight;
break;
case NATIVE_WINDOW_FORMAT:
value = mDefaultBufferFormat;
break;
case NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS:
value = getMinUndequeuedBufferCount(false);
break;
case NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND:
value = (mQueue.size() >= 2);
break;
case NATIVE_WINDOW_CONSUMER_USAGE_BITS:
value = mConsumerUsageBits;
break;
default:
return BAD_VALUE;
}
outValue[0] = value;
return NO_ERROR;
}
status_t GonkBufferQueue::requestBuffer(int slot, sp<GraphicBuffer>* buf) {
ATRACE_CALL();
ALOGV("requestBuffer: slot=%d", slot);
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ALOGE("requestBuffer: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
if (slot < 0 || slot >= NUM_BUFFER_SLOTS) {
ALOGE("requestBuffer: slot index out of range [0, %d]: %d",
NUM_BUFFER_SLOTS, slot);
return BAD_VALUE;
} else if (mSlots[slot].mBufferState != BufferSlot::DEQUEUED) {
ALOGE("requestBuffer: slot %d is not owned by the client (state=%d)",
slot, mSlots[slot].mBufferState);
return BAD_VALUE;
}
mSlots[slot].mRequestBufferCalled = true;
*buf = mSlots[slot].mGraphicBuffer;
return NO_ERROR;
}
status_t GonkBufferQueue::dequeueBuffer(int *outBuf, sp<Fence>* outFence, bool async,
uint32_t w, uint32_t h, uint32_t format, uint32_t usage) {
ATRACE_CALL();
ALOGV("dequeueBuffer: w=%d h=%d fmt=%#x usage=%#x", w, h, format, usage);
if ((w && !h) || (!w && h)) {
ALOGE("dequeueBuffer: invalid size: w=%u, h=%u", w, h);
return BAD_VALUE;
}
status_t returnFlags(OK);
int buf = INVALID_BUFFER_SLOT;
{ // Scope for the lock
Mutex::Autolock lock(mMutex);
if (format == 0) {
format = mDefaultBufferFormat;
}
// turn on usage bits the consumer requested
usage |= mConsumerUsageBits;
int found = -1;
bool tryAgain = true;
while (tryAgain) {
if (mAbandoned) {
ALOGE("dequeueBuffer: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
const int maxBufferCount = getMaxBufferCountLocked(async);
if (async && mOverrideMaxBufferCount) {
// FIXME: some drivers are manually setting the buffer-count (which they
// shouldn't), so we do this extra test here to handle that case.
// This is TEMPORARY, until we get this fixed.
if (mOverrideMaxBufferCount < maxBufferCount) {
ALOGE("dequeueBuffer: async mode is invalid with buffercount override");
return BAD_VALUE;
}
}
// Free up any buffers that are in slots beyond the max buffer
// count.
//for (int i = maxBufferCount; i < NUM_BUFFER_SLOTS; i++) {
// assert(mSlots[i].mBufferState == BufferSlot::FREE);
// if (mSlots[i].mGraphicBuffer != NULL) {
// freeBufferLocked(i);
// returnFlags |= IGraphicBufferProducer::RELEASE_ALL_BUFFERS;
// }
//}
// look for a free buffer to give to the client
found = INVALID_BUFFER_SLOT;
int dequeuedCount = 0;
int acquiredCount = 0;
for (int i = 0; i < maxBufferCount; i++) {
const int state = mSlots[i].mBufferState;
switch (state) {
case BufferSlot::DEQUEUED:
dequeuedCount++;
break;
case BufferSlot::ACQUIRED:
acquiredCount++;
break;
case BufferSlot::FREE:
/* We return the oldest of the free buffers to avoid
* stalling the producer if possible. This is because
* the consumer may still have pending reads of the
* buffers in flight.
*/
if ((found < 0) ||
mSlots[i].mFrameNumber < mSlots[found].mFrameNumber) {
found = i;
}
break;
}
}
// clients are not allowed to dequeue more than one buffer
// if they didn't set a buffer count.
if (!mOverrideMaxBufferCount && dequeuedCount) {
ALOGE("dequeueBuffer: can't dequeue multiple buffers without "
"setting the buffer count");
return -EINVAL;
}
// See whether a buffer has been queued since the last
// setBufferCount so we know whether to perform the min undequeued
// buffers check below.
if (mBufferHasBeenQueued) {
// make sure the client is not trying to dequeue more buffers
// than allowed.
