gecko-dev/gfx/2d/FilterNodeD2D1.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1140 строки
40 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "FilterNodeD2D1.h"
#include "Logging.h"
#include "SourceSurfaceD2D1.h"
#include "DrawTargetD2D1.h"
#include "ExtendInputEffectD2D1.h"
namespace mozilla {
namespace gfx {
D2D1_COLORMATRIX_ALPHA_MODE D2DAlphaMode(uint32_t aMode) {
switch (aMode) {
case ALPHA_MODE_PREMULTIPLIED:
return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED;
case ALPHA_MODE_STRAIGHT:
return D2D1_COLORMATRIX_ALPHA_MODE_STRAIGHT;
default:
MOZ_CRASH("GFX: Unknown enum value D2DAlphaMode!");
}
return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED;
}
D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE D2DAffineTransformInterpolationMode(
SamplingFilter aSamplingFilter) {
switch (aSamplingFilter) {
case SamplingFilter::GOOD:
return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
case SamplingFilter::LINEAR:
return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
case SamplingFilter::POINT:
return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_NEAREST_NEIGHBOR;
default:
MOZ_CRASH("GFX: Unknown enum value D2DAffineTIM!");
}
return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
}
D2D1_BLEND_MODE D2DBlendMode(uint32_t aMode) {
switch (aMode) {
case BLEND_MODE_DARKEN:
return D2D1_BLEND_MODE_DARKEN;
case BLEND_MODE_LIGHTEN:
return D2D1_BLEND_MODE_LIGHTEN;
case BLEND_MODE_MULTIPLY:
return D2D1_BLEND_MODE_MULTIPLY;
case BLEND_MODE_SCREEN:
return D2D1_BLEND_MODE_SCREEN;
case BLEND_MODE_OVERLAY:
return D2D1_BLEND_MODE_OVERLAY;
case BLEND_MODE_COLOR_DODGE:
return D2D1_BLEND_MODE_COLOR_DODGE;
case BLEND_MODE_COLOR_BURN:
return D2D1_BLEND_MODE_COLOR_BURN;
case BLEND_MODE_HARD_LIGHT:
return D2D1_BLEND_MODE_HARD_LIGHT;
case BLEND_MODE_SOFT_LIGHT:
return D2D1_BLEND_MODE_SOFT_LIGHT;
case BLEND_MODE_DIFFERENCE:
return D2D1_BLEND_MODE_DIFFERENCE;
case BLEND_MODE_EXCLUSION:
return D2D1_BLEND_MODE_EXCLUSION;
case BLEND_MODE_HUE:
return D2D1_BLEND_MODE_HUE;
case BLEND_MODE_SATURATION:
return D2D1_BLEND_MODE_SATURATION;
case BLEND_MODE_COLOR:
return D2D1_BLEND_MODE_COLOR;
case BLEND_MODE_LUMINOSITY:
return D2D1_BLEND_MODE_LUMINOSITY;
default:
MOZ_CRASH("GFX: Unknown enum value D2DBlendMode!");
}
return D2D1_BLEND_MODE_DARKEN;
}
D2D1_MORPHOLOGY_MODE D2DMorphologyMode(uint32_t aMode) {
switch (aMode) {
case MORPHOLOGY_OPERATOR_DILATE:
return D2D1_MORPHOLOGY_MODE_DILATE;
case MORPHOLOGY_OPERATOR_ERODE:
return D2D1_MORPHOLOGY_MODE_ERODE;
}
MOZ_CRASH("GFX: Unknown enum value D2DMorphologyMode!");
return D2D1_MORPHOLOGY_MODE_DILATE;
}
D2D1_TURBULENCE_NOISE D2DTurbulenceNoise(uint32_t aMode) {
switch (aMode) {
case TURBULENCE_TYPE_FRACTAL_NOISE:
return D2D1_TURBULENCE_NOISE_FRACTAL_SUM;
case TURBULENCE_TYPE_TURBULENCE:
return D2D1_TURBULENCE_NOISE_TURBULENCE;
}
MOZ_CRASH("GFX: Unknown enum value D2DTurbulenceNoise!");
return D2D1_TURBULENCE_NOISE_TURBULENCE;
}
D2D1_COMPOSITE_MODE D2DFilterCompositionMode(uint32_t aMode) {
switch (aMode) {
case COMPOSITE_OPERATOR_OVER:
return D2D1_COMPOSITE_MODE_SOURCE_OVER;
case COMPOSITE_OPERATOR_IN:
return D2D1_COMPOSITE_MODE_SOURCE_IN;
case COMPOSITE_OPERATOR_OUT:
return D2D1_COMPOSITE_MODE_SOURCE_OUT;
case COMPOSITE_OPERATOR_ATOP:
return D2D1_COMPOSITE_MODE_SOURCE_ATOP;
case COMPOSITE_OPERATOR_XOR:
return D2D1_COMPOSITE_MODE_XOR;
}
MOZ_CRASH("GFX: Unknown enum value D2DFilterCompositionMode!");
return D2D1_COMPOSITE_MODE_SOURCE_OVER;
}
D2D1_CHANNEL_SELECTOR D2DChannelSelector(uint32_t aMode) {
switch (aMode) {
case COLOR_CHANNEL_R:
return D2D1_CHANNEL_SELECTOR_R;
case COLOR_CHANNEL_G:
return D2D1_CHANNEL_SELECTOR_G;
case COLOR_CHANNEL_B:
return D2D1_CHANNEL_SELECTOR_B;
case COLOR_CHANNEL_A:
return D2D1_CHANNEL_SELECTOR_A;
}
MOZ_CRASH("GFX: Unknown enum value D2DChannelSelector!");
return D2D1_CHANNEL_SELECTOR_R;
}
already_AddRefed<ID2D1Image> GetImageForSourceSurface(DrawTarget* aDT,
SourceSurface* aSurface) {
