gecko-dev/gfx/vr/gfxVRCardboard.cpp

387 строки
11 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <math.h>
#include "prlink.h"
#include "prmem.h"
#include "prenv.h"
#include "gfxPrefs.h"
#include "nsString.h"
#include "mozilla/dom/ScreenOrientation.h"
#include "mozilla/Preferences.h"
#include "mozilla/Hal.h"
#include "gfxVRCardboard.h"
#include "nsServiceManagerUtils.h"
#include "nsIScreenManager.h"
#ifdef ANDROID
#include <android/log.h>
#define LOG(args...) __android_log_print(ANDROID_LOG_INFO, "GeckoVR" , ## args)
#else
#define LOG(...) do { } while(0)
#endif
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
// 1/sqrt(2) (aka sqrt(2)/2)
#ifndef M_SQRT1_2
# define M_SQRT1_2 0.70710678118654752440
#endif
using namespace mozilla::dom;
using namespace mozilla::gfx;
using namespace mozilla::gfx::impl;
namespace {
// some utility functions
// This remaps axes in the given matrix to a new configuration based on the
// screen orientation. Similar to what Android SensorManager.remapCoordinateSystem
// does, except only for a fixed number of transforms that we need.
Matrix4x4
RemapMatrixForOrientation(ScreenOrientation screenConfig, const Matrix4x4& aMatrix)
{
Matrix4x4 out;
const float *in = &aMatrix._11;
float *o = &out._11;
if (screenConfig == eScreenOrientation_LandscapePrimary) {
// remap X,Y -> Y,-X
o[0] = -in[1]; o[1] = in[0]; o[2] = in[2];
o[4] = -in[5]; o[5] = in[4]; o[6] = in[6];
o[8] = -in[9]; o[9] = in[8]; o[10] = in[10];
} else if (screenConfig == eScreenOrientation_LandscapeSecondary) {
// remap X,Y -> -Y,X
o[0] = in[1]; o[1] = -in[0]; o[2] = in[2];
o[4] = in[5]; o[5] = -in[4]; o[6] = in[6];
o[8] = in[9]; o[9] = -in[8]; o[10] = in[10];
} else if (screenConfig == eScreenOrientation_PortraitPrimary ||
screenConfig == eScreenOrientation_PortraitSecondary)
{
// remap X,Y -> X,-Z
o[0] = in[0]; o[1] = in[2]; o[2] = -in[1];
o[4] = in[4]; o[5] = in[6]; o[6] = -in[5];
o[8] = in[8]; o[9] = in[10]; o[10] = -in[9];
} else {
MOZ_ASSERT(0, "gfxVRCardboard::RemapMatrixForOrientation invalid screenConfig");
}
return out;
}
}
HMDInfoCardboard::HMDInfoCardboard()
: VRHMDInfo(VRHMDType::Cardboard)
, mStartCount(0)
, mOrient(eScreenOrientation_PortraitPrimary)
{
MOZ_ASSERT(sizeof(HMDInfoCardboard::DistortionVertex) == sizeof(VRDistortionVertex),
"HMDInfoCardboard::DistortionVertex must match the size of VRDistortionVertex");
MOZ_COUNT_CTOR_INHERITED(HMDInfoCardboard, VRHMDInfo);
mDeviceName.AssignLiteral("Phone Sensor (Cardboard) HMD");
mSupportedSensorBits = State_Orientation;
mRecommendedEyeFOV[Eye_Left] = VRFieldOfView(45.0, 45.0, 45.0, 45.0);
mRecommendedEyeFOV[Eye_Right] = VRFieldOfView(45.0, 45.0, 45.0, 45.0);
mMaximumEyeFOV[Eye_Left] = VRFieldOfView(45.0, 45.0, 45.0, 45.0);
mMaximumEyeFOV[Eye_Right] = VRFieldOfView(45.0, 45.0, 45.0, 45.0);
SetFOV(mRecommendedEyeFOV[Eye_Left], mRecommendedEyeFOV[Eye_Right], 0.01, 10000.0);
}
bool
HMDInfoCardboard::StartSensorTracking()
{
LOG("HMDInfoCardboard::StartSensorTracking %d\n", mStartCount);
if (mStartCount == 0) {
// it's never been started before; initialize observers and
// initial state.