const int newUndequeuedCount = maxBufferCount - (dequeuedCount+1);
const int minUndequeuedCount = getMinUndequeuedBufferCount(async);
if (newUndequeuedCount < minUndequeuedCount) {
ALOGE("dequeueBuffer: min undequeued buffer count (%d) "
"exceeded (dequeued=%d undequeudCount=%d)",
minUndequeuedCount, dequeuedCount,
newUndequeuedCount);
return -EBUSY;
}
}
// If no buffer is found, wait for a buffer to be released or for
// the max buffer count to change.
tryAgain = found == INVALID_BUFFER_SLOT;
if (tryAgain) {
// return an error if we're in "cannot block" mode (producer and consumer
// are controlled by the application) -- however, the consumer is allowed
// to acquire briefly an extra buffer (which could cause us to have to wait here)
// and that's okay because we know the wait will be brief (it happens
// if we dequeue a buffer while the consumer has acquired one but not released
// the old one yet -- for e.g.: see GLConsumer::updateTexImage()).
if (mDequeueBufferCannotBlock && (acquiredCount <= mMaxAcquiredBufferCount)) {
ALOGE("dequeueBuffer: would block! returning an error instead.");
return WOULD_BLOCK;
}
mDequeueCondition.wait(mMutex);
}
}
if (found == INVALID_BUFFER_SLOT) {
// This should not happen.
ALOGE("dequeueBuffer: no available buffer slots");
return -EBUSY;
}
buf = found;
*outBuf = found;
const bool useDefaultSize = !w && !h;
if (useDefaultSize) {
// use the default size
w = mDefaultWidth;
h = mDefaultHeight;
}
mSlots[buf].mBufferState = BufferSlot::DEQUEUED;
const sp<GraphicBuffer>& buffer(mSlots[buf].mGraphicBuffer);
if ((buffer == NULL) ||
(uint32_t(buffer->width) != w) ||
(uint32_t(buffer->height) != h) ||
(uint32_t(buffer->format) != format) ||
((uint32_t(buffer->usage) & usage) != usage))
{
mSlots[buf].mAcquireCalled = false;
mSlots[buf].mGraphicBuffer = NULL;
mSlots[buf].mRequestBufferCalled = false;
mSlots[buf].mFence = Fence::NO_FENCE;
if (mSlots[buf].mTextureClient) {
mSlots[buf].mTextureClient->ClearRecycleCallback();
// release TextureClient in ImageBridge thread
TextureClientReleaseTask* task = new TextureClientReleaseTask(mSlots[buf].mTextureClient);
mSlots[buf].mTextureClient = NULL;
ImageBridgeChild::GetSingleton()->GetMessageLoop()->PostTask(FROM_HERE, task);
}
returnFlags |= IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION;
}
if (CC_UNLIKELY(mSlots[buf].mFence == NULL)) {
ALOGE("dequeueBuffer: about to return a NULL fence from mSlot. "
"buf=%d, w=%d, h=%d, format=%d",
buf, buffer->width, buffer->height, buffer->format);
}
*outFence = mSlots[buf].mFence;
mSlots[buf].mFence = Fence::NO_FENCE;
} // end lock scope
sp<GraphicBuffer> graphicBuffer;
if (returnFlags & IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION) {
RefPtr<GrallocTextureClientOGL> textureClient =
new GrallocTextureClientOGL(ImageBridgeChild::GetSingleton(),
gfx::SurfaceFormat::UNKNOWN,
gfx::BackendType::NONE,
TextureFlags::DEALLOCATE_CLIENT);
usage |= GraphicBuffer::USAGE_HW_TEXTURE;
bool result = textureClient->AllocateGralloc(IntSize(w, h), format, usage);
sp<GraphicBuffer> graphicBuffer = textureClient->GetGraphicBuffer();
if (!result || !graphicBuffer.get()) {
ALOGE("dequeueBuffer: failed to alloc gralloc buffer");
return -ENOMEM;
}
{ // Scope for the lock
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ALOGE("dequeueBuffer: SurfaceTexture has been abandoned!");
return NO_INIT;
}
mSlots[buf].mGraphicBuffer = graphicBuffer;
mSlots[buf].mTextureClient = textureClient;
ALOGD("dequeueBuffer: returning slot=%d buf=%p ", buf,
mSlots[buf].mGraphicBuffer->handle);
}
}
ALOGV("dequeueBuffer: returning slot=%d/%llu buf=%p flags=%#x", *outBuf,
