gecko-dev/tools/elf-dynstr-gc/elf-gc-dynstr.c

1219 строки
30 KiB
C
Исходник Обычный вид История

/* elf_gc_dynst
*
* This is a program that removes unreferenced strings from the .dynstr
* section in ELF shared objects. It also shrinks the .dynstr section and
* relocates all symbols after it.
*
* This program was written and copyrighted by:
* Alexander Larsson <alla@lysator.liu.se>
*
*
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
* License for the specific language governing rights and limitations
* under the License.
*/
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <elf.h>
#include <glib.h>
#include <string.h>
Elf32_Ehdr *elf_header = NULL;
#define FILE_OFFSET(offset) ((unsigned char *)(elf_header) + (offset))
struct dynamic_symbol {
Elf32_Word old_index;
Elf32_Word new_index;
char *string;
};
GHashTable *used_dynamic_symbols = NULL;
/* Data is dynamic_symbols, hashes on old_index */
Elf32_Word hole_index;
Elf32_Word hole_end;
Elf32_Word hole_len;
Elf32_Addr hole_addr_start;
Elf32_Addr hole_addr_remap_start;
Elf32_Addr hole_addr_remap_end;
int need_byteswap;
unsigned char machine_type;
Elf32_Word
read_word(Elf32_Word w)
{
if (need_byteswap)
w = GUINT32_SWAP_LE_BE(w);
return w;
}
Elf32_Sword
read_sword(Elf32_Sword w)
{
if (need_byteswap)
w = (Elf32_Sword)GUINT32_SWAP_LE_BE((guint32)w);
return w;
}
void
write_word(Elf32_Word *ptr, Elf32_Word w)
{
if (need_byteswap)
w = GUINT32_SWAP_LE_BE(w);
*ptr = w;
}
Elf32_Half
read_half(Elf32_Half h)
{
if (need_byteswap)
h = GUINT16_SWAP_LE_BE(h);
return h;
}
void
write_half(Elf32_Half *ptr, Elf32_Half h)
{
if (need_byteswap)
h = GUINT16_SWAP_LE_BE(h);
*ptr = h;
}
void
setup_byteswapping(unsigned char ei_data)
{
need_byteswap = 0;
#if G_BYTE_ORDER == G_BIG_ENDIAN
if (ei_data == ELFDATA2LSB)
need_byteswap = 1;
#endif
#if G_BYTE_ORDER == G_LITTLE_ENDIAN
if (ei_data == ELFDATA2MSB)
need_byteswap = 1;
#endif
}
Elf32_Shdr *
elf_find_section_num(int section_index)
{
Elf32_Shdr *section;
Elf32_Word sectionsize;
section = (Elf32_Shdr *)FILE_OFFSET(read_word(elf_header->e_shoff));
sectionsize = read_half(elf_header->e_shentsize);
section = (Elf32_Shdr *)((char *)section + sectionsize*section_index);
return section;
}
Elf32_Shdr *
elf_find_section_named(char *name)
{
Elf32_Shdr *section;
Elf32_Shdr *strtab_section;
Elf32_Word sectionsize;
int numsections;
char *strtab;
int i = 0;
section = (Elf32_Shdr *)FILE_OFFSET(read_word(elf_header->e_shoff));
strtab_section = elf_find_section_num(read_half(elf_header->e_shstrndx));
strtab = (char *)FILE_OFFSET(read_word(strtab_section->sh_offset));
sectionsize = read_half(elf_header->e_shentsize);
numsections = read_half(elf_header->e_shnum);
for (i=0;i<numsections;i++) {
if (strcmp(&strtab[read_word(section->sh_name)], name) == 0) {
return section;
}
section = (Elf32_Shdr *)((char *)section + sectionsize);
}
return NULL;
}
Elf32_Shdr *
elf_find_section(Elf32_Word sh_type)
{
Elf32_Shdr *section;
Elf32_Word sectionsize;
int numsections;
int i = 0;
section = (Elf32_Shdr *)FILE_OFFSET(read_word(elf_header->e_shoff));
sectionsize = read_half(elf_header->e_shentsize);
numsections = read_half(elf_header->e_shnum);
for (i=0;i<numsections;i++) {
if (read_word(section->sh_type) == sh_type) {
return section;
}
section = (Elf32_Shdr *)((char *)section + sectionsize);
}
return NULL;
}
Elf32_Shdr *
elf_find_next_higher_section(Elf32_Word offset)
{
Elf32_Shdr *section;
Elf32_Shdr *higher;
Elf32_Word sectionsize;
int numsections;
int i = 0;