if (aDT->IsTiledDrawTarget() || aDT->IsDualDrawTarget() ||
aDT->IsCaptureDT()) {
gfxDevCrash(LogReason::FilterNodeD2D1Target)
<< "Incompatible draw target type! " << (int)aDT->IsTiledDrawTarget()
<< " " << (int)aDT->IsDualDrawTarget();
return nullptr;
}
switch (aDT->GetBackendType()) {
case BackendType::DIRECT2D1_1:
return static_cast<DrawTargetD2D1*>(aDT)->GetImageForSurface(
aSurface, ExtendMode::CLAMP);
default:
gfxDevCrash(LogReason::FilterNodeD2D1Backend)
<< "Unknown draw target type! " << (int)aDT->GetBackendType();
return nullptr;
}
}
uint32_t ConvertValue(FilterType aType, uint32_t aAttribute, uint32_t aValue) {
switch (aType) {
case FilterType::COLOR_MATRIX:
if (aAttribute == ATT_COLOR_MATRIX_ALPHA_MODE) {
aValue = D2DAlphaMode(aValue);
}
break;
case FilterType::TRANSFORM:
if (aAttribute == ATT_TRANSFORM_FILTER) {
aValue = D2DAffineTransformInterpolationMode(SamplingFilter(aValue));
}
break;
case FilterType::BLEND:
if (aAttribute == ATT_BLEND_BLENDMODE) {
aValue = D2DBlendMode(aValue);
}
break;
case FilterType::MORPHOLOGY:
if (aAttribute == ATT_MORPHOLOGY_OPERATOR) {
aValue = D2DMorphologyMode(aValue);
}
break;
case FilterType::DISPLACEMENT_MAP:
if (aAttribute == ATT_DISPLACEMENT_MAP_X_CHANNEL ||
aAttribute == ATT_DISPLACEMENT_MAP_Y_CHANNEL) {
aValue = D2DChannelSelector(aValue);
}
break;
case FilterType::TURBULENCE:
if (aAttribute == ATT_TURBULENCE_TYPE) {
aValue = D2DTurbulenceNoise(aValue);
}
break;
case FilterType::COMPOSITE:
if (aAttribute == ATT_COMPOSITE_OPERATOR) {
aValue = D2DFilterCompositionMode(aValue);
}
break;
default:
break;
}
return aValue;
}
void ConvertValue(FilterType aType, uint32_t aAttribute, IntSize& aValue) {
switch (aType) {
case FilterType::MORPHOLOGY:
if (aAttribute == ATT_MORPHOLOGY_RADII) {
aValue.width *= 2;
aValue.width += 1;
aValue.height *= 2;
aValue.height += 1;
}
break;
default:
break;
}
}
UINT32
GetD2D1InputForInput(FilterType aType, uint32_t aIndex) { return aIndex; }
#define CONVERT_PROP(moz2dname, d2dname) \
case ATT_##moz2dname: \
return D2D1_##d2dname
UINT32
GetD2D1PropForAttribute(FilterType aType, uint32_t aIndex) {
switch (aType) {
case FilterType::COLOR_MATRIX:
switch (aIndex) {
CONVERT_PROP(COLOR_MATRIX_MATRIX, COLORMATRIX_PROP_COLOR_MATRIX);
CONVERT_PROP(COLOR_MATRIX_ALPHA_MODE, COLORMATRIX_PROP_ALPHA_MODE);
}
break;
case FilterType::TRANSFORM:
switch (aIndex) {
CONVERT_PROP(TRANSFORM_MATRIX, 2DAFFINETRANSFORM_PROP_TRANSFORM_MATRIX);
CONVERT_PROP(TRANSFORM_FILTER,
2DAFFINETRANSFORM_PROP_INTERPOLATION_MODE);
}
case FilterType::BLEND:
switch (aIndex) { CONVERT_PROP(BLEND_BLENDMODE, BLEND_PROP_MODE); }
break;
case FilterType::MORPHOLOGY:
switch (aIndex) {
CONVERT_PROP(MORPHOLOGY_OPERATOR, MORPHOLOGY_PROP_MODE);
}
break;
case FilterType::FLOOD:
switch (aIndex) { CONVERT_PROP(FLOOD_COLOR, FLOOD_PROP_COLOR); }
break;
case FilterType::TILE:
switch (aIndex) { CONVERT_PROP(TILE_SOURCE_RECT, TILE_PROP_RECT); }
break;
case FilterType::TABLE_TRANSFER:
switch (aIndex) {
CONVERT_PROP(TABLE_TRANSFER_DISABLE_R, TABLETRANSFER_PROP_RED_DISABLE);
CONVERT_PROP(TABLE_TRANSFER_DISABLE_G,
TABLETRANSFER_PROP_GREEN_DISABLE);
CONVERT_PROP(TABLE_TRANSFER_DISABLE_B, TABLETRANSFER_PROP_BLUE_DISABLE);
CONVERT_PROP(TABLE_TRANSFER_DISABLE_A,
TABLETRANSFER_PROP_ALPHA_DISABLE);
CONVERT_PROP(TABLE_TRANSFER_TABLE_R, TABLETRANSFER_PROP_RED_TABLE);
CONVERT_PROP(TABLE_TRANSFER_TABLE_G, TABLETRANSFER_PROP_GREEN_TABLE);
CONVERT_PROP(TABLE_TRANSFER_TABLE_B, TABLETRANSFER_PROP_BLUE_TABLE);
CONVERT_PROP(TABLE_TRANSFER_TABLE_A, TABLETRANSFER_PROP_ALPHA_TABLE);
}
break;
case FilterType::DISCRETE_TRANSFER:
switch (aIndex) {
CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_R,
DISCRETETRANSFER_PROP_RED_DISABLE);
CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_G,
DISCRETETRANSFER_PROP_GREEN_DISABLE);
CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_B,
DISCRETETRANSFER_PROP_BLUE_DISABLE);
CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_A,
