gecko-dev/mfbt/HashTable.h

2176 строки
60 KiB
C
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// A note on the differences between mozilla::HashTable and PLDHashTable (and
// its subclasses, such as nsTHashtable).
//
// - mozilla::HashTable is a lot faster, largely because it uses templates
// throughout *and* inlines everything. PLDHashTable inlines operations much
// less aggressively, and also uses "virtual ops" for operations like hashing
// and matching entries that require function calls.
//
// - Correspondingly, mozilla::HashTable use is likely to increase executable
// size much more than PLDHashTable.
//
// - mozilla::HashTable has a nicer API, with a proper HashSet vs. HashMap
// distinction.
//
// - mozilla::HashTable requires more explicit OOM checking. Use
// mozilla::InfallibleAllocPolicy to make allocations infallible; note that
// return values of possibly-allocating methods such as add() will still need
// checking in some fashion -- e.g. with MOZ_ALWAYS_TRUE() -- due to the use
// of MOZ_MUST_USE.
//
// - mozilla::HashTable has a default capacity on creation of 32 and a minimum
// capacity of 4. PLDHashTable has a default capacity on creation of 8 and a
// minimum capacity of 8.
//
// - mozilla::HashTable allocates memory eagerly. PLDHashTable delays
// allocating until the first element is inserted.
#ifndef mozilla_HashTable_h
#define mozilla_HashTable_h
#include "mozilla/AllocPolicy.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Casting.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/MemoryChecking.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"
#include "mozilla/Opaque.h"
#include "mozilla/PodOperations.h"
#include "mozilla/ReentrancyGuard.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/UniquePtr.h"
namespace mozilla {
template<class>
struct DefaultHasher;
template<class, class>
class HashMapEntry;
namespace detail {
template<typename T>
class HashTableEntry;
template<class T, class HashPolicy, class AllocPolicy>
class HashTable;
} // namespace detail
/*****************************************************************************/
// The "generation" of a hash table is an opaque value indicating the state of
// modification of the hash table through its lifetime. If the generation of
// a hash table compares equal at times T1 and T2, then lookups in the hash
// table, pointers to (or into) hash table entries, etc. at time T1 are valid
// at time T2. If the generation compares unequal, these computations are all
// invalid and must be performed again to be used.
//
// Generations are meaningfully comparable only with respect to a single hash
// table. It's always nonsensical to compare the generation of distinct hash
// tables H1 and H2.
using Generation = Opaque<uint64_t>;
// A performant, STL-like container providing a hash-based map from keys to
// values. In particular, HashMap calls constructors and destructors of all
// objects added so non-PODs may be used safely.
//
// Key/Value requirements:
// - movable, destructible, assignable
// HashPolicy requirements:
// - see Hash Policy section below
// AllocPolicy:
// - see AllocPolicy.h
//
// Note:
// - HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
// called by HashMap must not call back into the same HashMap object.
// - Due to the lack of exception handling, the user must call |init()|.
template<class Key,
class Value,
class HashPolicy = DefaultHasher<Key>,
class AllocPolicy = MallocAllocPolicy>
class HashMap
{
using TableEntry = HashMapEntry<Key, Value>;
struct MapHashPolicy : HashPolicy
{
using Base = HashPolicy;
using KeyType = Key;
static const Key& getKey(TableEntry& aEntry) { return aEntry.key(); }
static void setKey(TableEntry& aEntry, Key& aKey)
{
HashPolicy::rekey(aEntry.mutableKey(), aKey);
}
};
using Impl = detail::HashTable<TableEntry, MapHashPolicy, AllocPolicy>;
Impl mImpl;
public:
using Lookup = typename HashPolicy::Lookup;
using Entry = TableEntry;
// HashMap construction is fallible (due to OOM); thus the user must call
// init after constructing a HashMap and check the return value.