mSlots[*outBuf].mFrameNumber,
mSlots[*outBuf].mGraphicBuffer->handle, returnFlags);
return returnFlags;
}
status_t GonkBufferQueue::queueBuffer(int buf,
const QueueBufferInput& input, QueueBufferOutput* output) {
ATRACE_CALL();
Rect crop;
uint32_t transform;
int scalingMode;
int64_t timestamp;
bool isAutoTimestamp;
bool async;
sp<Fence> fence;
input.deflate(&timestamp, &isAutoTimestamp, &crop, &scalingMode, &transform,
&async, &fence);
if (fence == NULL) {
ALOGE("queueBuffer: fence is NULL");
return BAD_VALUE;
}
ALOGV("queueBuffer: slot=%d time=%#llx crop=[%d,%d,%d,%d] tr=%#x "
"scale=%s",
buf, timestamp, crop.left, crop.top, crop.right, crop.bottom,
transform, scalingModeName(scalingMode));
switch (scalingMode) {
case NATIVE_WINDOW_SCALING_MODE_FREEZE:
case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW:
case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP:
case NATIVE_WINDOW_SCALING_MODE_NO_SCALE_CROP:
break;
default:
ALOGE("unknown scaling mode: %d", scalingMode);
return -EINVAL;
}
sp<IConsumerListener> listener;
{ // scope for the lock
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ALOGE("queueBuffer: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
const int maxBufferCount = getMaxBufferCountLocked(async);
if (async && mOverrideMaxBufferCount) {
// FIXME: some drivers are manually setting the buffer-count (which they
// shouldn't), so we do this extra test here to handle that case.
// This is TEMPORARY, until we get this fixed.
if (mOverrideMaxBufferCount < maxBufferCount) {
ALOGE("queueBuffer: async mode is invalid with buffercount override");
return BAD_VALUE;
}
}
if (buf < 0 || buf >= maxBufferCount) {
ALOGE("queueBuffer: slot index out of range [0, %d]: %d",
maxBufferCount, buf);
return -EINVAL;
} else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) {
ALOGE("queueBuffer: slot %d is not owned by the client "
"(state=%d)", buf, mSlots[buf].mBufferState);
return -EINVAL;
} else if (!mSlots[buf].mRequestBufferCalled) {
ALOGE("queueBuffer: slot %d was enqueued without requesting a "
"buffer", buf);
return -EINVAL;
}
ALOGV("queueBuffer: slot=%d/%llu time=%#llx crop=[%d,%d,%d,%d] "
"tr=%#x scale=%s",
buf, mFrameCounter + 1, timestamp,
crop.left, crop.top, crop.right, crop.bottom,
transform, scalingModeName(scalingMode));
const sp<GraphicBuffer>& graphicBuffer(mSlots[buf].mGraphicBuffer);
Rect bufferRect(graphicBuffer->getWidth(), graphicBuffer->getHeight());
Rect croppedCrop;
crop.intersect(bufferRect, &croppedCrop);
if (croppedCrop != crop) {
ALOGE("queueBuffer: crop rect is not contained within the "
"buffer in slot %d", buf);
return -EINVAL;
}
mSlots[buf].mFence = fence;
mSlots[buf].mBufferState = BufferSlot::QUEUED;
mFrameCounter++;
mSlots[buf].mFrameNumber = mFrameCounter;
BufferItem item;
item.mAcquireCalled = mSlots[buf].mAcquireCalled;
item.mGraphicBuffer = mSlots[buf].mGraphicBuffer;
item.mCrop = crop;
item.mTransform = transform & ~NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY;
item.mTransformToDisplayInverse = bool(transform & NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY);
item.mScalingMode = scalingMode;
item.mTimestamp = timestamp;
item.mIsAutoTimestamp = isAutoTimestamp;
item.mFrameNumber = mFrameCounter;
item.mBuf = buf;
item.mFence = fence;
item.mIsDroppable = mDequeueBufferCannotBlock || async;
if (mQueue.empty()) {
// when the queue is empty, we can ignore "mDequeueBufferCannotBlock", and
// simply queue this buffer.
mQueue.push_back(item);
listener = mConsumerListener;
} else {
// when the queue is not empty, we need to look at the front buffer
// state and see if we need to replace it.