section = (Elf32_Shdr *)FILE_OFFSET(read_word(elf_header->e_shoff));
sectionsize = read_half(elf_header->e_shentsize);
numsections = read_half(elf_header->e_shnum);
higher = NULL;
for (i=0;i<numsections;i++) {
if (read_word(section->sh_offset) >= offset) {
if (higher == NULL) {
higher = section;
} else if (read_word(section->sh_offset) < read_word(higher->sh_offset)) {
higher = section;
}
}
section = (Elf32_Shdr *)((char *)section + sectionsize);
}
return higher;
}
Elf32_Word
vma_to_offset(Elf32_Addr addr)
{
Elf32_Shdr *section;
Elf32_Shdr *higher;
Elf32_Word sectionsize;
int numsections;
int i = 0;
section = (Elf32_Shdr *)FILE_OFFSET(read_word(elf_header->e_shoff));
sectionsize = read_half(elf_header->e_shentsize);
numsections = read_half(elf_header->e_shnum);
higher = NULL;
for (i=0;i<numsections;i++) {
if ( (addr >= read_word(section->sh_addr)) &&
(addr < read_word(section->sh_addr) + read_word(section->sh_size)) ) {
return read_word(section->sh_offset) + (addr - read_word(section->sh_addr));
}
section = (Elf32_Shdr *)((char *)section + sectionsize);
}
fprintf(stderr, "Warning, unable to convert address %d (0x%x) to file offset\n",
addr, addr);
return 0;
}
void
find_segment_addr_min_max(Elf32_Word file_offset,
Elf32_Addr *start, Elf32_Addr *end)
{
Elf32_Phdr *segment;
Elf32_Word segmentsize;
int numsegments;
int i = 0;
segment = (Elf32_Phdr *)FILE_OFFSET(read_word(elf_header->e_phoff));
segmentsize = read_half(elf_header->e_phentsize);
numsegments = read_half(elf_header->e_phnum);
for (i=0;i<numsegments;i++) {
if ((file_offset >= read_word(segment->p_offset)) &&
(file_offset < read_word(segment->p_offset) + read_word(segment->p_filesz))) {
*start = read_word(segment->p_vaddr);
*end = read_word(segment->p_vaddr) + read_word(segment->p_memsz);
return;
}
segment = (Elf32_Phdr *)((char *)segment + segmentsize);
}
fprintf(stderr, "Error: Couldn't find segment in find_segment_addr_min_max()\n");
}
void *
dynamic_find_tag(Elf32_Shdr *dynamic, Elf32_Sword d_tag)
{
int i;
Elf32_Dyn *element;
element = (Elf32_Dyn *)FILE_OFFSET(read_word(dynamic->sh_offset));
for (i=0; read_sword(element[i].d_tag) != DT_NULL; i++) {
if (read_sword(element[i].d_tag) == d_tag) {
return FILE_OFFSET(read_word(element[i].d_un.d_ptr));
}
}
return NULL;
}
Elf32_Word
fixup_offset(Elf32_Word offset)
{
if (offset >= hole_index) {
return offset - hole_len;
}
return offset;
}
Elf32_Word
fixup_size(Elf32_Word offset, Elf32_Word size)
{
/* Note: Doesn't handle the cases where the hole and the size intersect
partially. */
if ( (hole_index >= offset) &&
(hole_index < offset + size)){
return size - hole_len;
}
return size;
}
Elf32_Addr
fixup_addr(Elf32_Addr addr)
{
if (addr == 0)
return 0;
/*
if ( (addr < hole_addr_remap_start) ||
(addr >= hole_addr_remap_end))
return addr;
*/
if (addr >= hole_addr_start) {
return addr - hole_len;
}
return addr;
}
Elf32_Word
fixup_addr_size(Elf32_Addr addr, Elf32_Word size)
{
/* Note: Doesn't handle the cases where the hole and the size intersect
partially. */
/*
if ( (addr < hole_addr_remap_start) ||
(addr >= hole_addr_remap_end))
return size;
*/
if ( (hole_addr_start >= addr) &&
(hole_addr_start < addr + size)){
return size - hole_len;
}
return size;
}
void
possibly_add_string(int name_idx, const char *name)
{
struct dynamic_symbol *dynamic_symbol;
if (name_idx != 0) {
dynamic_symbol = g_hash_table_lookup(used_dynamic_symbols, (gpointer) name_idx);
if (dynamic_symbol == NULL) {
dynamic_symbol = g_new(struct dynamic_symbol, 1);
