gecko-dev/xpcom/glue/DeadlockDetector.h

569 строки
18 KiB
C
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
2012-05-21 15:12:37 +04:00
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_DeadlockDetector_h
#define mozilla_DeadlockDetector_h
#include "mozilla/Attributes.h"
#include <stdlib.h>
#include "plhash.h"
#include "prlock.h"
#include "nsTArray.h"
#ifdef NS_TRACE_MALLOC
# include "nsTraceMalloc.h"
#endif // ifdef NS_TRACE_MALLOC
namespace mozilla {
// FIXME bug 456272: split this off into a convenience API on top of
// nsStackWalk?
class NS_COM_GLUE CallStack
{
private:
#ifdef NS_TRACE_MALLOC
typedef nsTMStackTraceID callstack_id;
// needs to be a macro to avoid disturbing the backtrace
# define NS_GET_BACKTRACE() NS_TraceMallocGetStackTrace()
# define NS_DEADLOCK_DETECTOR_CONSTEXPR
#else
typedef void* callstack_id;
# define NS_GET_BACKTRACE() 0
# define NS_DEADLOCK_DETECTOR_CONSTEXPR MOZ_CONSTEXPR
#endif // ifdef NS_TRACE_MALLOC
callstack_id mCallStack;
public:
/**
* CallStack
* *ALWAYS* *ALWAYS* *ALWAYS* call this with no arguments. This
* constructor takes an argument *ONLY* so that |GET_BACKTRACE()|
* can be evaluated in the stack frame of the caller, rather than
* that of the constructor.
*
* *BEWARE*: this means that calling this constructor with no
* arguments is not the same as a "default, do-nothing"
* constructor: it *will* construct a backtrace. This can cause
* unexpected performance issues.
*/
NS_DEADLOCK_DETECTOR_CONSTEXPR
explicit CallStack(const callstack_id aCallStack = NS_GET_BACKTRACE())
: mCallStack(aCallStack)
{
}
NS_DEADLOCK_DETECTOR_CONSTEXPR
CallStack(const CallStack& aFrom)
: mCallStack(aFrom.mCallStack)
{
}
CallStack& operator=(const CallStack& aFrom)
{
mCallStack = aFrom.mCallStack;
return *this;
}
bool operator==(const CallStack& aOther) const
{
return mCallStack == aOther.mCallStack;
}
bool operator!=(const CallStack& aOther) const
{
return mCallStack != aOther.mCallStack;
}
// FIXME bug 456272: if this is split off,
// NS_TraceMallocPrintStackTrace should be modified to print into
// an nsACString
void Print(FILE* aFile) const
{
#ifdef NS_TRACE_MALLOC
if (this != &kNone && mCallStack) {
NS_TraceMallocPrintStackTrace(aFile, mCallStack);
return;
}
#endif
fputs(" [stack trace unavailable]\n", aFile);
}
/** The "null" callstack. */
static const CallStack kNone;
};
/**
* DeadlockDetector
*
* The following is an approximate description of how the deadlock detector
* works.
*
* The deadlock detector ensures that all blocking resources are
* acquired according to a partial order P. One type of blocking
* resource is a lock. If a lock l1 is acquired (locked) before l2,
* then we say that |l1 <_P l2|. The detector flags an error if two
* locks l1 and l2 have an inconsistent ordering in P; that is, if
* both |l1 <_P l2| and |l2 <_P l1|. This is a potential error
* because a thread acquiring l1,l2 according to the first order might
* race with a thread acquiring them according to the second order.
* If this happens under the right conditions, then the acquisitions
* will deadlock.
*
* This deadlock detector doesn't know at compile-time what P is. So,
* it tries to discover the order at run time. More precisely, it
* finds <i>some</i> order P, then tries to find chains of resource
* acquisitions that violate P. An example acquisition sequence, and
* the orders they impose, is
* l1.lock() // current chain: [ l1 ]
* // order: { }
*
* l2.lock() // current chain: [ l1, l2 ]
* // order: { l1 <_P l2 }
*
* l3.lock() // current chain: [ l1, l2, l3 ]
* // order: { l1 <_P l2, l2 <_P l3, l1 <_P l3 }
* // (note: <_P is transitive, so also |l1 <_P l3|)
*
* l2.unlock() // current chain: [ l1, l3 ]
* // order: { l1 <_P l2, l2 <_P l3, l1 <_P l3 }
* // (note: it's OK, but weird, that l2 was unlocked out
* // of order. we still have l1 <_P l3).