Fifo::iterator front(mQueue.begin());
if (front->mIsDroppable) {
// buffer slot currently queued is marked free if still tracked
if (stillTracking(front)) {
mSlots[front->mBuf].mBufferState = BufferSlot::FREE;
// reset the frame number of the freed buffer so that it is the first in
// line to be dequeued again.
mSlots[front->mBuf].mFrameNumber = 0;
}
// and we record the new buffer in the queued list
*front = item;
} else {
mQueue.push_back(item);
listener = mConsumerListener;
}
}
mBufferHasBeenQueued = true;
mDequeueCondition.broadcast();
output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint,
mQueue.size());
} // scope for the lock
// call back without lock held
if (listener != 0) {
listener->onFrameAvailable();
}
return NO_ERROR;
}
void GonkBufferQueue::cancelBuffer(int buf, const sp<Fence>& fence) {
ATRACE_CALL();
ALOGV("cancelBuffer: slot=%d", buf);
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ALOGW("cancelBuffer: GonkBufferQueue has been abandoned!");
return;
}
if (buf < 0 || buf >= NUM_BUFFER_SLOTS) {
ALOGE("cancelBuffer: slot index out of range [0, %d]: %d",
NUM_BUFFER_SLOTS, buf);
return;
} else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) {
ALOGE("cancelBuffer: slot %d is not owned by the client (state=%d)",
buf, mSlots[buf].mBufferState);
return;
} else if (fence == NULL) {
ALOGE("cancelBuffer: fence is NULL");
return;
}
mSlots[buf].mBufferState = BufferSlot::FREE;
mSlots[buf].mFrameNumber = 0;
mSlots[buf].mFence = fence;
mDequeueCondition.broadcast();
}
status_t GonkBufferQueue::connect(const sp<IBinder>& token,
int api, bool producerControlledByApp, QueueBufferOutput* output) {
ATRACE_CALL();
ALOGV("connect: api=%d producerControlledByApp=%s", api,
producerControlledByApp ? "true" : "false");
Mutex::Autolock lock(mMutex);
retry:
if (mAbandoned) {
ALOGE("connect: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
if (mConsumerListener == NULL) {
ALOGE("connect: GonkBufferQueue has no consumer!");
return NO_INIT;
}
if (mConnectedApi != NO_CONNECTED_API) {
ALOGE("connect: already connected (cur=%d, req=%d)",
mConnectedApi, api);
return -EINVAL;
}
// If we disconnect and reconnect quickly, we can be in a state where our slots are
// empty but we have many buffers in the queue. This can cause us to run out of
// memory if we outrun the consumer. Wait here if it looks like we have too many
// buffers queued up.
int maxBufferCount = getMaxBufferCountLocked(false); // worst-case, i.e. largest value
if (mQueue.size() > (size_t) maxBufferCount) {
// TODO: make this bound tighter?
ALOGV("queue size is %d, waiting", mQueue.size());
mDequeueCondition.wait(mMutex);
goto retry;
}
int err = NO_ERROR;
switch (api) {
case NATIVE_WINDOW_API_EGL:
case NATIVE_WINDOW_API_CPU:
case NATIVE_WINDOW_API_MEDIA:
case NATIVE_WINDOW_API_CAMERA:
mConnectedApi = api;
output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint, mQueue.size());
// set-up a death notification so that we can disconnect
// automatically when/if the remote producer dies.
if (token != NULL && token->remoteBinder() != NULL) {
status_t err = token->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
if (err == NO_ERROR) {
mConnectedProducerToken = token;
} else {
ALOGE("linkToDeath failed: %s (%d)", strerror(-err), err);
}
}
break;
default:
err = -EINVAL;
break;
}
mBufferHasBeenQueued = false;
mDequeueBufferCannotBlock = mConsumerControlledByApp && producerControlledByApp;
return err;
}
void GonkBufferQueue::binderDied(const wp<IBinder>& who) {
// If we're here, it means that a producer we were connected to died.
// We're GUARANTEED that we still are connected to it because it has no other way
// to get disconnected -- or -- we wouldn't be here because we're removing this
// callback upon disconnect. Therefore, it's okay to read mConnectedApi without
// synchronization here.
int api = mConnectedApi;
this->disconnect(api);
}
status_t GonkBufferQueue::disconnect(int api) {
ATRACE_CALL();
ALOGV("disconnect: api=%d", api);
int err = NO_ERROR;
sp<IConsumerListener> listener;
{ // Scope for the lock
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
// it is not really an error to disconnect after the surface
// has been abandoned, it should just be a no-op.