DISCRETETRANSFER_PROP_ALPHA_DISABLE);
CONVERT_PROP(DISCRETE_TRANSFER_TABLE_R,
DISCRETETRANSFER_PROP_RED_TABLE);
CONVERT_PROP(DISCRETE_TRANSFER_TABLE_G,
DISCRETETRANSFER_PROP_GREEN_TABLE);
CONVERT_PROP(DISCRETE_TRANSFER_TABLE_B,
DISCRETETRANSFER_PROP_BLUE_TABLE);
CONVERT_PROP(DISCRETE_TRANSFER_TABLE_A,
DISCRETETRANSFER_PROP_ALPHA_TABLE);
}
break;
case FilterType::LINEAR_TRANSFER:
switch (aIndex) {
CONVERT_PROP(LINEAR_TRANSFER_DISABLE_R,
LINEARTRANSFER_PROP_RED_DISABLE);
CONVERT_PROP(LINEAR_TRANSFER_DISABLE_G,
LINEARTRANSFER_PROP_GREEN_DISABLE);
CONVERT_PROP(LINEAR_TRANSFER_DISABLE_B,
LINEARTRANSFER_PROP_BLUE_DISABLE);
CONVERT_PROP(LINEAR_TRANSFER_DISABLE_A,
LINEARTRANSFER_PROP_ALPHA_DISABLE);
CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_R,
LINEARTRANSFER_PROP_RED_Y_INTERCEPT);
CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_G,
LINEARTRANSFER_PROP_GREEN_Y_INTERCEPT);
CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_B,
LINEARTRANSFER_PROP_BLUE_Y_INTERCEPT);
CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_A,
LINEARTRANSFER_PROP_ALPHA_Y_INTERCEPT);
CONVERT_PROP(LINEAR_TRANSFER_SLOPE_R, LINEARTRANSFER_PROP_RED_SLOPE);
CONVERT_PROP(LINEAR_TRANSFER_SLOPE_G, LINEARTRANSFER_PROP_GREEN_SLOPE);
CONVERT_PROP(LINEAR_TRANSFER_SLOPE_B, LINEARTRANSFER_PROP_BLUE_SLOPE);
CONVERT_PROP(LINEAR_TRANSFER_SLOPE_A, LINEARTRANSFER_PROP_ALPHA_SLOPE);
}
break;
case FilterType::GAMMA_TRANSFER:
switch (aIndex) {
CONVERT_PROP(GAMMA_TRANSFER_DISABLE_R, GAMMATRANSFER_PROP_RED_DISABLE);
CONVERT_PROP(GAMMA_TRANSFER_DISABLE_G,
GAMMATRANSFER_PROP_GREEN_DISABLE);
CONVERT_PROP(GAMMA_TRANSFER_DISABLE_B, GAMMATRANSFER_PROP_BLUE_DISABLE);
CONVERT_PROP(GAMMA_TRANSFER_DISABLE_A,
GAMMATRANSFER_PROP_ALPHA_DISABLE);
CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_R,
GAMMATRANSFER_PROP_RED_AMPLITUDE);
CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_G,
GAMMATRANSFER_PROP_GREEN_AMPLITUDE);
CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_B,
GAMMATRANSFER_PROP_BLUE_AMPLITUDE);
CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_A,
GAMMATRANSFER_PROP_ALPHA_AMPLITUDE);
CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_R,
GAMMATRANSFER_PROP_RED_EXPONENT);
CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_G,
GAMMATRANSFER_PROP_GREEN_EXPONENT);
CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_B,
GAMMATRANSFER_PROP_BLUE_EXPONENT);
CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_A,
GAMMATRANSFER_PROP_ALPHA_EXPONENT);
CONVERT_PROP(GAMMA_TRANSFER_OFFSET_R, GAMMATRANSFER_PROP_RED_OFFSET);
CONVERT_PROP(GAMMA_TRANSFER_OFFSET_G, GAMMATRANSFER_PROP_GREEN_OFFSET);
CONVERT_PROP(GAMMA_TRANSFER_OFFSET_B, GAMMATRANSFER_PROP_BLUE_OFFSET);
CONVERT_PROP(GAMMA_TRANSFER_OFFSET_A, GAMMATRANSFER_PROP_ALPHA_OFFSET);
}
break;
case FilterType::CONVOLVE_MATRIX:
switch (aIndex) {
CONVERT_PROP(CONVOLVE_MATRIX_BIAS, CONVOLVEMATRIX_PROP_BIAS);
CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_MATRIX,
CONVOLVEMATRIX_PROP_KERNEL_MATRIX);
CONVERT_PROP(CONVOLVE_MATRIX_DIVISOR, CONVOLVEMATRIX_PROP_DIVISOR);
CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_UNIT_LENGTH,
CONVOLVEMATRIX_PROP_KERNEL_UNIT_LENGTH);
CONVERT_PROP(CONVOLVE_MATRIX_PRESERVE_ALPHA,
CONVOLVEMATRIX_PROP_PRESERVE_ALPHA);
}
case FilterType::DISPLACEMENT_MAP:
switch (aIndex) {
CONVERT_PROP(DISPLACEMENT_MAP_SCALE, DISPLACEMENTMAP_PROP_SCALE);
CONVERT_PROP(DISPLACEMENT_MAP_X_CHANNEL,
DISPLACEMENTMAP_PROP_X_CHANNEL_SELECT);
CONVERT_PROP(DISPLACEMENT_MAP_Y_CHANNEL,
DISPLACEMENTMAP_PROP_Y_CHANNEL_SELECT);
}
break;
case FilterType::TURBULENCE:
switch (aIndex) {
CONVERT_PROP(TURBULENCE_BASE_FREQUENCY, TURBULENCE_PROP_BASE_FREQUENCY);
CONVERT_PROP(TURBULENCE_NUM_OCTAVES, TURBULENCE_PROP_NUM_OCTAVES);
CONVERT_PROP(TURBULENCE_SEED, TURBULENCE_PROP_SEED);
CONVERT_PROP(TURBULENCE_STITCHABLE, TURBULENCE_PROP_STITCHABLE);
CONVERT_PROP(TURBULENCE_TYPE, TURBULENCE_PROP_NOISE);
}
break;
case FilterType::ARITHMETIC_COMBINE:
switch (aIndex) {
