gecko-dev/ipc/mscom/Ptr.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

307 строки
8.3 KiB
C
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_mscom_Ptr_h
#define mozilla_mscom_Ptr_h
#include "mozilla/Assertions.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/mscom/EnsureMTA.h"
#include "mozilla/SystemGroup.h"
#include "mozilla/UniquePtr.h"
#include "nsError.h"
#include "nsThreadUtils.h"
#include "nsXULAppAPI.h"
Bug 1400344: Rename mscom::MainThreadRuntime to mscom::ProcessRuntime and make it aware of Win32k lockdown and of multiple instantiations; r=Jamie This patch takes care of a bunch of issues and does some cleanup: * We rename mscom::MainThreadRuntime to mscom::ProcessRuntime, as the latter is a more accurate name going forward. * We make ProcessRuntime aware of the Win32k Lockdown process mitigation policy. When Win32k is disabled, we perform process-wide COM initialization in the multi-threaded apartment (since we cannot create an STA window). * We refactor the mscom apartment region stuff to enable the Win32k lockdown pieces in ProcessRuntime. * We move some Gecko-specific stuff into MOZILLA_INTERNAL_API guards so that ProcessRuntime is usable outside of xul.dll (I will be needing it for the launcher process). * Another thing that might happen with the launcher process is that, under error conditions in the launcher, we create a ProcessRuntime object on a background thread for the purposes of telemetry logging, but we also allow the main thread to proceed to start as the browser. This could result in a scenario where the main thread, as the browser process, is attempting to instantiate its ProcessRuntime and ends up racing with the launcher process's telemetry thread which has its own ProcessRuntime. To account for this situation, we add mutual exclusion to the process-wide initialization code. We host this part inside mozglue since that state is shared between both firefox.exe and xul.dll. * We clean up ProcessRuntime::InitializeSecurity by using Vector to set up the EXPLICIT_ACCESS entries. * We remove mscom::MainThreadClientInfo and replace it with a direct call to CoGetCallerTID * We revise all references to this class to use the new name. Differential Revision: https://phabricator.services.mozilla.com/D19551 --HG-- rename : ipc/mscom/COMApartmentRegion.h => ipc/mscom/ApartmentRegion.h rename : ipc/mscom/MainThreadRuntime.cpp => ipc/mscom/ProcessRuntime.cpp rename : ipc/mscom/MainThreadRuntime.h => ipc/mscom/ProcessRuntime.h extra : moz-landing-system : lando
2019-02-14 21:56:20 +03:00
#include <objidl.h>
/**
* The glue code in mozilla::mscom often needs to pass around interface pointers
* belonging to a different apartment from the current one. We must not touch
* the reference counts of those objects on the wrong apartment. By using these
* UniquePtr specializations, we may ensure that the reference counts are always
* handled correctly.
*/
namespace mozilla {
namespace mscom {
namespace detail {
template <typename T>
struct MainThreadRelease {
void operator()(T* aPtr) {
if (!aPtr) {
return;
}
if (NS_IsMainThread()) {
aPtr->Release();
return;
}
DebugOnly<nsresult> rv = SystemGroup::Dispatch(
TaskCategory::Other,
NewNonOwningRunnableMethod("mscom::MainThreadRelease", aPtr,
&T::Release));
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
};
template <typename T>
struct MTADelete {
void operator()(T* aPtr) {
if (!aPtr) {
return;
}
EnsureMTA::AsyncOperation([aPtr]() -> void { delete aPtr; });
}
};
template <typename T>
struct MTARelease {
void operator()(T* aPtr) {
if (!aPtr) {
return;
}
// Static analysis doesn't recognize that, even though aPtr escapes the
// current scope, we are in effect moving our strong ref into the lambda.
void* ptr = aPtr;
EnsureMTA::AsyncOperation(
[ptr]() -> void { reinterpret_cast<T*>(ptr)->Release(); });
}
};
template <typename T>
struct MTAReleaseInChildProcess {
void operator()(T* aPtr) {
if (!aPtr) {
return;
}
if (XRE_IsParentProcess()) {
MOZ_ASSERT(NS_IsMainThread());
aPtr->Release();
return;
}
// Static analysis doesn't recognize that, even though aPtr escapes the
// current scope, we are in effect moving our strong ref into the lambda.
void* ptr = aPtr;
EnsureMTA::AsyncOperation(
[ptr]() -> void { reinterpret_cast<T*>(ptr)->Release(); });
}
};
struct InterceptorTargetDeleter {
void operator()(IUnknown* aPtr) {
// We intentionally do not touch the refcounts of interceptor targets!