return NO_ERROR;
}
switch (api) {
case NATIVE_WINDOW_API_EGL:
case NATIVE_WINDOW_API_CPU:
case NATIVE_WINDOW_API_MEDIA:
case NATIVE_WINDOW_API_CAMERA:
if (mConnectedApi == api) {
freeAllBuffersLocked();
mConnectedApi = NO_CONNECTED_API;
mDequeueCondition.broadcast();
listener = mConsumerListener;
} else {
ALOGE("disconnect: connected to another api (cur=%d, req=%d)",
mConnectedApi, api);
err = -EINVAL;
}
break;
default:
ALOGE("disconnect: unknown API %d", api);
err = -EINVAL;
break;
}
}
if (listener != NULL) {
listener->onBuffersReleased();
}
return err;
}
void GonkBufferQueue::dump(String8& result, const char* prefix) const {
Mutex::Autolock _l(mMutex);
String8 fifo;
int fifoSize = 0;
Fifo::const_iterator i(mQueue.begin());
while (i != mQueue.end()) {
fifo.appendFormat("%02d:%p crop=[%d,%d,%d,%d], "
"xform=0x%02x, time=%#llx, scale=%s\n",
i->mBuf, i->mGraphicBuffer.get(),
i->mCrop.left, i->mCrop.top, i->mCrop.right,
i->mCrop.bottom, i->mTransform, i->mTimestamp,
scalingModeName(i->mScalingMode)
);
i++;
fifoSize++;
}
result.appendFormat(
"%s-BufferQueue mMaxAcquiredBufferCount=%d, mDequeueBufferCannotBlock=%d, default-size=[%dx%d], "
"default-format=%d, transform-hint=%02x, FIFO(%d)={%s}\n",
prefix, mMaxAcquiredBufferCount, mDequeueBufferCannotBlock, mDefaultWidth,
mDefaultHeight, mDefaultBufferFormat, mTransformHint,
fifoSize, fifo.string());
struct {
const char * operator()(int state) const {
switch (state) {
case BufferSlot::DEQUEUED: return "DEQUEUED";
case BufferSlot::QUEUED: return "QUEUED";
case BufferSlot::FREE: return "FREE";
case BufferSlot::ACQUIRED: return "ACQUIRED";
default: return "Unknown";
}
}
} stateName;
// just trim the free buffers to not spam the dump
int maxBufferCount = 0;
for (int i=NUM_BUFFER_SLOTS-1 ; i>=0 ; i--) {
const BufferSlot& slot(mSlots[i]);
if ((slot.mBufferState != BufferSlot::FREE) || (slot.mGraphicBuffer != NULL)) {
maxBufferCount = i+1;
break;
}
}
for (int i=0 ; i<maxBufferCount ; i++) {
const BufferSlot& slot(mSlots[i]);
const sp<GraphicBuffer>& buf(slot.mGraphicBuffer);
result.appendFormat(
"%s%s[%02d:%p] state=%-8s",
prefix, (slot.mBufferState == BufferSlot::ACQUIRED)?">":" ", i, buf.get(),
stateName(slot.mBufferState)
);
if (buf != NULL) {
result.appendFormat(
", %p [%4ux%4u:%4u,%3X]",
buf->handle, buf->width, buf->height, buf->stride,
buf->format);
}
result.append("\n");
}
}
void GonkBufferQueue::freeAllBuffersLocked()
{
ALOGW_IF(!mQueue.isEmpty(),
"freeAllBuffersLocked called but mQueue is not empty");
mQueue.clear();
mBufferHasBeenQueued = false;
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
mSlots[i].mGraphicBuffer = 0;
if (mSlots[i].mTextureClient) {
mSlots[i].mTextureClient->ClearRecycleCallback();
// release TextureClient in ImageBridge thread
TextureClientReleaseTask* task = new TextureClientReleaseTask(mSlots[i].mTextureClient);
mSlots[i].mTextureClient = NULL;
ImageBridgeChild::GetSingleton()->GetMessageLoop()->PostTask(FROM_HERE, task);
}
if (mSlots[i].mBufferState == BufferSlot::ACQUIRED) {
mSlots[i].mNeedsCleanupOnRelease = true;
}
mSlots[i].mBufferState = BufferSlot::FREE;
mSlots[i].mFrameNumber = 0;
mSlots[i].mAcquireCalled = false;
// destroy fence as GonkBufferQueue now takes ownership
mSlots[i].mFence = Fence::NO_FENCE;
}
}
status_t GonkBufferQueue::acquireBuffer(BufferItem *buffer, nsecs_t expectedPresent) {
ATRACE_CALL();
Mutex::Autolock _l(mMutex);
// Check that the consumer doesn't currently have the maximum number of
// buffers acquired. We allow the max buffer count to be exceeded by one
// buffer, so that the consumer can successfully set up the newly acquired
// buffer before releasing the old one.