mozilla::hal::ScreenConfiguration sconfig;
mozilla::hal::GetCurrentScreenConfiguration(&sconfig);
this->Notify(sconfig);
mozilla::hal::RegisterSensorObserver(mozilla::hal::SENSOR_GAME_ROTATION_VECTOR, this);
mozilla::hal::RegisterScreenConfigurationObserver(this);
mLastSensorState.Clear();
}
mStartCount++;
return true;
}
void
HMDInfoCardboard::Notify(const mozilla::hal::ScreenConfiguration& config)
{
mOrient = config.orientation();
if (mOrient == eScreenOrientation_LandscapePrimary) {
mScreenTransform = Quaternion(0.f, 0.f, M_SQRT1_2, M_SQRT1_2);
} else if (mOrient == eScreenOrientation_LandscapeSecondary) {
mScreenTransform = Quaternion(0.f, 0.f, -M_SQRT1_2, M_SQRT1_2);
} else if (mOrient == eScreenOrientation_PortraitPrimary) {
mScreenTransform = Quaternion();
} else if (mOrient == eScreenOrientation_PortraitSecondary) {
mScreenTransform = Quaternion(0.f, 0.f, 1.f, 0.f);
}
}
void
HMDInfoCardboard::Notify(const mozilla::hal::SensorData& data)
{
if (data.sensor() != mozilla::hal::SENSOR_GAME_ROTATION_VECTOR)
return;
const nsTArray<float>& sensorValues = data.values();
// This is super chatty
//LOG("HMDInfoCardboard::Notify %f %f %f %f\n", sensorValues[0], sensorValues[1], sensorValues[2], sensorValues[3]);
mSavedLastSensor.Set(sensorValues[0], sensorValues[1], sensorValues[2], sensorValues[3]);
mSavedLastSensorTime = data.timestamp();
mNeedsSensorCompute = true;
}
void
HMDInfoCardboard::ComputeStateFromLastSensor()
{
if (!mNeedsSensorCompute)
return;
// apply the zero orientation
Quaternion q = mSensorZeroInverse * mSavedLastSensor;
// make a matrix from the quat
Matrix4x4 qm;
qm.SetRotationFromQuaternion(q);
// remap the coordinate space, based on the orientation
Matrix4x4 qmRemapped = RemapMatrixForOrientation(mOrient, qm);
// turn it back into a quat
q.SetFromRotationMatrix(qmRemapped);
// apply adjustment based on what's been done to the screen and the original zero
// position of the base coordinate space
q = mScreenTransform * q;
VRHMDSensorState& state = mLastSensorState;
state.flags |= State_Orientation;
state.orientation[0] = q.x;
state.orientation[1] = q.y;
state.orientation[2] = q.z;
state.orientation[3] = q.w;
state.timestamp = mSavedLastSensorTime / 1000000.0;
mNeedsSensorCompute = false;
}
VRHMDSensorState
HMDInfoCardboard::GetSensorState(double timeOffset)
{
ComputeStateFromLastSensor();
return mLastSensorState;
}
void
HMDInfoCardboard::StopSensorTracking()
{
LOG("HMDInfoCardboard::StopSensorTracking, count %d\n", mStartCount);
if (--mStartCount == 0) {
mozilla::hal::UnregisterScreenConfigurationObserver(this);
mozilla::hal::UnregisterSensorObserver(mozilla::hal::SENSOR_GAME_ROTATION_VECTOR, this);
}
}
void
HMDInfoCardboard::ZeroSensor()
{
mSensorZeroInverse = mSavedLastSensor;
mSensorZeroInverse.Invert();
}
static Matrix4x4
ConstructProjectionMatrix(const VRFieldOfView& fov, bool rightHanded, double zNear, double zFar)
{
float upTan = tan(fov.upDegrees * M_PI / 180.0);
float downTan = tan(fov.downDegrees * M_PI / 180.0);
float leftTan = tan(fov.leftDegrees * M_PI / 180.0);
float rightTan = tan(fov.rightDegrees * M_PI / 180.0);
float handednessScale = rightHanded ? -1.0 : 1.0;
float pxscale = 2.0f / (leftTan + rightTan);
float pxoffset = (leftTan - rightTan) * pxscale * 0.5;
float pyscale = 2.0f / (upTan + downTan);
float pyoffset = (upTan - downTan) * pyscale * 0.5;
Matrix4x4 mobj;
float *m = &mobj._11;
m[0*4+0] = pxscale;
m[0*4+2] = pxoffset * handednessScale;
m[1*4+1] = pyscale;
m[1*4+2] = -pyoffset * handednessScale;
m[2*4+2] = zFar / (zNear - zFar) * -handednessScale;
m[2*4+3] = (zFar * zNear) / (zNear - zFar);
m[3*4+2] = handednessScale;
return mobj;
}
bool
HMDInfoCardboard::SetFOV(const VRFieldOfView& aFOVLeft,
const VRFieldOfView& aFOVRight,
double zNear, double zFar)
{
const float standardIPD = 0.064f;