}
};
struct PreservedStreamDeleter {
void operator()(IStream* aPtr) {
if (!aPtr) {
return;
}
// Static analysis doesn't recognize that, even though aPtr escapes the
// current scope, we are in effect moving our strong ref into the lambda.
void* ptr = aPtr;
auto cleanup = [ptr]() -> void {
DebugOnly<HRESULT> hr =
::CoReleaseMarshalData(reinterpret_cast<LPSTREAM>(ptr));
MOZ_ASSERT(SUCCEEDED(hr));
reinterpret_cast<LPSTREAM>(ptr)->Release();
};
if (XRE_IsParentProcess()) {
MOZ_ASSERT(NS_IsMainThread());
cleanup();
return;
}
EnsureMTA::AsyncOperation(cleanup);
}
};
} // namespace detail
template <typename T>
using STAUniquePtr = mozilla::UniquePtr<T, detail::MainThreadRelease<T>>;
template <typename T>
using MTAUniquePtr = mozilla::UniquePtr<T, detail::MTARelease<T>>;
template <typename T>
using MTADeletePtr = mozilla::UniquePtr<T, detail::MTADelete<T>>;
template <typename T>
using ProxyUniquePtr =
mozilla::UniquePtr<T, detail::MTAReleaseInChildProcess<T>>;
template <typename T>
using InterceptorTargetPtr =
mozilla::UniquePtr<T, detail::InterceptorTargetDeleter>;
using PreservedStreamPtr =
mozilla::UniquePtr<IStream, detail::PreservedStreamDeleter>;
namespace detail {
// We don't have direct access to UniquePtr's storage, so we use mPtrStorage
// to receive the pointer and then set the target inside the destructor.
template <typename T, typename Deleter>
class UniquePtrGetterAddRefs {
public:
explicit UniquePtrGetterAddRefs(UniquePtr<T, Deleter>& aSmartPtr)
: mTargetSmartPtr(aSmartPtr), mPtrStorage(nullptr) {}
~UniquePtrGetterAddRefs() { mTargetSmartPtr.reset(mPtrStorage); }
operator void**() { return reinterpret_cast<void**>(&mPtrStorage); }
operator T**() { return &mPtrStorage; }
T*& operator*() { return mPtrStorage; }
private:
UniquePtr<T, Deleter>& mTargetSmartPtr;
T* mPtrStorage;
};
} // namespace detail
template <typename T>
inline STAUniquePtr<T> ToSTAUniquePtr(RefPtr<T>&& aRefPtr) {
return STAUniquePtr<T>(aRefPtr.forget().take());
}
template <typename T>
inline STAUniquePtr<T> ToSTAUniquePtr(const RefPtr<T>& aRefPtr) {
MOZ_ASSERT(NS_IsMainThread());
return STAUniquePtr<T>(do_AddRef(aRefPtr).take());
}
template <typename T>
inline STAUniquePtr<T> ToSTAUniquePtr(T* aRawPtr) {
MOZ_ASSERT(NS_IsMainThread());
if (aRawPtr) {
aRawPtr->AddRef();
}
return STAUniquePtr<T>(aRawPtr);
}
template <typename T, typename U>
inline STAUniquePtr<T> ToSTAUniquePtr(const InterceptorTargetPtr<U>& aTarget) {
MOZ_ASSERT(NS_IsMainThread());
RefPtr<T> newRef(static_cast<T*>(aTarget.get()));
return ToSTAUniquePtr(std::move(newRef));
}
template <typename T>
inline MTAUniquePtr<T> ToMTAUniquePtr(RefPtr<T>&& aRefPtr) {
return MTAUniquePtr<T>(aRefPtr.forget().take());
}
template <typename T>