int numAcquiredBuffers = 0;
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
if (mSlots[i].mBufferState == BufferSlot::ACQUIRED) {
numAcquiredBuffers++;
}
}
if (numAcquiredBuffers >= mMaxAcquiredBufferCount+1) {
ALOGE("acquireBuffer: max acquired buffer count reached: %d (max=%d)",
numAcquiredBuffers, mMaxAcquiredBufferCount);
return INVALID_OPERATION;
}
// check if queue is empty
// In asynchronous mode the list is guaranteed to be one buffer
// deep, while in synchronous mode we use the oldest buffer.
if (mQueue.empty()) {
return NO_BUFFER_AVAILABLE;
}
Fifo::iterator front(mQueue.begin());
// If expectedPresent is specified, we may not want to return a buffer yet.
// If it's specified and there's more than one buffer queued, we may
// want to drop a buffer.
if (expectedPresent != 0) {
const int MAX_REASONABLE_NSEC = 1000000000ULL; // 1 second
// The "expectedPresent" argument indicates when the buffer is expected
// to be presented on-screen. If the buffer's desired-present time
// is earlier (less) than expectedPresent, meaning it'll be displayed
// on time or possibly late if we show it ASAP, we acquire and return
// it. If we don't want to display it until after the expectedPresent
// time, we return PRESENT_LATER without acquiring it.
//
// To be safe, we don't defer acquisition if expectedPresent is
// more than one second in the future beyond the desired present time
// (i.e. we'd be holding the buffer for a long time).
//
// NOTE: code assumes monotonic time values from the system clock are
// positive.
// Start by checking to see if we can drop frames. We skip this check
// if the timestamps are being auto-generated by Surface -- if the
// app isn't generating timestamps explicitly, they probably don't
// want frames to be discarded based on them.
while (mQueue.size() > 1 && !mQueue[0].mIsAutoTimestamp) {
// If entry[1] is timely, drop entry[0] (and repeat). We apply
// an additional criteria here: we only drop the earlier buffer if
// our desiredPresent falls within +/- 1 second of the expected
// present. Otherwise, bogus desiredPresent times (e.g. 0 or
// a small relative timestamp), which normally mean "ignore the
// timestamp and acquire immediately", would cause us to drop
// frames.
//
// We may want to add an additional criteria: don't drop the
// earlier buffer if entry[1]'s fence hasn't signaled yet.
//
// (Vector front is [0], back is [size()-1])
const BufferItem& bi(mQueue[1]);
nsecs_t desiredPresent = bi.mTimestamp;
if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC ||
desiredPresent > expectedPresent) {
// This buffer is set to display in the near future, or
// desiredPresent is garbage. Either way we don't want to
// drop the previous buffer just to get this on screen sooner.
ALOGV("pts nodrop: des=%lld expect=%lld (%lld) now=%lld",
desiredPresent, expectedPresent, desiredPresent - expectedPresent,
systemTime(CLOCK_MONOTONIC));
break;
}
ALOGV("pts drop: queue1des=%lld expect=%lld size=%d",
desiredPresent, expectedPresent, mQueue.size());
if (stillTracking(front)) {
// front buffer is still in mSlots, so mark the slot as free
mSlots[front->mBuf].mBufferState = BufferSlot::FREE;
}
mQueue.erase(front);
front = mQueue.begin();
}
// See if the front buffer is due.
nsecs_t desiredPresent = front->mTimestamp;
if (desiredPresent > expectedPresent &&
desiredPresent < expectedPresent + MAX_REASONABLE_NSEC) {
ALOGV("pts defer: des=%lld expect=%lld (%lld) now=%lld",
desiredPresent, expectedPresent, desiredPresent - expectedPresent,
systemTime(CLOCK_MONOTONIC));
return PRESENT_LATER;
}
ALOGV("pts accept: des=%lld expect=%lld (%lld) now=%lld",
desiredPresent, expectedPresent, desiredPresent - expectedPresent,
systemTime(CLOCK_MONOTONIC));
}
int buf = front->mBuf;
buffer->mGraphicBuffer = mSlots[buf].mGraphicBuffer;
buffer->mFrameNumber = mSlots[buf].mFrameNumber;
buffer->mBuf = buf;
buffer->mFence = mSlots[buf].mFence;
ATRACE_BUFFER_INDEX(buf);
ALOGV("acquireBuffer: acquiring { slot=%d/%llu, buffer=%p }",
front->mBuf, front->mFrameNumber,
front->mGraphicBuffer->handle);
// if front buffer still being tracked update slot state
if (stillTracking(front)) {
mSlots[buf].mAcquireCalled = true;
mSlots[buf].mNeedsCleanupOnRelease = false;
mSlots[buf].mBufferState = BufferSlot::ACQUIRED;
mSlots[buf].mFence = Fence::NO_FENCE;
}
// If the buffer has previously been acquired by the consumer, set
// mGraphicBuffer to NULL to avoid unnecessarily remapping this
// buffer on the consumer side.