dynamic_symbol->old_index = name_idx;
dynamic_symbol->new_index = 0;
dynamic_symbol->string = g_strdup(name);
g_hash_table_insert(used_dynamic_symbols, (gpointer)name_idx, dynamic_symbol);
/*printf("added dynamic string: %s (%d)\n", dynamic_symbol->string, name_idx);*/
}
}
}
Elf32_Word
fixup_string(Elf32_Word old_idx)
{
struct dynamic_symbol *dynamic_symbol;
if (old_idx == 0)
return 0;
dynamic_symbol = g_hash_table_lookup(used_dynamic_symbols, (gpointer) old_idx);
if (dynamic_symbol == NULL) {
fprintf(stderr, "AAAAAAAAAAAARGH!? Unknown string found in fixup (index: %d)!\n", old_idx);
return 0;
}
return dynamic_symbol->new_index;
}
void
add_strings_from_dynsym(Elf32_Shdr *dynsym, char *strtab)
{
Elf32_Sym *symbol;
Elf32_Sym *symbol_end;
Elf32_Word entry_size;
symbol = (Elf32_Sym *)FILE_OFFSET(read_word(dynsym->sh_offset));
symbol_end = (Elf32_Sym *)FILE_OFFSET(read_word(dynsym->sh_offset) + read_word(dynsym->sh_size));
entry_size = read_word(dynsym->sh_entsize);
while (symbol < symbol_end) {
int name_idx;
struct dynamic_symbol *dynamic_symbol;
name_idx = read_word(symbol->st_name);
possibly_add_string(name_idx, &strtab[name_idx]);
symbol = (Elf32_Sym *)((char *)symbol + entry_size);
}
}
void
fixup_strings_in_dynsym(Elf32_Shdr *dynsym)
{
Elf32_Sym *symbol;
Elf32_Sym *symbol_end;
Elf32_Word entry_size;
symbol = (Elf32_Sym *)FILE_OFFSET(read_word(dynsym->sh_offset));
symbol_end = (Elf32_Sym *)FILE_OFFSET(read_word(dynsym->sh_offset) + read_word(dynsym->sh_size));
entry_size = read_word(dynsym->sh_entsize);
while (symbol < symbol_end) {
struct dynamic_symbol *dynamic_symbol;
write_word(&symbol->st_name,
fixup_string(read_word(symbol->st_name)));
symbol = (Elf32_Sym *)((char *)symbol + entry_size);
}
}
void
add_strings_from_dynamic(Elf32_Shdr *dynamic, char *strtab)
{
int i;
int name_idx;
Elf32_Dyn *element;
Elf32_Word entry_size;
entry_size = read_word(dynamic->sh_entsize);
element = (Elf32_Dyn *)FILE_OFFSET(read_word(dynamic->sh_offset));
while (read_sword(element->d_tag) != DT_NULL) {
switch(read_sword(element->d_tag)) {
case DT_NEEDED:
case DT_SONAME:
case DT_RPATH:
name_idx = read_word(element->d_un.d_val);
/*if (name_idx) printf("d_tag: %d\n", element->d_tag);*/
possibly_add_string(name_idx, &strtab[name_idx]);
break;
default:
;
/*printf("unhandled d_tag: %d (0x%x)\n", element->d_tag, element->d_tag);*/
}
element = (Elf32_Dyn *)((char *)element + entry_size);
}
}
void
fixup_strings_in_dynamic(Elf32_Shdr *dynamic)
{
int i;
int name_idx;
Elf32_Dyn *element;
Elf32_Word entry_size;
entry_size = read_word(dynamic->sh_entsize);
element = (Elf32_Dyn *)FILE_OFFSET(read_word(dynamic->sh_offset));
while (read_sword(element->d_tag) != DT_NULL) {
switch(read_sword(element->d_tag)) {
case DT_NEEDED:
case DT_SONAME:
case DT_RPATH:
write_word(&element->d_un.d_val,
fixup_string(read_word(element->d_un.d_val)));
break;
default:
;
/*printf("unhandled d_tag: %d (0x%x)\n", element->d_tag, element->d_tag);*/
}
element = (Elf32_Dyn *)((char *)element + entry_size);
}
}
void
add_strings_from_ver_d(Elf32_Shdr *ver_d, char *strtab)
{
Elf32_Verdaux *veraux;
Elf32_Verdef *verdef;
int num_aux;
int name_idx;
int i;
int cont;
verdef = (Elf32_Verdef *)FILE_OFFSET(read_word(ver_d->sh_offset));
do {
num_aux = read_half(verdef->vd_cnt);
veraux = (Elf32_Verdaux *)((char *)verdef + read_word(verdef->vd_aux));
for (i=0; i<num_aux; i++) {
name_idx = read_word(veraux->vda_name);
possibly_add_string(name_idx, &strtab[name_idx]);