for (uint32_t eye = 0; eye < NumEyes; eye++) {
mEyeFOV[eye] = eye == Eye_Left ? aFOVLeft : aFOVRight;
mEyeTranslation[eye] = Point3D(standardIPD * (eye == Eye_Left ? -1.0 : 1.0), 0.0, 0.0);
mEyeProjectionMatrix[eye] = ConstructProjectionMatrix(mEyeFOV[eye], true, zNear, zFar);
mDistortionMesh[eye].mVertices.SetLength(4);
mDistortionMesh[eye].mIndices.SetLength(6);
HMDInfoCardboard::DistortionVertex *destv = reinterpret_cast<HMDInfoCardboard::DistortionVertex*>(mDistortionMesh[eye].mVertices.Elements());
float xoffs = eye == Eye_Left ? 0.0f : 1.0f;
float txoffs = eye == Eye_Left ? 0.0f : 0.5f;
destv[0].pos[0] = -1.0 + xoffs;
destv[0].pos[1] = -1.0;
destv[0].texR[0] = destv[0].texG[0] = destv[0].texB[0] = 0.0 + txoffs;
destv[0].texR[1] = destv[0].texG[1] = destv[0].texB[1] = 1.0;
destv[0].padding[0] = 1.0; // vignette factor
destv[1].pos[0] = 0.0 + xoffs;
destv[1].pos[1] = -1.0;
destv[1].texR[0] = destv[1].texG[0] = destv[1].texB[0] = 0.5 + txoffs;
destv[1].texR[1] = destv[1].texG[1] = destv[1].texB[1] = 1.0;
destv[1].padding[0] = 1.0; // vignette factor
destv[2].pos[0] = 0.0 + xoffs;
destv[2].pos[1] = 1.0;
destv[2].texR[0] = destv[2].texG[0] = destv[2].texB[0] = 0.5 + txoffs;
destv[2].texR[1] = destv[2].texG[1] = destv[2].texB[1] = 0.0;
destv[2].padding[0] = 1.0; // vignette factor
destv[3].pos[0] = -1.0 + xoffs;
destv[3].pos[1] = 1.0;
destv[3].texR[0] = destv[3].texG[0] = destv[3].texB[0] = 0.0 + txoffs;
destv[3].texR[1] = destv[3].texG[1] = destv[3].texB[1] = 0.0;
destv[3].padding[0] = 1.0; // vignette factor
uint16_t *iv = mDistortionMesh[eye].mIndices.Elements();
iv[0] = 0; iv[1] = 1; iv[2] = 2;
iv[3] = 2; iv[4] = 3; iv[5] = 0;
}
// XXX find out the default screen size and use that
mEyeResolution.width = 1920 / 2;
mEyeResolution.height = 1080;
mConfiguration.hmdType = mType;
mConfiguration.value = 0;
mConfiguration.fov[0] = aFOVLeft;
mConfiguration.fov[1] = aFOVRight;
return true;
}
void
HMDInfoCardboard::FillDistortionConstants(uint32_t whichEye,
const IntSize& textureSize, const IntRect& eyeViewport,
const Size& destViewport, const Rect& destRect,
VRDistortionConstants& values)
{
// these modify the texture coordinates; texcoord * zw + xy
values.eyeToSourceScaleAndOffset[0] = 0.0;
values.eyeToSourceScaleAndOffset[1] = 0.0;
values.eyeToSourceScaleAndOffset[2] = 1.0;
values.eyeToSourceScaleAndOffset[3] = 1.0;
// Our mesh positions are in the [-1..1] clip space; we give appropriate offset
// and scaling for the right viewport. (In the 0..2 space for sanity)
// this is the destRect in clip space
float x0 = destRect.x / destViewport.width * 2.0 - 1.0;
float x1 = (destRect.x + destRect.width) / destViewport.width * 2.0 - 1.0;
float y0 = destRect.y / destViewport.height * 2.0 - 1.0;
float y1 = (destRect.y + destRect.height) / destViewport.height * 2.0 - 1.0;
// offset
values.destinationScaleAndOffset[0] = (x0+x1) / 2.0;
values.destinationScaleAndOffset[1] = (y0+y1) / 2.0;
// scale
values.destinationScaleAndOffset[2] = destRect.width / destViewport.width;
values.destinationScaleAndOffset[3] = destRect.height / destViewport.height;
}
void
HMDInfoCardboard::Destroy()
{
}
bool
VRHMDManagerCardboard::PlatformInit()
{
return true;
}
bool
VRHMDManagerCardboard::Init()
{
if (mCardboardInitialized)
return true;
nsRefPtr<HMDInfoCardboard> hmd = new HMDInfoCardboard();
mCardboardHMDs.AppendElement(hmd);
mCardboardInitialized = true;
return true;
}
void
VRHMDManagerCardboard::Destroy()
{
if (!mCardboardInitialized)
return;
for (size_t i = 0; i < mCardboardHMDs.Length(); ++i) {
mCardboardHMDs[i]->Destroy();
}
mCardboardHMDs.Clear();
mCardboardInitialized = false;
}
void
VRHMDManagerCardboard::GetHMDs(nsTArray<nsRefPtr<VRHMDInfo>>& aHMDResult)
{
Init();
for (size_t i = 0; i < mCardboardHMDs.Length(); ++i) {
aHMDResult.AppendElement(mCardboardHMDs[i]);
}
}