зеркало из https://github.com/mozilla/gecko-dev.git
167 строки
6.3 KiB
C
167 строки
6.3 KiB
C
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
#ifndef SKIA_EXT_CONVOLVER_H_
|
||
|
#define SKIA_EXT_CONVOLVER_H_
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "base/basictypes.h"
|
||
|
#include "prtypes.h"
|
||
|
#include "base/cpu.h"
|
||
|
#include "skia/SkTypes.h"
|
||
|
|
||
|
// avoid confusion with Mac OS X's math library (Carbon)
|
||
|
#if defined(__APPLE__)
|
||
|
#undef FloatToFixed
|
||
|
#undef FixedToFloat
|
||
|
#endif
|
||
|
|
||
|
namespace skia {
|
||
|
|
||
|
// Represents a filter in one dimension. Each output pixel has one entry in this
|
||
|
// object for the filter values contributing to it. You build up the filter
|
||
|
// list by calling AddFilter for each output pixel (in order).
|
||
|
//
|
||
|
// We do 2-dimensional convolution by first convolving each row by one
|
||
|
// ConvolutionFilter1D, then convolving each column by another one.
|
||
|
//
|
||
|
// Entries are stored in fixed point, shifted left by kShiftBits.
|
||
|
class ConvolutionFilter1D {
|
||
|
public:
|
||
|
typedef short Fixed;
|
||
|
|
||
|
// The number of bits that fixed point values are shifted by.
|
||
|
enum { kShiftBits = 14 };
|
||
|
|
||
|
ConvolutionFilter1D();
|
||
|
~ConvolutionFilter1D();
|
||
|
|
||
|
// Convert between floating point and our fixed point representation.
|
||
|
static Fixed FloatToFixed(float f) {
|
||
|
return static_cast<Fixed>(f * (1 << kShiftBits));
|
||
|
}
|
||
|
static unsigned char FixedToChar(Fixed x) {
|
||
|
return static_cast<unsigned char>(x >> kShiftBits);
|
||
|
}
|
||
|
static float FixedToFloat(Fixed x) {
|
||
|
// The cast relies on Fixed being a short, implying that on
|
||
|
// the platforms we care about all (16) bits will fit into
|
||
|
// the mantissa of a (32-bit) float.
|
||
|
COMPILE_ASSERT(sizeof(Fixed) == 2, fixed_type_should_fit_in_float_mantissa);
|
||
|
float raw = static_cast<float>(x);
|
||
|
return ldexpf(raw, -kShiftBits);
|
||
|
}
|
||
|
|
||
|
// Returns the maximum pixel span of a filter.
|
||
|
int max_filter() const { return max_filter_; }
|
||
|
|
||
|
// Returns the number of filters in this filter. This is the dimension of the
|
||
|
// output image.
|
||
|
int num_values() const { return static_cast<int>(filters_.size()); }
|
||
|
|
||
|
// Appends the given list of scaling values for generating a given output
|
||
|
// pixel. |filter_offset| is the distance from the edge of the image to where
|
||
|
// the scaling factors start. The scaling factors apply to the source pixels
|
||
|
// starting from this position, and going for the next |filter_length| pixels.
|
||
|
//
|
||
|
// You will probably want to make sure your input is normalized (that is,
|
||
|
// all entries in |filter_values| sub to one) to prevent affecting the overall
|
||
|
// brighness of the image.
|
||
|
//
|
||
|
// The filter_length must be > 0.
|
||
|
//
|
||
|
// This version will automatically convert your input to fixed point.
|
||
|
void AddFilter(int filter_offset,
|
||
|
const float* filter_values,
|
||
|
int filter_length);
|
||
|
|
||
|
// Same as the above version, but the input is already fixed point.
