gecko-dev/gfx/2d/PathCairo.h

195 строки
7.6 KiB
C
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Corporation code.
*
* The Initial Developer of the Original Code is Mozilla Foundation.
* Portions created by the Initial Developer are Copyright (C) 2011
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef MOZILLA_GFX_PATH_CAIRO_H_
#define MOZILLA_GFX_PATH_CAIRO_H_
#include "2D.h"
#include "cairo.h"
namespace mozilla {
namespace gfx {
class DrawTargetCairo;
// A reference to a cairo context that can maintain and set a path.
//
// This class exists to make it possible for us to not construct paths manually
// using cairo_path_t, which in the common case is a speed and memory
// optimization (as the cairo_t maintains the path for us, and we don't have to
// use cairo_append_path). Instead, we can share a cairo_t with a DrawTarget,
// and have it inform us when we need to make a copy of the path.
//
// Exactly one Path* object represents the current path on a given DrawTarget's
// context. That Path* object registers its CairoPathContext with the
// DrawTarget it's associated with. If that DrawTarget is going to change its
// path, it has to tell the CairoPathContext beforehand so the path can be
// saved off.
// The path ownership is transferred to every new instance of CairoPathContext
// in the constructor. We inform the draw target of the new context object,
// which causes us to save off a copy of the path, as we're not going to be
// informed upon changes any more.
// Any transformation on aCtx is not applied to this path, though a path can be
// transformed separately from its context by passing a matrix to the
// constructor.
class CairoPathContext : public RefCounted<CairoPathContext>
{
public:
// Construct a CairoPathContext and set it to be the path observer of
// aDrawTarget. Optionally, this path can be transformed by aMatrix.
CairoPathContext(cairo_t* aCtx, DrawTargetCairo* aDrawTarget,
FillRule aFillRule,
const Matrix& aMatrix = Matrix());
~CairoPathContext();
// Copy the path on mContext to be the path on aToContext, if they aren't the
// same.
void CopyPathTo(cairo_t* aToContext);
// This method must be called by the draw target before it changes the path
// currently on the cairo context.
void PathWillChange();
// This method must be called by the draw target whenever it is going to
// change the current transformation on mContext.
void MatrixWillChange(const Matrix& aMatrix);
// This method must be called as the draw target is dying. In this case, we
// forget our reference to the draw target, and become the only reference to
// our context.
void ForgetDrawTarget();
// Create a duplicate context, and copy this path to that context. Optionally,
// the new context can be transformed.
void DuplicateContextAndPath(const Matrix& aMatrix = Matrix());
// Returns true if this CairoPathContext represents path.
bool ContainsPath(const Path* path);
cairo_t* GetContext() const { return mContext; }
DrawTargetCairo* GetDrawTarget() const { return mDrawTarget; }
Matrix GetTransform() const { return mTransform; }
FillRule GetFillRule() const { return mFillRule; }
operator cairo_t* () const { return mContext; }
private: // methods
CairoPathContext(const CairoPathContext&) MOZ_DELETE;
private: // data
Matrix mTransform;
cairo_t* mContext;
// Not a RefPtr to avoid cycles.
DrawTargetCairo* mDrawTarget;
FillRule mFillRule;
};
class PathBuilderCairo : public PathBuilder
{
public:
// This constructor implicitly takes ownership of aCtx by calling
// aDrawTarget->SetPathObserver(). Therefore, if the draw target has a path
// observer, this constructor will cause it to copy out its path.
// The path currently set on aCtx is not changed.
PathBuilderCairo(cairo_t* aCtx, DrawTargetCairo* aDrawTarget, FillRule aFillRule);
// This constructor, called with a CairoPathContext*, implicitly takes
// ownership of the path, and therefore makes aPathContext copy out its path
// regardless of whether it has a pointer to a DrawTargetCairo.
// The path currently set on aPathContext is not changed.
explicit PathBuilderCairo(CairoPathContext* aPathContext,
const Matrix& aTransform = Matrix());
virtual void MoveTo(const Point &aPoint);
virtual void LineTo(const Point &aPoint);
virtual void BezierTo(const Point &aCP1,
const Point &aCP2,
const Point &aCP3);
virtual void QuadraticBezierTo(const Point &aCP1,
const Point &aCP2);
virtual void Close();
virtual void Arc(const Point &aOrigin, float aRadius, float aStartAngle,
float aEndAngle, bool aAntiClockwise = false);
virtual Point CurrentPoint() const;
virtual TemporaryRef<Path> Finish();
TemporaryRef<CairoPathContext> GetPathContext();
private: // methods
void SetFillRule(FillRule aFillRule);
private: // data
RefPtr<CairoPathContext> mPathContext;
FillRule mFillRule;
};
class PathCairo : public Path
{
public:
PathCairo(cairo_t* aCtx, DrawTargetCairo* aDrawTarget, FillRule aFillRule, const Matrix& aTransform);
virtual BackendType GetBackendType() const { return BACKEND_CAIRO; }
virtual TemporaryRef<PathBuilder> CopyToBuilder(FillRule aFillRule = FILL_WINDING) const;
virtual TemporaryRef<PathBuilder> TransformedCopyToBuilder(const Matrix &aTransform,
FillRule aFillRule = FILL_WINDING) const;
virtual bool ContainsPoint(const Point &aPoint, const Matrix &aTransform) const;
virtual Rect GetBounds(const Matrix &aTransform = Matrix()) const;
virtual Rect GetStrokedBounds(const StrokeOptions &aStrokeOptions,
const Matrix &aTransform = Matrix()) const;
virtual FillRule GetFillRule() const { return mFillRule; }
TemporaryRef<CairoPathContext> GetPathContext();
// Set this path to be the current path for aContext (if it's not already
// aContext's path). You must pass the draw target associated with the
// context as aDrawTarget.
void CopyPathTo(cairo_t* aContext, DrawTargetCairo* aDrawTarget);
private:
RefPtr<CairoPathContext> mPathContext;
FillRule mFillRule;
};
}
}
#endif /* MOZILLA_GFX_PATH_CAIRO_H_ */