//if (buffer->mAcquireCalled) {
// buffer->mGraphicBuffer = NULL;
//}
mQueue.erase(front);
mDequeueCondition.broadcast();
return NO_ERROR;
}
status_t GonkBufferQueue::releaseBuffer(int buf, uint64_t frameNumber, const sp<Fence>& fence) {
ATRACE_CALL();
if (buf == INVALID_BUFFER_SLOT || fence == NULL) {
return BAD_VALUE;
}
Mutex::Autolock _l(mMutex);
// If the frame number has changed because buffer has been reallocated,
// we can ignore this releaseBuffer for the old buffer.
//if (frameNumber != mSlots[buf].mFrameNumber) {
// return STALE_BUFFER_SLOT;
//}
// Internal state consistency checks:
// Make sure this buffers hasn't been queued while we were owning it (acquired)
Fifo::iterator front(mQueue.begin());
Fifo::const_iterator const end(mQueue.end());
while (front != end) {
if (front->mBuf == buf) {
LOG_ALWAYS_FATAL("[%s] received new buffer(#%lld) on slot #%d that has not yet been "
"acquired", mConsumerName.string(), frameNumber, buf);
break; // never reached
}
front++;
}
// The buffer can now only be released if its in the acquired state
if (mSlots[buf].mBufferState == BufferSlot::ACQUIRED) {
mSlots[buf].mFence = fence;
mSlots[buf].mBufferState = BufferSlot::FREE;
} else if (mSlots[buf].mNeedsCleanupOnRelease) {
ALOGV("releasing a stale buf %d its state was %d", buf, mSlots[buf].mBufferState);
mSlots[buf].mNeedsCleanupOnRelease = false;
return STALE_BUFFER_SLOT;
} else {
ALOGE("attempted to release buf %d but its state was %d", buf, mSlots[buf].mBufferState);
return -EINVAL;
}
mDequeueCondition.broadcast();
return NO_ERROR;
}
status_t GonkBufferQueue::consumerConnect(const sp<IConsumerListener>& consumerListener,
bool controlledByApp) {
ALOGV("consumerConnect controlledByApp=%s",
controlledByApp ? "true" : "false");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ALOGE("consumerConnect: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
if (consumerListener == NULL) {
ALOGE("consumerConnect: consumerListener may not be NULL");
return BAD_VALUE;
}
mConsumerListener = consumerListener;
mConsumerControlledByApp = controlledByApp;
return NO_ERROR;
}
status_t GonkBufferQueue::consumerDisconnect() {
ALOGV("consumerDisconnect");
Mutex::Autolock lock(mMutex);
if (mConsumerListener == NULL) {
ALOGE("consumerDisconnect: No consumer is connected!");
return -EINVAL;
}
mAbandoned = true;
mConsumerListener = NULL;
mQueue.clear();
freeAllBuffersLocked();
mDequeueCondition.broadcast();
return NO_ERROR;
}
status_t GonkBufferQueue::getReleasedBuffers(uint32_t* slotMask) {
ALOGV("getReleasedBuffers");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ALOGE("getReleasedBuffers: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
uint32_t mask = 0;
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
if (!mSlots[i].mAcquireCalled) {
mask |= 1 << i;
}
}
// Remove buffers in flight (on the queue) from the mask where acquire has
// been called, as the consumer will not receive the buffer address, so
// it should not free these slots.