CONVERT_PROP(ARITHMETIC_COMBINE_COEFFICIENTS,
ARITHMETICCOMPOSITE_PROP_COEFFICIENTS);
}
break;
case FilterType::COMPOSITE:
switch (aIndex) { CONVERT_PROP(COMPOSITE_OPERATOR, COMPOSITE_PROP_MODE); }
break;
case FilterType::GAUSSIAN_BLUR:
switch (aIndex) {
CONVERT_PROP(GAUSSIAN_BLUR_STD_DEVIATION,
GAUSSIANBLUR_PROP_STANDARD_DEVIATION);
}
break;
case FilterType::DIRECTIONAL_BLUR:
switch (aIndex) {
CONVERT_PROP(DIRECTIONAL_BLUR_STD_DEVIATION,
DIRECTIONALBLUR_PROP_STANDARD_DEVIATION);
CONVERT_PROP(DIRECTIONAL_BLUR_DIRECTION, DIRECTIONALBLUR_PROP_ANGLE);
}
break;
case FilterType::POINT_DIFFUSE:
switch (aIndex) {
CONVERT_PROP(POINT_DIFFUSE_DIFFUSE_CONSTANT,
POINTDIFFUSE_PROP_DIFFUSE_CONSTANT);
CONVERT_PROP(POINT_DIFFUSE_POSITION, POINTDIFFUSE_PROP_LIGHT_POSITION);
CONVERT_PROP(POINT_DIFFUSE_COLOR, POINTDIFFUSE_PROP_COLOR);
CONVERT_PROP(POINT_DIFFUSE_SURFACE_SCALE,
POINTDIFFUSE_PROP_SURFACE_SCALE);
CONVERT_PROP(POINT_DIFFUSE_KERNEL_UNIT_LENGTH,
POINTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FilterType::SPOT_DIFFUSE:
switch (aIndex) {
CONVERT_PROP(SPOT_DIFFUSE_DIFFUSE_CONSTANT,
SPOTDIFFUSE_PROP_DIFFUSE_CONSTANT);
CONVERT_PROP(SPOT_DIFFUSE_POINTS_AT, SPOTDIFFUSE_PROP_POINTS_AT);
CONVERT_PROP(SPOT_DIFFUSE_FOCUS, SPOTDIFFUSE_PROP_FOCUS);
CONVERT_PROP(SPOT_DIFFUSE_LIMITING_CONE_ANGLE,
SPOTDIFFUSE_PROP_LIMITING_CONE_ANGLE);
CONVERT_PROP(SPOT_DIFFUSE_POSITION, SPOTDIFFUSE_PROP_LIGHT_POSITION);
CONVERT_PROP(SPOT_DIFFUSE_COLOR, SPOTDIFFUSE_PROP_COLOR);
CONVERT_PROP(SPOT_DIFFUSE_SURFACE_SCALE,
SPOTDIFFUSE_PROP_SURFACE_SCALE);
CONVERT_PROP(SPOT_DIFFUSE_KERNEL_UNIT_LENGTH,
SPOTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FilterType::DISTANT_DIFFUSE:
switch (aIndex) {
CONVERT_PROP(DISTANT_DIFFUSE_DIFFUSE_CONSTANT,
DISTANTDIFFUSE_PROP_DIFFUSE_CONSTANT);
CONVERT_PROP(DISTANT_DIFFUSE_AZIMUTH, DISTANTDIFFUSE_PROP_AZIMUTH);
CONVERT_PROP(DISTANT_DIFFUSE_ELEVATION, DISTANTDIFFUSE_PROP_ELEVATION);
CONVERT_PROP(DISTANT_DIFFUSE_COLOR, DISTANTDIFFUSE_PROP_COLOR);
CONVERT_PROP(DISTANT_DIFFUSE_SURFACE_SCALE,
DISTANTDIFFUSE_PROP_SURFACE_SCALE);
CONVERT_PROP(DISTANT_DIFFUSE_KERNEL_UNIT_LENGTH,
DISTANTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FilterType::POINT_SPECULAR:
switch (aIndex) {
CONVERT_PROP(POINT_SPECULAR_SPECULAR_CONSTANT,
POINTSPECULAR_PROP_SPECULAR_CONSTANT);
CONVERT_PROP(POINT_SPECULAR_SPECULAR_EXPONENT,
POINTSPECULAR_PROP_SPECULAR_EXPONENT);
CONVERT_PROP(POINT_SPECULAR_POSITION,
POINTSPECULAR_PROP_LIGHT_POSITION);
CONVERT_PROP(POINT_SPECULAR_COLOR, POINTSPECULAR_PROP_COLOR);
CONVERT_PROP(POINT_SPECULAR_SURFACE_SCALE,
POINTSPECULAR_PROP_SURFACE_SCALE);
CONVERT_PROP(POINT_SPECULAR_KERNEL_UNIT_LENGTH,
POINTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FilterType::SPOT_SPECULAR:
switch (aIndex) {
CONVERT_PROP(SPOT_SPECULAR_SPECULAR_CONSTANT,
SPOTSPECULAR_PROP_SPECULAR_CONSTANT);
CONVERT_PROP(SPOT_SPECULAR_SPECULAR_EXPONENT,
SPOTSPECULAR_PROP_SPECULAR_EXPONENT);
CONVERT_PROP(SPOT_SPECULAR_POINTS_AT, SPOTSPECULAR_PROP_POINTS_AT);
CONVERT_PROP(SPOT_SPECULAR_FOCUS, SPOTSPECULAR_PROP_FOCUS);
CONVERT_PROP(SPOT_SPECULAR_LIMITING_CONE_ANGLE,
SPOTSPECULAR_PROP_LIMITING_CONE_ANGLE);
CONVERT_PROP(SPOT_SPECULAR_POSITION, SPOTSPECULAR_PROP_LIGHT_POSITION);
CONVERT_PROP(SPOT_SPECULAR_COLOR, SPOTSPECULAR_PROP_COLOR);
CONVERT_PROP(SPOT_SPECULAR_SURFACE_SCALE,
SPOTSPECULAR_PROP_SURFACE_SCALE);
CONVERT_PROP(SPOT_SPECULAR_KERNEL_UNIT_LENGTH,
SPOTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FilterType::DISTANT_SPECULAR:
switch (aIndex) {
CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_CONSTANT,
DISTANTSPECULAR_PROP_SPECULAR_CONSTANT);
CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_EXPONENT,
DISTANTSPECULAR_PROP_SPECULAR_EXPONENT);
CONVERT_PROP(DISTANT_SPECULAR_AZIMUTH, DISTANTSPECULAR_PROP_AZIMUTH);
CONVERT_PROP(DISTANT_SPECULAR_ELEVATION,
DISTANTSPECULAR_PROP_ELEVATION);
CONVERT_PROP(DISTANT_SPECULAR_COLOR, DISTANTSPECULAR_PROP_COLOR);
CONVERT_PROP(DISTANT_SPECULAR_SURFACE_SCALE,