veraux = (Elf32_Verdaux *)((char *)veraux + read_word(veraux->vda_next));
}
cont = read_word(verdef->vd_next) != 0;
verdef = (Elf32_Verdef *)((char *)verdef + read_word(verdef->vd_next));
} while (cont);
}
void
fixup_strings_in_ver_d(Elf32_Shdr *ver_d)
{
Elf32_Verdaux *veraux;
Elf32_Verdef *verdef;
int num_aux;
int name_idx;
int i;
int cont;
verdef = (Elf32_Verdef *)FILE_OFFSET(read_word(ver_d->sh_offset));
do {
num_aux = read_half(verdef->vd_cnt);
veraux = (Elf32_Verdaux *)((char *)verdef + read_word(verdef->vd_aux));
for (i=0; i<num_aux; i++) {
write_word(&veraux->vda_name,
fixup_string(read_word(veraux->vda_name)));
veraux = (Elf32_Verdaux *)((char *)veraux + read_word(veraux->vda_next));
}
cont = read_word(verdef->vd_next) != 0;
verdef = (Elf32_Verdef *)((char *)verdef + read_word(verdef->vd_next));
} while (cont);
}
void
add_strings_from_ver_r(Elf32_Shdr *ver_r, char *strtab)
{
Elf32_Vernaux *veraux;
Elf32_Verneed *verneed;
int num_aux;
int name_idx;
int i;
int cont;
verneed = (Elf32_Verneed *)FILE_OFFSET(read_word(ver_r->sh_offset));
do {
name_idx = read_word(verneed->vn_file);
possibly_add_string(name_idx, &strtab[name_idx]);
num_aux = read_half(verneed->vn_cnt);
veraux = (Elf32_Vernaux *)((char *)verneed + read_word(verneed->vn_aux));
for (i=0; i<num_aux; i++) {
name_idx = read_word(veraux->vna_name);
possibly_add_string(name_idx, &strtab[name_idx]);
veraux = (Elf32_Vernaux *)((char *)veraux + read_word(veraux->vna_next));
}
cont = read_word(verneed->vn_next) != 0;
verneed = (Elf32_Verneed *)((char *)verneed + read_word(verneed->vn_next));
} while (cont);
}
void
fixup_strings_in_ver_r(Elf32_Shdr *ver_r)
{
Elf32_Vernaux *veraux;
Elf32_Verneed *verneed;
int num_aux;
int name_idx;
int i;
int cont;
verneed = (Elf32_Verneed *)FILE_OFFSET(read_word(ver_r->sh_offset));
do {
write_word(&verneed->vn_file,
fixup_string(read_word(verneed->vn_file)));
num_aux = read_half(verneed->vn_cnt);
veraux = (Elf32_Vernaux *)((char *)verneed + read_word(verneed->vn_aux));
for (i=0; i<num_aux; i++) {
write_word(&veraux->vna_name,
fixup_string(read_word(veraux->vna_name)));
veraux = (Elf32_Vernaux *)((char *)veraux + read_word(veraux->vna_next));
}
cont = read_word(verneed->vn_next) != 0;
verneed = (Elf32_Verneed *)((char *)verneed + read_word(verneed->vn_next));
} while (cont);
}
gboolean sum_size(gpointer key,
struct dynamic_symbol *sym,
int *size)
{
*size += strlen(sym->string) + 1;
return 1;
}
struct index_n_dynstr {
int index;
unsigned char *dynstr;
};
gboolean output_string(gpointer key,
struct dynamic_symbol *sym,
struct index_n_dynstr *x)
{
sym->new_index = x->index;
memcpy(x->dynstr + x->index, sym->string, strlen(sym->string) + 1);
x->index += strlen(sym->string) + 1;
return 1;
}
unsigned char *
generate_new_dynstr(Elf32_Word *size_out)
{
int size;
unsigned char *new_dynstr;
struct index_n_dynstr x;
size = 1; /* first a zero */
g_hash_table_foreach (used_dynamic_symbols,
(GHFunc)sum_size,
&size);
new_dynstr = g_malloc(size);
new_dynstr[0] = 0;
x.index = 1;
x.dynstr = new_dynstr;
g_hash_table_foreach (used_dynamic_symbols,
(GHFunc)output_string,
&x);
*size_out = size;
return new_dynstr;
}
void
remap_sections(void)
{
Elf32_Shdr *section;
Elf32_Word sectionsize;
int numsections;
int i = 0;
section = (Elf32_Shdr *)FILE_OFFSET(read_word(elf_header->e_shoff));
sectionsize = read_half(elf_header->e_shentsize);
numsections = read_half(elf_header->e_shnum);
for (i=0;i<numsections;i++) {
write_word(&section->sh_size,