Fifo::iterator front(mQueue.begin());
while (front != mQueue.end()) {
if (front->mAcquireCalled)
mask &= ~(1 << front->mBuf);
front++;
}
*slotMask = mask;
ALOGV("getReleasedBuffers: returning mask %#x", mask);
return NO_ERROR;
}
status_t GonkBufferQueue::setDefaultBufferSize(uint32_t w, uint32_t h) {
ALOGV("setDefaultBufferSize: w=%d, h=%d", w, h);
if (!w || !h) {
ALOGE("setDefaultBufferSize: dimensions cannot be 0 (w=%d, h=%d)",
w, h);
return BAD_VALUE;
}
Mutex::Autolock lock(mMutex);
mDefaultWidth = w;
mDefaultHeight = h;
return NO_ERROR;
}
status_t GonkBufferQueue::setDefaultMaxBufferCount(int bufferCount) {
ATRACE_CALL();
Mutex::Autolock lock(mMutex);
return setDefaultMaxBufferCountLocked(bufferCount);
}
status_t GonkBufferQueue::disableAsyncBuffer() {
ATRACE_CALL();
Mutex::Autolock lock(mMutex);
if (mConsumerListener != NULL) {
ALOGE("disableAsyncBuffer: consumer already connected!");
return INVALID_OPERATION;
}
mUseAsyncBuffer = false;
return NO_ERROR;
}
status_t GonkBufferQueue::setMaxAcquiredBufferCount(int maxAcquiredBuffers) {
ATRACE_CALL();
Mutex::Autolock lock(mMutex);
if (maxAcquiredBuffers < 1 || maxAcquiredBuffers > MAX_MAX_ACQUIRED_BUFFERS) {
ALOGE("setMaxAcquiredBufferCount: invalid count specified: %d",
maxAcquiredBuffers);
return BAD_VALUE;
}
if (mConnectedApi != NO_CONNECTED_API) {
return INVALID_OPERATION;
}
mMaxAcquiredBufferCount = maxAcquiredBuffers;
return NO_ERROR;
}
int GonkBufferQueue::getMinUndequeuedBufferCount(bool async) const {
// if dequeueBuffer is allowed to error out, we don't have to
// add an extra buffer.
if (!mUseAsyncBuffer)
return mMaxAcquiredBufferCount;
// we're in async mode, or we want to prevent the app to
// deadlock itself, we throw-in an extra buffer to guarantee it.
if (mDequeueBufferCannotBlock || async)
return mMaxAcquiredBufferCount + 1;
return mMaxAcquiredBufferCount;
}
int GonkBufferQueue::getMinMaxBufferCountLocked(bool async) const {
return getMinUndequeuedBufferCount(async) + 1;
}
int GonkBufferQueue::getMaxBufferCountLocked(bool async) const {
int minMaxBufferCount = getMinMaxBufferCountLocked(async);
int maxBufferCount = mDefaultMaxBufferCount;
if (maxBufferCount < minMaxBufferCount) {
maxBufferCount = minMaxBufferCount;
}
if (mOverrideMaxBufferCount != 0) {
assert(mOverrideMaxBufferCount >= minMaxBufferCount);
maxBufferCount = mOverrideMaxBufferCount;
}
// Any buffers that are dequeued by the producer or sitting in the queue
// waiting to be consumed need to have their slots preserved. Such
// buffers will temporarily keep the max buffer count up until the slots
// no longer need to be preserved.
for (int i = maxBufferCount; i < NUM_BUFFER_SLOTS; i++) {
BufferSlot::BufferState state = mSlots[i].mBufferState;
if (state == BufferSlot::QUEUED || state == BufferSlot::DEQUEUED) {
maxBufferCount = i + 1;
}
}
return maxBufferCount;
}
bool GonkBufferQueue::stillTracking(const BufferItem *item) const {
const BufferSlot &slot = mSlots[item->mBuf];
ALOGV("stillTracking?: item: { slot=%d/%llu, buffer=%p }, "
"slot: { slot=%d/%llu, buffer=%p }",
item->mBuf, item->mFrameNumber,
(item->mGraphicBuffer.get() ? item->mGraphicBuffer->handle : 0),
item->mBuf, slot.mFrameNumber,
(slot.mGraphicBuffer.get() ? slot.mGraphicBuffer->handle : 0));
// Compare item with its original buffer slot. We can check the slot
// as the buffer would not be moved to a different slot by the producer.
return (slot.mGraphicBuffer != NULL &&
item->mGraphicBuffer->handle == slot.mGraphicBuffer->handle);
}
GonkBufferQueue::ProxyConsumerListener::ProxyConsumerListener(
const wp<ConsumerListener>& consumerListener):
mConsumerListener(consumerListener) {}
GonkBufferQueue::ProxyConsumerListener::~ProxyConsumerListener() {}
void GonkBufferQueue::ProxyConsumerListener::onFrameAvailable() {
sp<ConsumerListener> listener(mConsumerListener.promote());
if (listener != NULL) {
listener->onFrameAvailable();
}
}
void GonkBufferQueue::ProxyConsumerListener::onBuffersReleased() {
sp<ConsumerListener> listener(mConsumerListener.promote());
if (listener != NULL) {
listener->onBuffersReleased();
}
}
}; // namespace android