DISTANTSPECULAR_PROP_SURFACE_SCALE);
CONVERT_PROP(DISTANT_SPECULAR_KERNEL_UNIT_LENGTH,
DISTANTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
}
break;
case FilterType::CROP:
switch (aIndex) { CONVERT_PROP(CROP_RECT, CROP_PROP_RECT); }
break;
default:
break;
}
return UINT32_MAX;
}
bool GetD2D1PropsForIntSize(FilterType aType, uint32_t aIndex,
UINT32* aPropWidth, UINT32* aPropHeight) {
switch (aType) {
case FilterType::MORPHOLOGY:
if (aIndex == ATT_MORPHOLOGY_RADII) {
*aPropWidth = D2D1_MORPHOLOGY_PROP_WIDTH;
*aPropHeight = D2D1_MORPHOLOGY_PROP_HEIGHT;
return true;
}
break;
default:
break;
}
return false;
}
static inline REFCLSID GetCLDIDForFilterType(FilterType aType) {
switch (aType) {
case FilterType::OPACITY:
case FilterType::COLOR_MATRIX:
return CLSID_D2D1ColorMatrix;
case FilterType::TRANSFORM:
return CLSID_D2D12DAffineTransform;
case FilterType::BLEND:
return CLSID_D2D1Blend;
case FilterType::MORPHOLOGY:
return CLSID_D2D1Morphology;
case FilterType::FLOOD:
return CLSID_D2D1Flood;
case FilterType::TILE:
return CLSID_D2D1Tile;
case FilterType::TABLE_TRANSFER:
return CLSID_D2D1TableTransfer;
case FilterType::LINEAR_TRANSFER:
return CLSID_D2D1LinearTransfer;
case FilterType::DISCRETE_TRANSFER:
return CLSID_D2D1DiscreteTransfer;
case FilterType::GAMMA_TRANSFER:
return CLSID_D2D1GammaTransfer;
case FilterType::DISPLACEMENT_MAP:
return CLSID_D2D1DisplacementMap;
case FilterType::TURBULENCE:
return CLSID_D2D1Turbulence;
case FilterType::ARITHMETIC_COMBINE:
return CLSID_D2D1ArithmeticComposite;
case FilterType::COMPOSITE:
return CLSID_D2D1Composite;
case FilterType::GAUSSIAN_BLUR:
return CLSID_D2D1GaussianBlur;
case FilterType::DIRECTIONAL_BLUR:
return CLSID_D2D1DirectionalBlur;
case FilterType::POINT_DIFFUSE:
return CLSID_D2D1PointDiffuse;
case FilterType::POINT_SPECULAR:
return CLSID_D2D1PointSpecular;
case FilterType::SPOT_DIFFUSE:
return CLSID_D2D1SpotDiffuse;
case FilterType::SPOT_SPECULAR:
return CLSID_D2D1SpotSpecular;
case FilterType::DISTANT_DIFFUSE:
return CLSID_D2D1DistantDiffuse;
case FilterType::DISTANT_SPECULAR:
return CLSID_D2D1DistantSpecular;
case FilterType::CROP:
return CLSID_D2D1Crop;
case FilterType::PREMULTIPLY:
return CLSID_D2D1Premultiply;
case FilterType::UNPREMULTIPLY:
return CLSID_D2D1UnPremultiply;
default:
break;
}
return GUID_NULL;
}
static bool IsTransferFilterType(FilterType aType) {
switch (aType) {
case FilterType::LINEAR_TRANSFER:
case FilterType::GAMMA_TRANSFER:
case FilterType::TABLE_TRANSFER:
case FilterType::DISCRETE_TRANSFER:
return true;
default:
return false;
}
}
static bool HasUnboundedOutputRegion(FilterType aType) {
if (IsTransferFilterType(aType)) {
return true;
}
switch (aType) {
case FilterType::COLOR_MATRIX:
case FilterType::POINT_DIFFUSE:
case FilterType::SPOT_DIFFUSE:
case FilterType::DISTANT_DIFFUSE:
case FilterType::POINT_SPECULAR:
case FilterType::SPOT_SPECULAR:
case FilterType::DISTANT_SPECULAR:
return true;
default:
return false;
}
}
/* static */
already_AddRefed<FilterNode> FilterNodeD2D1::Create(ID2D1DeviceContext* aDC,
FilterType aType) {
if (aType == FilterType::CONVOLVE_MATRIX) {
return MakeAndAddRef<FilterNodeConvolveD2D1>(aDC);
}
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<ID2D1Effect> effect;
HRESULT hr;
hr = aDC->CreateEffect(GetCLDIDForFilterType(aType), getter_AddRefs(effect));
if (FAILED(hr) || !effect) {
gfxCriticalErrorOnce() << "Failed to create effect for FilterType: "
<< hexa(hr);
return nullptr;
}
if (aType == FilterType::ARITHMETIC_COMBINE) {
effect->SetValue(D2D1_ARITHMETICCOMPOSITE_PROP_CLAMP_OUTPUT, TRUE);
}
if (aType == FilterType::OPACITY) {
return MakeAndAddRef<FilterNodeOpacityD2D1>(effect, aType);
}
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<FilterNodeD2D1> filter = new FilterNodeD2D1(effect, aType);
if (HasUnboundedOutputRegion(aType)) {
// These filters can produce non-transparent output from transparent
// input pixels, and we want them to have an unbounded output region.