fixup_size(read_word(section->sh_offset),
read_word(section->sh_size)));
write_word(&section->sh_offset,
fixup_offset(read_word(section->sh_offset)));
write_word(&section->sh_addr,
fixup_addr(read_word(section->sh_addr)));
section = (Elf32_Shdr *)((char *)section + sectionsize);
}
}
void
remap_segments(void)
{
Elf32_Phdr *segment;
Elf32_Word segmentsize;
Elf32_Word p_align;
int numsegments;
int i = 0;
segment = (Elf32_Phdr *)FILE_OFFSET(read_word(elf_header->e_phoff));
segmentsize = read_half(elf_header->e_phentsize);
numsegments = read_half(elf_header->e_phnum);
for (i=0;i<numsegments;i++) {
write_word(&segment->p_filesz,
fixup_size(read_word(segment->p_offset),
read_word(segment->p_filesz)));
write_word(&segment->p_offset,
fixup_offset(read_word(segment->p_offset)));
write_word(&segment->p_memsz,
fixup_addr_size(read_word(segment->p_vaddr),
read_word(segment->p_memsz)));
write_word(&segment->p_vaddr,
fixup_addr(read_word(segment->p_vaddr)));
write_word(&segment->p_paddr,
read_word(segment->p_vaddr));
/* Consistancy checking: */
p_align = read_word(segment->p_align);
if (p_align > 1) {
if ((read_word(segment->p_vaddr) - read_word(segment->p_offset))%p_align != 0) {
fprintf(stderr, "Warning, creating non-aligned segment addr: %x offset: %x allign: %x\n",
read_word(segment->p_vaddr), read_word(segment->p_offset), p_align);
}
}
segment = (Elf32_Phdr *)((char *)segment + segmentsize);
}
}
void
remap_elf_header(void)
{
write_word(&elf_header->e_phoff,
fixup_offset(read_word(elf_header->e_phoff)));
write_word(&elf_header->e_shoff,
fixup_offset(read_word(elf_header->e_shoff)));
write_word(&elf_header->e_entry,
fixup_addr(read_word(elf_header->e_entry)));
}
void
remap_symtab(Elf32_Shdr *symtab)
{
Elf32_Sym *symbol;
Elf32_Sym *symbol_end;
Elf32_Word entry_size;
symbol = (Elf32_Sym *)FILE_OFFSET(read_word(symtab->sh_offset));
symbol_end = (Elf32_Sym *)FILE_OFFSET(read_word(symtab->sh_offset) +
read_word(symtab->sh_size));
entry_size = read_word(symtab->sh_entsize);
while (symbol < symbol_end) {
write_word(&symbol->st_value,
fixup_addr(read_word(symbol->st_value)));
symbol = (Elf32_Sym *)((char *)symbol + entry_size);
}
}
/* Ugly global variables: */
Elf32_Addr got_data_start = 0;
Elf32_Addr got_data_end = 0;
void
remap_rel_section(Elf32_Rel *rel, Elf32_Word size, Elf32_Word entry_size)
{
Elf32_Rel *rel_end;
Elf32_Word offset;
Elf32_Addr *addr;
Elf32_Word type;
rel_end = (Elf32_Rel *)((char *)rel + size);
while (rel < rel_end) {
type = ELF32_R_TYPE(read_word(rel->r_info));
switch (machine_type) {
case EM_386:
if ((type == R_386_RELATIVE) || (type == R_386_JMP_SLOT)) {
/* We need to relocate the data this is pointing to too. */
offset = vma_to_offset(read_word(rel->r_offset));
addr = (Elf32_Addr *)FILE_OFFSET(offset);
write_word(addr,
fixup_addr(read_word(*addr)));
}
write_word(&rel->r_offset,
fixup_addr(read_word(rel->r_offset)));
break;
case EM_PPC:
/* The PPC always uses RELA relocations */
break;
}
rel = (Elf32_Rel *)((char *)rel + entry_size);
}
}
void
remap_rela_section(Elf32_Rela *rela, Elf32_Word size, Elf32_Word entry_size)
{
Elf32_Rela *rela_end;
Elf32_Addr *addr;
Elf32_Word offset;
Elf32_Word type;
Elf32_Word bitmask;
rela_end = (Elf32_Rela *)((char *)rela + size);
while (rela < rela_end) {
type = ELF32_R_TYPE(read_word(rela->r_info));
switch (machine_type) {
case EM_386:
if ((type == R_386_RELATIVE) || (type == R_386_JMP_SLOT)) {
/* We need to relocate the data this is pointing to too. */
offset = vma_to_offset(read_word(rela->r_offset));