|
||
|
void AddFilter(int filter_offset,
|
||
|
const Fixed* filter_values,
|
||
|
int filter_length);
|
||
|
|
||
|
// Retrieves a filter for the given |value_offset|, a position in the output
|
||
|
// image in the direction we're convolving. The offset and length of the
|
||
|
// filter values are put into the corresponding out arguments (see AddFilter
|
||
|
// above for what these mean), and a pointer to the first scaling factor is
|
||
|
// returned. There will be |filter_length| values in this array.
|
||
|
inline const Fixed* FilterForValue(int value_offset,
|
||
|
int* filter_offset,
|
||
|
int* filter_length) const {
|
||
|
const FilterInstance& filter = filters_[value_offset];
|
||
|
*filter_offset = filter.offset;
|
||
|
*filter_length = filter.length;
|
||
|
if (filter.length == 0) {
|
||
|
return NULL;
|
||
|
}
|
||
|
return &filter_values_[filter.data_location];
|
||
|
}
|
||
|
|
||
|
|
||
|
inline void PaddingForSIMD(int padding_count) {
|
||
|
// Padding |padding_count| of more dummy coefficients after the coefficients
|
||
|
// of last filter to prevent SIMD instructions which load 8 or 16 bytes
|
||
|
// together to access invalid memory areas. We are not trying to align the
|
||
|
// coefficients right now due to the opaqueness of <vector> implementation.
|
||
|
// This has to be done after all |AddFilter| calls.
|
||
|
for (int i = 0; i < padding_count; ++i)
|
||
|
filter_values_.push_back(static_cast<Fixed>(0));
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
struct FilterInstance {
|
||
|
// Offset within filter_values for this instance of the filter.
|
||
|
int data_location;
|
||
|
|
||
|
// Distance from the left of the filter to the center. IN PIXELS
|
||
|
int offset;
|
||
|
|
||
|
// Number of values in this filter instance.
|
||
|
int length;
|
||
|
};
|
||
|
|
||
|
// Stores the information for each filter added to this class.
|
||
|
std::vector<FilterInstance> filters_;
|
||
|
|
||
|
// We store all the filter values in this flat list, indexed by
|
||
|
// |FilterInstance.data_location| to avoid the mallocs required for storing
|
||
|
// each one separately.
|
||
|
std::vector<Fixed> filter_values_;
|
||
|
|
||
|
// The maximum size of any filter we've added.
|
||
|
int max_filter_;
|
||
|
};
|
||
|
|
||
|
// Does a two-dimensional convolution on the given source image.
|
||
|
//
|
||
|
// It is assumed the source pixel offsets referenced in the input filters
|
||
|
// reference only valid pixels, so the source image size is not required. Each
|
||
|
// row of the source image starts |source_byte_row_stride| after the previous
|
||
|
// one (this allows you to have rows with some padding at the end).
|
||
|
//
|
||
|
// The result will be put into the given output buffer. The destination image
|
||
|
// size will be xfilter.num_values() * yfilter.num_values() pixels. It will be
|
||
|
// in rows of exactly xfilter.num_values() * 4 bytes.
|
||
|
//
|
||
|
// |source_has_alpha| is a hint that allows us to avoid doing computations on
|
||
|
// the alpha channel if the image is opaque. If you don't know, set this to
|
||
|
// true and it will work properly, but setting this to false will be a few
|
||
|
// percent faster if you know the image is opaque.
|
||
|
//
|
||
|
// The layout in memory is assumed to be 4-bytes per pixel in B-G-R-A order
|
||
|
// (this is ARGB when loaded into 32-bit words on a little-endian machine).
|
||
|
void BGRAConvolve2D(const unsigned char* source_data,
|
||
|
int source_byte_row_stride,
|
||
|
bool source_has_alpha,
|
||
|
const ConvolutionFilter1D& xfilter,
|
||
|
const ConvolutionFilter1D& yfilter,
|
||
|
int output_byte_row_stride,
|
||
|
unsigned char* output,
|
||
|
bool use_sse2);
|
||
|
} // namespace skia
|
||
|
|
||
|
#endif // SKIA_EXT_CONVOLVER_H_
|