filter = new FilterNodeExtendInputAdapterD2D1(aDC, filter, aType);
}
if (IsTransferFilterType(aType)) {
// Component transfer filters should appear to apply on unpremultiplied
// colors, but the D2D1 effects apply on premultiplied colors.
filter = new FilterNodePremultiplyAdapterD2D1(aDC, filter, aType);
}
return filter.forget();
}
void FilterNodeD2D1::InitUnmappedProperties() {
switch (mType) {
case FilterType::COLOR_MATRIX:
mEffect->SetValue(D2D1_COLORMATRIX_PROP_CLAMP_OUTPUT, TRUE);
break;
case FilterType::TRANSFORM:
mEffect->SetValue(D2D1_2DAFFINETRANSFORM_PROP_BORDER_MODE,
D2D1_BORDER_MODE_HARD);
break;
default:
break;
}
}
void FilterNodeD2D1::SetInput(uint32_t aIndex, SourceSurface* aSurface) {
UINT32 input = GetD2D1InputForInput(mType, aIndex);
ID2D1Effect* effect = InputEffect();
MOZ_ASSERT(input < effect->GetInputCount());
if (mType == FilterType::COMPOSITE) {
UINT32 inputCount = effect->GetInputCount();
if (aIndex == inputCount - 1 && aSurface == nullptr) {
effect->SetInputCount(inputCount - 1);
} else if (aIndex >= inputCount && aSurface) {
effect->SetInputCount(aIndex + 1);
}
}
MOZ_ASSERT(input < effect->GetInputCount());
mInputSurfaces.resize(effect->GetInputCount());
mInputFilters.resize(effect->GetInputCount());
// In order to convert aSurface into an ID2D1Image, we need to know what
// DrawTarget we paint into. However, the same FilterNode object can be
// used on different DrawTargets, so we need to hold on to the SourceSurface
// objects and delay the conversion until we're actually painted and know
// our target DrawTarget.
// The conversion happens in WillDraw().
mInputSurfaces[input] = aSurface;
mInputFilters[input] = nullptr;
// Clear the existing image from the effect.
effect->SetInput(input, nullptr);
}
void FilterNodeD2D1::SetInput(uint32_t aIndex, FilterNode* aFilter) {
UINT32 input = GetD2D1InputForInput(mType, aIndex);
ID2D1Effect* effect = InputEffect();
if (mType == FilterType::COMPOSITE) {
UINT32 inputCount = effect->GetInputCount();
if (aIndex == inputCount - 1 && aFilter == nullptr) {
effect->SetInputCount(inputCount - 1);
} else if (aIndex >= inputCount && aFilter) {
effect->SetInputCount(aIndex + 1);
}
}
MOZ_ASSERT(input < effect->GetInputCount());
if (aFilter && aFilter->GetBackendType() != FILTER_BACKEND_DIRECT2D1_1) {
gfxWarning() << "Unknown input FilterNode set on effect.";
MOZ_ASSERT(0);
return;
}
FilterNodeD2D1* filter = static_cast<FilterNodeD2D1*>(aFilter);
mInputSurfaces.resize(effect->GetInputCount());
mInputFilters.resize(effect->GetInputCount());
// We hold on to the FilterNode object so that we can call WillDraw() on it.
mInputSurfaces[input] = nullptr;
mInputFilters[input] = filter;
if (filter) {
effect->SetInputEffect(input, filter->OutputEffect());
}
}
void FilterNodeD2D1::WillDraw(DrawTarget* aDT) {
// Convert input SourceSurfaces into ID2D1Images and set them on the effect.
for (size_t inputIndex = 0; inputIndex < mInputSurfaces.size();
inputIndex++) {
if (mInputSurfaces[inputIndex]) {
ID2D1Effect* effect = InputEffect();
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<ID2D1Image> image =
GetImageForSourceSurface(aDT, mInputSurfaces[inputIndex]);
effect->SetInput(inputIndex, image);
}
}
// Call WillDraw() on our input filters.