addr = (Elf32_Addr *)FILE_OFFSET(offset);
write_word(addr,
fixup_addr(read_word(*addr)));
}
write_word(&rela->r_offset,
fixup_addr(read_word(rela->r_offset)));
break;
case EM_PPC:
switch (type) {
case R_PPC_RELATIVE:
write_word((Elf32_Word *)&rela->r_addend,
fixup_addr(read_word(rela->r_addend)));
/* Fall through for 32bit offset fixup */
case R_PPC_ADDR32:
case R_PPC_GLOB_DAT:
case R_PPC_JMP_SLOT:
write_word(&rela->r_offset,
fixup_addr(read_word(rela->r_offset)));
break;
case R_PPC_NONE:
break;
default:
fprintf(stderr, "Warning, unhandled PPC relocation type %d\n", type);
}
break;
}
rela = (Elf32_Rela *)((char *)rela + entry_size);
}
}
void
remap_i386_got(void)
{
Elf32_Shdr *got_section;
Elf32_Addr *got;
Elf32_Addr *got_end;
Elf32_Word entry_size;
got_section = elf_find_section_named(".got");
if (got_section == NULL) {
fprintf(stderr, "Warning, no .got section\n");
return;
}
got_data_start = read_word(got_section->sh_offset);
got_data_end = got_data_start + read_word(got_section->sh_size);
got = (Elf32_Addr *)FILE_OFFSET(got_data_start);
got_end = (Elf32_Addr *)FILE_OFFSET(got_data_end);
entry_size = read_word(got_section->sh_entsize);
write_word(got,
fixup_addr(read_word(*got))); /* Pointer to .dynamic */
}
void
remap_ppc_got(void)
{
Elf32_Shdr *got_section;
Elf32_Addr *got;
Elf32_Addr *got_end;
Elf32_Word entry_size;
got_section = elf_find_section_named(".got");
if (got_section == NULL) {
fprintf(stderr, "Warning, no .got section\n");
return;
}
got_data_start = read_word(got_section->sh_offset);
got_data_end = got_data_start + read_word(got_section->sh_size);
got = (Elf32_Addr *)FILE_OFFSET(got_data_start);
got_end = (Elf32_Addr *)FILE_OFFSET(got_data_end);
entry_size = read_word(got_section->sh_entsize);
/* Skip reserved part.
* Note that this should really be found by finding the
* _GLOBAL_OFFSET_TABLE symbol, as it could (according to
* the spec) point to the middle of the got.
*/
got = (Elf32_Addr *)((char *)got + entry_size); /* Skip blrl instruction */
write_word(got,
fixup_addr(read_word(*got))); /* Pointer to .dynamic */
}
Elf32_Word
get_dynamic_val(Elf32_Shdr *dynamic, Elf32_Sword tag)
{
Elf32_Dyn *element;
Elf32_Word entry_size;
entry_size = read_word(dynamic->sh_entsize);
element = (Elf32_Dyn *)FILE_OFFSET(read_word(dynamic->sh_offset));
while (read_sword(element->d_tag) != DT_NULL) {
if (read_sword(element->d_tag) == tag) {
return read_word(element->d_un.d_val);
}
element = (Elf32_Dyn *)((char *)element + entry_size);
}
return 0;
}
void
remap_dynamic(Elf32_Shdr *dynamic, Elf32_Word new_dynstr_size)
{
Elf32_Dyn *element;
Elf32_Word entry_size;
Elf32_Word rel_size;
Elf32_Word rel_entry_size;
Elf32_Rel *rel;
Elf32_Rela *rela;
int jmprel_overlaps;
Elf32_Word rel_start, rel_end, jmprel_start, jmprel_end;
entry_size = read_word(dynamic->sh_entsize);
/* Find out if REL/RELA and JMPREL overlaps: */
if (get_dynamic_val(dynamic, DT_PLTREL) == DT_REL) {
rel_start = get_dynamic_val(dynamic, DT_REL);
rel_end = rel_start + get_dynamic_val(dynamic, DT_RELSZ);
} else {
rel_start = get_dynamic_val(dynamic, DT_RELA);
rel_end = rel_start + get_dynamic_val(dynamic, DT_RELASZ);
}
jmprel_start = get_dynamic_val(dynamic, DT_JMPREL);
jmprel_overlaps = 0;
if ((jmprel_start >= rel_start) && (jmprel_start < rel_end))
jmprel_overlaps = 1;
element = (Elf32_Dyn *)FILE_OFFSET(read_word(dynamic->sh_offset));
while (read_sword(element->d_tag) != DT_NULL) {
switch(read_sword(element->d_tag)) {
case DT_STRSZ:
write_word(&element->d_un.d_val, new_dynstr_size);
break;
case DT_PLTGOT:
case DT_HASH:
case DT_STRTAB:
case DT_INIT:
case DT_FINI:
case DT_VERDEF:
case DT_VERNEED:
case DT_VERSYM:
write_word(&element->d_un.d_ptr,
fixup_addr(read_word(element->d_un.d_ptr)));
break;
case DT_JMPREL:
rel_size = get_dynamic_val(dynamic, DT_PLTRELSZ);
if (!jmprel_overlaps) {
if (get_dynamic_val(dynamic, DT_PLTREL) == DT_REL) {
rel_entry_size = get_dynamic_val(dynamic, DT_RELENT);
rel = (Elf32_Rel *)FILE_OFFSET(vma_to_offset(read_word(element->d_un.d_ptr)));
remap_rel_section(rel, rel_size, rel_entry_size);
} else {
rel_entry_size = get_dynamic_val(dynamic, DT_RELAENT);
rela = (Elf32_Rela *)FILE_OFFSET(vma_to_offset(read_word(element->d_un.d_ptr)));
remap_rela_section(rela, rel_size, rel_entry_size);
}
}
write_word(&element->d_un.d_ptr,
fixup_addr(read_word(element->d_un.d_ptr)));
break;
case DT_REL:
rel_size = get_dynamic_val(dynamic, DT_RELSZ);
rel_entry_size = get_dynamic_val(dynamic, DT_RELENT);
rel = (Elf32_Rel *)FILE_OFFSET(vma_to_offset(read_word(element->d_un.d_ptr)));
remap_rel_section(rel, rel_size, rel_entry_size);
write_word(&element->d_un.d_ptr,
fixup_addr(read_word(element->d_un.d_ptr)));
break;
case DT_RELA:
rel_size = get_dynamic_val(dynamic, DT_RELASZ);
rel_entry_size = get_dynamic_val(dynamic, DT_RELAENT);
rela = (Elf32_Rela *)FILE_OFFSET(vma_to_offset(read_word(element->d_un.d_ptr)));
remap_rela_section(rela, rel_size, rel_entry_size);
write_word(&element->d_un.d_ptr,
fixup_addr(read_word(element->d_un.d_ptr)));
break;
default:
/*printf("unhandled d_tag: %d (0x%x)\n", read_sword(element->d_tag), read_sword(element->d_tag));*/
break;
}
element = (Elf32_Dyn *)((char *)element + entry_size);
}
}
void
align_hole(Elf32_Word *start, Elf32_Word *end)
{
Elf32_Word len;
Elf32_Word align;
Elf32_Shdr *section;
Elf32_Word sectionsize;
int numsections;
int i = 0;
int unaligned;
len = *end - *start;
align = 0;
sectionsize = read_half(elf_header->e_shentsize);
numsections = read_half(elf_header->e_shnum);
do {
section = (Elf32_Shdr *)FILE_OFFSET(read_word(elf_header->e_shoff));
unaligned = 0;
for (i=0;i<numsections;i++) {
if ( (read_word(section->sh_addralign) > 1) &&
( (read_word(section->sh_offset) - len + align)%read_word(section->sh_addralign) != 0) ) {
unaligned = 1;
}
section = (Elf32_Shdr *)((char *)section + sectionsize);
}
if (unaligned) {
align++;
}
} while (unaligned);
*start += align;
}
int
main(int argc, char *argv[])
{
int fd;
unsigned char *mapping;
Elf32_Word size;
struct stat statbuf;
Elf32_Shdr *dynamic;
Elf32_Shdr *dynsym;
Elf32_Shdr *symtab;
Elf32_Shdr *dynstr;
Elf32_Shdr *hash;
Elf32_Shdr *higher_section;
Elf32_Word dynstr_index;
Elf32_Shdr *ver_r;
Elf32_Shdr *ver_d;
char *dynstr_data;
unsigned char *new_dynstr;
Elf32_Word old_dynstr_size;
Elf32_Word new_dynstr_size;
if (argc != 2) {
fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
return 1;
}
fd = open(argv[1], O_RDWR);
if (fd == -1) {
fprintf(stderr, "Cannot open file %s\n", argv[1]);
return 1;
}
if (fstat(fd, &statbuf) == -1) {
fprintf(stderr, "Cannot stat file %s\n", argv[1]);
return 1;
}
size = statbuf.st_size;
mapping = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (mapping == (unsigned char *)-1) {
fprintf(stderr, "Cannot mmap file %s\n", argv[1]);
return 1;
}
used_dynamic_symbols = g_hash_table_new(g_direct_hash, g_direct_equal);
elf_header = (Elf32_Ehdr *)mapping;
if (strncmp((void *)elf_header, ELFMAG, SELFMAG)!=0) {
fprintf(stderr, "Not an ELF file\n");