*
* l2.lock() // current chain: [ l1, l3, l2 ]
* // order: { l1 <_P l2, l2 <_P l3, l1 <_P l3,
* l3 <_P l2 (!!!) }
* BEEP BEEP! Here the detector will flag a potential error, since
* l2 and l3 were used inconsistently (and potentially in ways that
* would deadlock).
*/
template<typename T>
class DeadlockDetector
{
public:
/**
* ResourceAcquisition
* Consists simply of a resource and the calling context from
* which it was acquired. We pack this information together so
* that it can be returned back to the caller when a potential
* deadlock has been found.
*/
struct ResourceAcquisition
{
const T* mResource;
CallStack mCallContext;
explicit ResourceAcquisition(const T* aResource,
const CallStack aCallContext = CallStack::kNone)
: mResource(aResource)
, mCallContext(aCallContext)
{
}
ResourceAcquisition(const ResourceAcquisition& aFrom)
: mResource(aFrom.mResource)
, mCallContext(aFrom.mCallContext)
{
}
ResourceAcquisition& operator=(const ResourceAcquisition& aFrom)
{
mResource = aFrom.mResource;
mCallContext = aFrom.mCallContext;
return *this;
}
};
typedef nsTArray<ResourceAcquisition> ResourceAcquisitionArray;
private:
typedef nsTArray<PLHashEntry*> HashEntryArray;
typedef typename HashEntryArray::index_type index_type;
typedef typename HashEntryArray::size_type size_type;
static const index_type NoIndex = HashEntryArray::NoIndex;
/**
* Value type for the ordering table. Contains the other
* resources on which an ordering constraint |key < other|
* exists. The catch is that we also store the calling context at
* which the other resource was acquired; this improves the
* quality of error messages when potential deadlock is detected.
*/
struct OrderingEntry
{
OrderingEntry(const T* aResource)
: mFirstSeen(CallStack::kNone)
, mOrderedLT() // FIXME bug 456272: set to empirical dep size?
, mResource(aResource)
{
}
~OrderingEntry()
{
}
CallStack mFirstSeen; // first site from which the resource appeared
HashEntryArray mOrderedLT; // this <_o Other
const T* mResource;
};
static void* TableAlloc(void* /*aPool*/, size_t aSize)
{
return operator new(aSize);
}
static void TableFree(void* /*aPool*/, void* aItem)
{
operator delete(aItem);
}
static PLHashEntry* EntryAlloc(void* /*aPool*/, const void* aKey)
{
return new PLHashEntry;
}
static void EntryFree(void* /*aPool*/, PLHashEntry* aEntry, unsigned aFlag)
{
delete static_cast<T*>(const_cast<void*>(aEntry->key));
delete static_cast<OrderingEntry*>(aEntry->value);
aEntry->value = 0;
if (aFlag == HT_FREE_ENTRY) {
delete aEntry;
}
}
static PLHashNumber HashKey(const void* aKey)
{
return static_cast<PLHashNumber>(NS_PTR_TO_INT32(aKey) >> 2);
}
static const PLHashAllocOps kAllocOps;
// Hash table "interface" the rest of the code should use
PLHashEntry** GetEntry(const T* aKey)
{
return PL_HashTableRawLookup(mOrdering, HashKey(aKey), aKey);
}
void PutEntry(T* aKey)
{
PL_HashTableAdd(mOrdering, aKey, new OrderingEntry(aKey));
}
// XXX need these helper methods because OrderingEntry doesn't have
// XXX access to underlying PLHashEntry
/**
* Add the order |aFirst <_o aSecond|.
*
* WARNING: this does not check whether it's sane to add this
* order. In the "best" bad case, when this order already exists,
* adding it anyway may unnecessarily result in O(n^2) space. In
* the "worst" bad case, adding it anyway will cause
* |InTransitiveClosure()| to diverge.
*/
void AddOrder(PLHashEntry* aLT, PLHashEntry* aGT)
{
static_cast<OrderingEntry*>(aLT->value)->mOrderedLT
.InsertElementSorted(aGT);
}
/**
* Return true iff the order |aFirst < aSecond| has been
* *explicitly* added.
*
* Does not consider transitivity.
*/
bool IsOrdered(const PLHashEntry* aFirst, const PLHashEntry* aSecond)
const
{
const OrderingEntry* entry =
static_cast<const OrderingEntry*>(aFirst->value);
return entry->mOrderedLT.BinaryIndexOf(aSecond) != NoIndex;
}
/**
* Return a pointer to the array of all elements "that" for
* which the order |this < that| has been explicitly added.