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
for (std::vector<RefPtr<FilterNodeD2D1>>::iterator it = mInputFilters.begin();
it != mInputFilters.end(); it++) {
if (*it) {
(*it)->WillDraw(aDT);
}
}
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
if (mType == FilterType::TURBULENCE &&
aIndex == ATT_TURBULENCE_BASE_FREQUENCY) {
mEffect->SetValue(input, D2D1::Vector2F(FLOAT(aValue), FLOAT(aValue)));
return;
} else if (mType == FilterType::DIRECTIONAL_BLUR &&
aIndex == ATT_DIRECTIONAL_BLUR_DIRECTION) {
mEffect->SetValue(input, aValue == BLUR_DIRECTION_X ? 0 : 90.0f);
return;
}
mEffect->SetValue(input, ConvertValue(mType, aIndex, aValue));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, Float aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, aValue);
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DPoint(aValue));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix5x4& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DMatrix5x4(aValue));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point3D& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DVector3D(aValue));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Size& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2D1::Vector2F(aValue.width, aValue.height));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntSize& aValue) {
UINT32 widthProp, heightProp;
if (!GetD2D1PropsForIntSize(mType, aIndex, &widthProp, &heightProp)) {
return;
}
IntSize value = aValue;
ConvertValue(mType, aIndex, value);
mEffect->SetValue(widthProp, (UINT)value.width);
mEffect->SetValue(heightProp, (UINT)value.height);
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const DeviceColor& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
switch (mType) {
case FilterType::POINT_DIFFUSE:
case FilterType::SPOT_DIFFUSE:
case FilterType::DISTANT_DIFFUSE:
case FilterType::POINT_SPECULAR:
case FilterType::SPOT_SPECULAR:
case FilterType::DISTANT_SPECULAR:
mEffect->SetValue(input, D2D1::Vector3F(aValue.r, aValue.g, aValue.b));
break;
default:
mEffect->SetValue(input,
D2D1::Vector4F(aValue.r * aValue.a, aValue.g * aValue.a,
aValue.b * aValue.a, aValue.a));
}
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Rect& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DRect(aValue));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntRect& aValue) {
if (mType == FilterType::TURBULENCE) {
MOZ_ASSERT(aIndex == ATT_TURBULENCE_RECT);
mEffect->SetValue(D2D1_TURBULENCE_PROP_OFFSET,
D2D1::Vector2F(Float(aValue.X()), Float(aValue.Y())));
mEffect->SetValue(
D2D1_TURBULENCE_PROP_SIZE,
D2D1::Vector2F(Float(aValue.Width()), Float(aValue.Height())));
return;
}
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input,
D2D1::RectF(Float(aValue.X()), Float(aValue.Y()),
Float(aValue.XMost()), Float(aValue.YMost())));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, bool aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, (BOOL)aValue);
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Float* aValues,
uint32_t aSize) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, (BYTE*)aValues, sizeof(Float) * aSize);
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntPoint& aValue) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DPoint(aValue));
}
void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix& aMatrix) {
UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
MOZ_ASSERT(input < mEffect->GetPropertyCount());
mEffect->SetValue(input, D2DMatrix(aMatrix));
}
void FilterNodeOpacityD2D1::SetAttribute(uint32_t aIndex, Float aValue) {
D2D1_MATRIX_5X4_F matrix =
D2D1::Matrix5x4F(aValue, 0, 0, 0, 0, aValue, 0, 0, 0, 0, aValue, 0, 0, 0,
0, aValue, 0, 0, 0, 0);
mEffect->SetValue(D2D1_COLORMATRIX_PROP_COLOR_MATRIX, matrix);
mEffect->SetValue(D2D1_COLORMATRIX_PROP_ALPHA_MODE,
D2D1_COLORMATRIX_ALPHA_MODE_STRAIGHT);
}
FilterNodeConvolveD2D1::FilterNodeConvolveD2D1(ID2D1DeviceContext* aDC)
: FilterNodeD2D1(nullptr, FilterType::CONVOLVE_MATRIX),
mEdgeMode(EDGE_MODE_DUPLICATE) {
// Correctly handling the interaction of edge mode and source rect is a bit
// tricky with D2D1 effects. We want the edge mode to only apply outside of
// the source rect (as specified by the ATT_CONVOLVE_MATRIX_SOURCE_RECT
// attribute). So if our input surface or filter is smaller than the source
// rect, we need to add transparency around it until we reach the edges of
// the source rect, and only then do any repeating or edge duplicating.
// Unfortunately, the border effect does not have a source rect attribute -
// it only looks at the output rect of its input filter or surface. So we use
// our custom ExtendInput effect to adjust the output rect of our input.
// All of this is only necessary when our edge mode is not EDGE_MODE_NONE, so
// we update the filter chain dynamically in UpdateChain().
HRESULT hr;
hr = aDC->CreateEffect(CLSID_D2D1ConvolveMatrix, getter_AddRefs(mEffect));
if (FAILED(hr) || !mEffect) {
gfxWarning() << "Failed to create ConvolveMatrix filter!";
return;
}
mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_BORDER_MODE,
D2D1_BORDER_MODE_SOFT);
hr = aDC->CreateEffect(CLSID_ExtendInputEffect,
getter_AddRefs(mExtendInputEffect));
if (FAILED(hr) || !mExtendInputEffect) {
gfxWarning() << "Failed to create ConvolveMatrix filter!";
return;
}
hr = aDC->CreateEffect(CLSID_D2D1Border, getter_AddRefs(mBorderEffect));
if (FAILED(hr) || !mBorderEffect) {
gfxWarning() << "Failed to create ConvolveMatrix filter!";
return;
}
mBorderEffect->SetInputEffect(0, mExtendInputEffect.get());
UpdateChain();
UpdateSourceRect();
}
void FilterNodeConvolveD2D1::SetInput(uint32_t aIndex, FilterNode* aFilter) {
FilterNodeD2D1::SetInput(aIndex, aFilter);
UpdateChain();
}
void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue) {
if (aIndex != ATT_CONVOLVE_MATRIX_EDGE_MODE) {
return FilterNodeD2D1::SetAttribute(aIndex, aValue);
}
mEdgeMode = (ConvolveMatrixEdgeMode)aValue;
UpdateChain();
}
ID2D1Effect* FilterNodeConvolveD2D1::InputEffect() {
return mEdgeMode == EDGE_MODE_NONE ? mEffect.get() : mExtendInputEffect.get();
}
void FilterNodeConvolveD2D1::UpdateChain() {
// The shape of the filter graph:
//
// EDGE_MODE_NONE:
// input --> convolvematrix
//
// EDGE_MODE_DUPLICATE or EDGE_MODE_WRAP:
// input --> extendinput --> border --> convolvematrix
//
// mEffect is convolvematrix.