return 1;
}
if (elf_header->e_ident[EI_VERSION] != EV_CURRENT) {
fprintf(stderr, "Wrong ELF file version\n");
return 1;
}
if (elf_header->e_ident[EI_CLASS] != ELFCLASS32) {
fprintf(stderr, "Only 32bit ELF files supported\n");
return 1;
}
setup_byteswapping(elf_header->e_ident[EI_DATA]);
machine_type = read_half(elf_header->e_machine);
if ( (machine_type != EM_386) &&
(machine_type != EM_PPC) ) {
fprintf(stderr, "Unsupported architecture. Supported are: x86, ppc\n");
return 1;
}
if (read_half(elf_header->e_type) != ET_DYN) {
fprintf(stderr, "Not an ELF shared object\n");
return 1;
}
dynamic = elf_find_section(SHT_DYNAMIC);
dynsym = elf_find_section(SHT_DYNSYM);
symtab = elf_find_section(SHT_SYMTAB);
dynstr_index = read_word(dynsym->sh_link);
dynstr = elf_find_section_num(dynstr_index);
dynstr_data = (char *)FILE_OFFSET(read_word(dynstr->sh_offset));
old_dynstr_size = read_word(dynstr->sh_size);
ver_d = elf_find_section(SHT_GNU_verdef);
ver_r = elf_find_section(SHT_GNU_verneed);
hash = elf_find_section(SHT_HASH);
/* Generate hash table with all used strings: */
add_strings_from_dynsym(dynsym, dynstr_data);
add_strings_from_dynamic(dynamic, dynstr_data);
if (ver_d && (read_word(ver_d->sh_link) == dynstr_index))
add_strings_from_ver_d(ver_d, dynstr_data);
if (ver_r && (read_word(ver_r->sh_link) == dynstr_index))
add_strings_from_ver_r(ver_r, dynstr_data);
/* Generate new dynstr section from the used strings hashtable: */
new_dynstr = generate_new_dynstr(&new_dynstr_size);
/*
printf("New dynstr size: %d\n", new_dynstr_size);
printf("Old dynstr size: %d\n", old_dynstr_size);
*/
if (new_dynstr_size >= old_dynstr_size) {
fprintf(stderr, "Couldn't GC any strings, exiting.\n");
return 0;
}
/* Fixup all references: */
fixup_strings_in_dynsym(dynsym);
fixup_strings_in_dynamic(dynamic);
if (ver_d && (read_word(ver_d->sh_link) == dynstr_index))
fixup_strings_in_ver_d(ver_d);
if (ver_r && (read_word(ver_r->sh_link) == dynstr_index))
fixup_strings_in_ver_r(ver_r);
/* Copy over the new dynstr: */
memcpy(dynstr_data, new_dynstr, new_dynstr_size);
memset(dynstr_data + new_dynstr_size, ' ', old_dynstr_size-new_dynstr_size);
/* Compact the dynstr section and the file: */
/* 1. Set up the data for the fixup_offset() function: */
hole_index = read_word(dynstr->sh_offset) + new_dynstr_size;
higher_section = elf_find_next_higher_section(hole_index);
hole_end = read_word(higher_section->sh_offset);
align_hole(&hole_index, &hole_end);
hole_len = hole_end - hole_index;
hole_addr_start = hole_index; /* TODO: Fix this to something better */
find_segment_addr_min_max(read_word(dynstr->sh_offset),
&hole_addr_remap_start, &hole_addr_remap_end);
/*
printf("Hole remap: 0x%lx - 0x%lx\n", hole_addr_remap_start, hole_addr_remap_end);
printf("hole: %lu - %lu (%lu bytes)\n", hole_index, hole_end, hole_len);
printf("hole: 0x%lx - 0x%lx (0x%lx bytes)\n", hole_index, hole_end, hole_len);
*/
/* 2. Change all section and segment sizes and offsets: */
remap_symtab(dynsym);
if (symtab)
remap_symtab(symtab);
if (machine_type == EM_386)
remap_i386_got();
if (machine_type == EM_PPC)
remap_ppc_got();
remap_dynamic(dynamic, new_dynstr_size);
remap_sections(); /* After this line the section headers are wrong */
remap_segments();
remap_elf_header();
/* 3. Do the real compacting. */
memmove(mapping + hole_index,
mapping + hole_index + hole_len,
size - (hole_index + hole_len));
munmap(mapping, size);
ftruncate(fd, size - hole_len);
close(fd);
return 0;
}