inline MTAUniquePtr<T> ToMTAUniquePtr(const RefPtr<T>& aRefPtr) {
MOZ_ASSERT(IsCurrentThreadMTA());
return MTAUniquePtr<T>(do_AddRef(aRefPtr).take());
}
template <typename T>
inline MTAUniquePtr<T> ToMTAUniquePtr(T* aRawPtr) {
MOZ_ASSERT(IsCurrentThreadMTA());
if (aRawPtr) {
aRawPtr->AddRef();
}
return MTAUniquePtr<T>(aRawPtr);
}
template <typename T>
inline ProxyUniquePtr<T> ToProxyUniquePtr(RefPtr<T>&& aRefPtr) {
return ProxyUniquePtr<T>(aRefPtr.forget().take());
}
template <typename T>
inline ProxyUniquePtr<T> ToProxyUniquePtr(const RefPtr<T>& aRefPtr) {
MOZ_ASSERT(IsProxy(aRefPtr));
MOZ_ASSERT((XRE_IsParentProcess() && NS_IsMainThread()) ||
(XRE_IsContentProcess() && IsCurrentThreadMTA()));
return ProxyUniquePtr<T>(do_AddRef(aRefPtr).take());
}
template <typename T>
inline ProxyUniquePtr<T> ToProxyUniquePtr(T* aRawPtr) {
MOZ_ASSERT(IsProxy(aRawPtr));
MOZ_ASSERT((XRE_IsParentProcess() && NS_IsMainThread()) ||
(XRE_IsContentProcess() && IsCurrentThreadMTA()));
if (aRawPtr) {
aRawPtr->AddRef();
}
return ProxyUniquePtr<T>(aRawPtr);
}
template <typename T, typename Deleter>
inline InterceptorTargetPtr<T> ToInterceptorTargetPtr(
const UniquePtr<T, Deleter>& aTargetPtr) {
return InterceptorTargetPtr<T>(aTargetPtr.get());
}
inline PreservedStreamPtr ToPreservedStreamPtr(RefPtr<IStream>&& aStream) {
return PreservedStreamPtr(aStream.forget().take());
}
inline PreservedStreamPtr ToPreservedStreamPtr(
already_AddRefed<IStream>& aStream) {
return PreservedStreamPtr(aStream.take());
}
template <typename T, typename Deleter>
inline detail::UniquePtrGetterAddRefs<T, Deleter> getter_AddRefs(
UniquePtr<T, Deleter>& aSmartPtr) {
return detail::UniquePtrGetterAddRefs<T, Deleter>(aSmartPtr);
}
} // namespace mscom
} // namespace mozilla
// This block makes it possible for these smart pointers to be correctly
// applied in NewRunnableMethod and friends
namespace detail {
template <typename T>
struct SmartPointerStorageClass<mozilla::mscom::STAUniquePtr<T>> {
typedef StoreCopyPassByRRef<mozilla::mscom::STAUniquePtr<T>> Type;
};
template <typename T>
struct SmartPointerStorageClass<mozilla::mscom::MTAUniquePtr<T>> {
typedef StoreCopyPassByRRef<mozilla::mscom::MTAUniquePtr<T>> Type;
};
template <typename T>
struct SmartPointerStorageClass<mozilla::mscom::ProxyUniquePtr<T>> {
typedef StoreCopyPassByRRef<mozilla::mscom::ProxyUniquePtr<T>> Type;
};
template <typename T>
struct SmartPointerStorageClass<mozilla::mscom::InterceptorTargetPtr<T>> {
typedef StoreCopyPassByRRef<mozilla::mscom::InterceptorTargetPtr<T>> Type;
};
template <>
struct SmartPointerStorageClass<mozilla::mscom::PreservedStreamPtr> {
typedef StoreCopyPassByRRef<mozilla::mscom::PreservedStreamPtr> Type;
};
} // namespace detail
#endif // mozilla_mscom_Ptr_h