if (mEdgeMode != EDGE_MODE_NONE) {
mEffect->SetInputEffect(0, mBorderEffect.get());
}
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<ID2D1Effect> inputEffect;
if (mInputFilters.size() > 0 && mInputFilters[0]) {
inputEffect = mInputFilters[0]->OutputEffect();
}
InputEffect()->SetInputEffect(0, inputEffect);
if (mEdgeMode == EDGE_MODE_DUPLICATE) {
mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X,
D2D1_BORDER_EDGE_MODE_CLAMP);
mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y,
D2D1_BORDER_EDGE_MODE_CLAMP);
} else if (mEdgeMode == EDGE_MODE_WRAP) {
mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X,
D2D1_BORDER_EDGE_MODE_WRAP);
mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y,
D2D1_BORDER_EDGE_MODE_WRAP);
}
}
void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex,
const IntSize& aValue) {
if (aIndex != ATT_CONVOLVE_MATRIX_KERNEL_SIZE) {
MOZ_ASSERT(false);
return;
}
mKernelSize = aValue;
mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_X, aValue.width);
mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_Y, aValue.height);
UpdateOffset();
}
void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex,
const IntPoint& aValue) {
if (aIndex != ATT_CONVOLVE_MATRIX_TARGET) {
MOZ_ASSERT(false);
return;
}
mTarget = aValue;
UpdateOffset();
}
void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex,
const IntRect& aValue) {
if (aIndex != ATT_CONVOLVE_MATRIX_SOURCE_RECT) {
MOZ_ASSERT(false);
return;
}
mSourceRect = aValue;
UpdateSourceRect();
}
void FilterNodeConvolveD2D1::UpdateOffset() {
D2D1_VECTOR_2F vector = D2D1::Vector2F(
(Float(mKernelSize.width) - 1.0f) / 2.0f - Float(mTarget.x),
(Float(mKernelSize.height) - 1.0f) / 2.0f - Float(mTarget.y));
mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_OFFSET, vector);
}
void FilterNodeConvolveD2D1::UpdateSourceRect() {
mExtendInputEffect->SetValue(
EXTENDINPUT_PROP_OUTPUT_RECT,
D2D1::Vector4F(Float(mSourceRect.X()), Float(mSourceRect.Y()),
Float(mSourceRect.XMost()), Float(mSourceRect.YMost())));
}
FilterNodeExtendInputAdapterD2D1::FilterNodeExtendInputAdapterD2D1(
ID2D1DeviceContext* aDC, FilterNodeD2D1* aFilterNode, FilterType aType)
: FilterNodeD2D1(aFilterNode->MainEffect(), aType),
mWrappedFilterNode(aFilterNode) {
// We have an mEffect that looks at the bounds of the input effect, and we
// want mEffect to regard its input as unbounded. So we take the input,
// pipe it through an ExtendInput effect (which has an infinite output rect
// by default), and feed the resulting unbounded composition into mEffect.
HRESULT hr;
hr = aDC->CreateEffect(CLSID_ExtendInputEffect,
getter_AddRefs(mExtendInputEffect));
if (FAILED(hr) || !mExtendInputEffect) {
gfxWarning() << "Failed to create extend input effect for filter: "
<< hexa(hr);
return;
}
aFilterNode->InputEffect()->SetInputEffect(0, mExtendInputEffect.get());
}
FilterNodePremultiplyAdapterD2D1::FilterNodePremultiplyAdapterD2D1(
ID2D1DeviceContext* aDC, FilterNodeD2D1* aFilterNode, FilterType aType)
: FilterNodeD2D1(aFilterNode->MainEffect(), aType) {
// D2D1 component transfer effects do strange things when it comes to
// premultiplication.
// For our purposes we only need the transfer filters to apply straight to
// unpremultiplied source channels and output unpremultiplied results.
// However, the D2D1 effects are designed differently: They can apply to both
// premultiplied and unpremultiplied inputs, and they always premultiply
// their result - at least in those color channels that have not been
// disabled.
// In order to determine whether the input needs to be unpremultiplied as
// part of the transfer, the effect consults the alpha mode metadata of the
// input surface or the input effect. We don't have such a concept in Moz2D,
// and giving Moz2D users different results based on something that cannot be
// influenced through Moz2D APIs seems like a bad idea.
// We solve this by applying a premultiply effect to the input before feeding
// it into the transfer effect. The premultiply effect always premultiplies
// regardless of any alpha mode metadata on inputs, and it always marks its
// output as premultiplied so that the transfer effect will unpremultiply
// consistently. Feeding always-premultiplied input into the transfer effect
// also avoids another problem that would appear when individual color
// channels disable the transfer: In that case, the disabled channels would
// pass through unchanged in their unpremultiplied form and the other
// channels would be premultiplied, giving a mixed result.
// But since we now ensure that the input is premultiplied, disabled channels
// will pass premultiplied values through to the result, which is consistent
// with the enabled channels.
// We also add an unpremultiply effect that postprocesses the result of the
// transfer effect because getting unpremultiplied results from the transfer
// filters is part of the FilterNode API.
HRESULT hr;
hr = aDC->CreateEffect(CLSID_D2D1Premultiply,
getter_AddRefs(mPrePremultiplyEffect));
if (FAILED(hr) || !mPrePremultiplyEffect) {
gfxWarning() << "Failed to create ComponentTransfer filter!";
return;
}
hr = aDC->CreateEffect(CLSID_D2D1UnPremultiply,
getter_AddRefs(mPostUnpremultiplyEffect));
if (FAILED(hr) || !mPostUnpremultiplyEffect) {
gfxWarning() << "Failed to create ComponentTransfer filter!";
return;
}
aFilterNode->InputEffect()->SetInputEffect(0, mPrePremultiplyEffect.get());
mPostUnpremultiplyEffect->SetInputEffect(0, aFilterNode->OutputEffect());
}
} // namespace gfx
} // namespace mozilla