*
* NOTE: this does *not* consider transitive orderings.
*/
PLHashEntry* const* GetOrders(const PLHashEntry* aEntry) const
{
return
static_cast<const OrderingEntry*>(aEntry->value)->mOrderedLT.Elements();
}
/**
* Return the number of elements "that" for which the order
* |this < that| has been explicitly added.
*
* NOTE: this does *not* consider transitive orderings.
*/
size_type NumOrders(const PLHashEntry* aEntry) const
{
return
static_cast<const OrderingEntry*>(aEntry->value)->mOrderedLT.Length();
}
/** Make a ResourceAcquisition out of |aEntry|. */
ResourceAcquisition MakeResourceAcquisition(const PLHashEntry* aEntry) const
{
return ResourceAcquisition(
static_cast<const T*>(aEntry->key),
static_cast<const OrderingEntry*>(aEntry->value)->mFirstSeen);
}
// Throwaway RAII lock to make the following code safer.
struct PRAutoLock
{
explicit PRAutoLock(PRLock* aLock) : mLock(aLock) { PR_Lock(mLock); }
~PRAutoLock() { PR_Unlock(mLock); }
PRLock* mLock;
};
public:
static const uint32_t kDefaultNumBuckets;
/**
* DeadlockDetector
* Create a new deadlock detector.
*
* @param aNumResourcesGuess Guess at approximate number of resources
* that will be checked.
*/
explicit DeadlockDetector(uint32_t aNumResourcesGuess = kDefaultNumBuckets)
{
mOrdering = PL_NewHashTable(aNumResourcesGuess,
HashKey,
PL_CompareValues, PL_CompareValues,
&kAllocOps, 0);
if (!mOrdering) {
NS_RUNTIMEABORT("couldn't initialize resource ordering table");
}
mLock = PR_NewLock();
if (!mLock) {
NS_RUNTIMEABORT("couldn't allocate deadlock detector lock");
}
}
/**
* ~DeadlockDetector
*
* *NOT* thread safe.
*/
~DeadlockDetector()
{
PL_HashTableDestroy(mOrdering);
PR_DestroyLock(mLock);
}
/**
* Add
* Make the deadlock detector aware of |aResource|.
*
* WARNING: The deadlock detector owns |aResource|.
*
* Thread safe.
*
* @param aResource Resource to make deadlock detector aware of.
*/
void Add(T* aResource)
{
PRAutoLock _(mLock);
PutEntry(aResource);
}
// Nb: implementing a Remove() method makes the detector "more
// unsound." By removing a resource from the orderings, deadlocks
// may be missed that would otherwise have been found. However,
// removing resources possibly reduces the # of false positives,
// and additionally saves space. So it's a trade off; we have
// chosen to err on the side of caution and not implement Remove().
/**
* CheckAcquisition This method is called after acquiring |aLast|,
* but before trying to acquire |aProposed| from |aCallContext|.
* It determines whether actually trying to acquire |aProposed|
* will create problems. It is OK if |aLast| is nullptr; this is
* interpreted as |aProposed| being the thread's first acquisition
* of its current chain.
*
* Iff acquiring |aProposed| may lead to deadlock for some thread
* interleaving (including the current one!), the cyclical
* dependency from which this was deduced is returned. Otherwise,
* 0 is returned.
*
* If a potential deadlock is detected and a resource cycle is
* returned, it is the *caller's* responsibility to free it.
*
* Thread safe.
*
* @param aLast Last resource acquired by calling thread (or 0).
* @param aProposed Resource calling thread proposes to acquire.
* @param aCallContext Calling context whence acquisiton request came.
*/
ResourceAcquisitionArray* CheckAcquisition(const T* aLast,
const T* aProposed,
const CallStack& aCallContext)
{
NS_ASSERTION(aProposed, "null resource");
PRAutoLock _(mLock);
PLHashEntry* second = *GetEntry(aProposed);
OrderingEntry* e = static_cast<OrderingEntry*>(second->value);
if (CallStack::kNone == e->mFirstSeen) {
e->mFirstSeen = aCallContext;
}
if (!aLast) {
// don't check if |0 < aProposed|; just vamoose
return 0;
}
PLHashEntry* first = *GetEntry(aLast);
// this is the crux of the deadlock detector algorithm
if (first == second) {
// reflexive deadlock. fastpath b/c InTransitiveClosure is
// not applicable here.
ResourceAcquisitionArray* cycle = new ResourceAcquisitionArray();
if (!cycle) {
NS_RUNTIMEABORT("can't allocate dep. cycle array");
}
cycle->AppendElement(MakeResourceAcquisition(first));
cycle->AppendElement(ResourceAcquisition(aProposed,
aCallContext));
return cycle;
}
if (InTransitiveClosure(first, second)) {
// we've already established |aLast < aProposed|. all is well.
return 0;
}
if (InTransitiveClosure(second, first)) {
// the order |aProposed < aLast| has been deduced, perhaps
// transitively. we're attempting to violate that
// constraint by acquiring resources in the order
// |aLast < aProposed|, and thus we may deadlock under the
// right conditions.
ResourceAcquisitionArray* cycle = GetDeductionChain(second, first);
// show how acquiring |aProposed| would complete the cycle
cycle->AppendElement(ResourceAcquisition(aProposed,
aCallContext));
return cycle;
}
// |aLast|, |aProposed| are unordered according to our
// poset. this is fine, but we now need to add this
// ordering constraint.
AddOrder(first, second);
return 0;
}
/**
* Return true iff |aTarget| is in the transitive closure of |aStart|
* over the ordering relation `<_this'.
*
* @precondition |aStart != aTarget|
*/
bool InTransitiveClosure(const PLHashEntry* aStart,
const PLHashEntry* aTarget) const
{
if (IsOrdered(aStart, aTarget)) {
return true;
}
index_type i = 0;
size_type len = NumOrders(aStart);
for (const PLHashEntry* const* it = GetOrders(aStart); i < len; ++i, ++it) {
if (InTransitiveClosure(*it, aTarget)) {
return true;
}
}
return false;
}
/**
* Return an array of all resource acquisitions
* aStart <_this r1 <_this r2 <_ ... <_ aTarget
* from which |aStart <_this aTarget| was deduced, including
* |aStart| and |aTarget|.
*
* Nb: there may be multiple deductions of |aStart <_this
* aTarget|. This function returns the first ordering found by
* depth-first search.
*
* Nb: |InTransitiveClosure| could be replaced by this function.
* However, this one is more expensive because we record the DFS
* search stack on the heap whereas the other doesn't.
*
* @precondition |aStart != aTarget|
*/
ResourceAcquisitionArray* GetDeductionChain(const PLHashEntry* aStart,
const PLHashEntry* aTarget)
{
ResourceAcquisitionArray* chain = new ResourceAcquisitionArray();
if (!chain) {
NS_RUNTIMEABORT("can't allocate dep. cycle array");
}
chain->AppendElement(MakeResourceAcquisition(aStart));
NS_ASSERTION(GetDeductionChain_Helper(aStart, aTarget, chain),
"GetDeductionChain called when there's no deadlock");
return chain;
}
// precondition: |aStart != aTarget|
// invariant: |aStart| is the last element in |aChain|
bool GetDeductionChain_Helper(const PLHashEntry* aStart,
const PLHashEntry* aTarget,
ResourceAcquisitionArray* aChain)
{
if (IsOrdered(aStart, aTarget)) {
aChain->AppendElement(MakeResourceAcquisition(aTarget));
return true;
}
index_type i = 0;
size_type len = NumOrders(aStart);
for (const PLHashEntry* const* it = GetOrders(aStart); i < len; ++i, ++it) {
aChain->AppendElement(MakeResourceAcquisition(*it));
if (GetDeductionChain_Helper(*it, aTarget, aChain)) {
return true;
}
aChain->RemoveElementAt(aChain->Length() - 1);
}
return false;
}
/**
* The partial order on resource acquisitions used by the deadlock
* detector.
*/
PLHashTable* mOrdering; // T* -> PLHashEntry<OrderingEntry>
/**
* Protects contentious methods.
* Nb: can't use mozilla::Mutex since we are used as its deadlock
* detector.
*/
PRLock* mLock;
private:
DeadlockDetector(const DeadlockDetector& aDD) MOZ_DELETE;
DeadlockDetector& operator=(const DeadlockDetector& aDD) MOZ_DELETE;
};
template<typename T>
const PLHashAllocOps DeadlockDetector<T>::kAllocOps = {
DeadlockDetector<T>::TableAlloc, DeadlockDetector<T>::TableFree,
DeadlockDetector<T>::EntryAlloc, DeadlockDetector<T>::EntryFree
};
template<typename T>
// FIXME bug 456272: tune based on average workload
const uint32_t DeadlockDetector<T>::kDefaultNumBuckets = 64;
} // namespace mozilla
#endif // ifndef mozilla_DeadlockDetector_h