explicit HashMap(AllocPolicy aPolicy = AllocPolicy())
: mImpl(aPolicy)
{
}
MOZ_MUST_USE bool init(uint32_t aLen = 16) { return mImpl.init(aLen); }
bool initialized() const { return mImpl.initialized(); }
// Return whether the given lookup value is present in the map. E.g.:
//
// using HM = HashMap<int,char>;
// HM h;
// if (HM::Ptr p = h.lookup(3)) {
// const HM::Entry& e = *p; // p acts like a pointer to Entry
// assert(p->key == 3); // Entry contains the key
// char val = p->value; // and value
// }
//
// Also see the definition of Ptr in HashTable above (with T = Entry).
using Ptr = typename Impl::Ptr;
MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const
{
return mImpl.lookup(aLookup);
}
// Like lookup, but does not assert if two threads call lookup at the same
// time. Only use this method when none of the threads will modify the map.
MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const
{
return mImpl.readonlyThreadsafeLookup(aLookup);
}
// Assuming |p.found()|, remove |*p|.
void remove(Ptr aPtr) { mImpl.remove(aPtr); }
// Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
// insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
// |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new Entry. E.g.:
//
// using HM = HashMap<int,char>;
// HM h;
// HM::AddPtr p = h.lookupForAdd(3);
// if (!p) {
// if (!h.add(p, 3, 'a')) {
// return false;
// }
// }
// const HM::Entry& e = *p; // p acts like a pointer to Entry
// assert(p->key == 3); // Entry contains the key
// char val = p->value; // and value
//
// Also see the definition of AddPtr in HashTable above (with T = Entry).
//
// N.B. The caller must ensure that no mutating hash table operations
// occur between a pair of |lookupForAdd| and |add| calls. To avoid
// looking up the key a second time, the caller may use the more efficient
// relookupOrAdd method. This method reuses part of the hashing computation
// to more efficiently insert the key if it has not been added. For
// example, a mutation-handling version of the previous example:
//
// HM::AddPtr p = h.lookupForAdd(3);
// if (!p) {
// call_that_may_mutate_h();
// if (!h.relookupOrAdd(p, 3, 'a')) {
// return false;
// }
// }
// const HM::Entry& e = *p;
// assert(p->key == 3);
// char val = p->value;
//
using AddPtr = typename Impl::AddPtr;
MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) const
{
return mImpl.lookupForAdd(aLookup);
}
template<typename KeyInput, typename ValueInput>
MOZ_MUST_USE bool add(AddPtr& aPtr, KeyInput&& aKey, ValueInput&& aValue)
{
return mImpl.add(
aPtr, std::forward<KeyInput>(aKey), std::forward<ValueInput>(aValue));
}
template<typename KeyInput>
MOZ_MUST_USE bool add(AddPtr& aPtr, KeyInput&& aKey)
{
return mImpl.add(aPtr, std::forward<KeyInput>(aKey), Value());
}
template<typename KeyInput, typename ValueInput>
MOZ_MUST_USE bool relookupOrAdd(AddPtr& aPtr,
KeyInput&& aKey,
ValueInput&& aValue)
{
return mImpl.relookupOrAdd(aPtr,
aKey,
std::forward<KeyInput>(aKey),
std::forward<ValueInput>(aValue));
}
// |all()| returns a Range containing |count()| elements. E.g.:
//
// using HM = HashMap<int,char>;
// HM h;
// for (HM::Range r = h.all(); !r.empty(); r.popFront()) {
// char c = r.front().value();
// }
//
// Also see the definition of Range in HashTable above (with T = Entry).
using Range = typename Impl::Range;
Range all() const { return mImpl.all(); }
// Typedef for the enumeration class. An Enum may be used to examine and
// remove table entries:
//
// using HM = HashMap<int,char>;
// HM s;
// for (HM::Enum e(s); !e.empty(); e.popFront()) {
// if (e.front().value() == 'l') {
// e.removeFront();
// }
// }
//
// Table resize may occur in Enum's destructor. Also see the definition of
// Enum in HashTable above (with T = Entry).
using Enum = typename Impl::Enum;
// Remove all entries. This does not shrink the table. For that consider
// using the finish() method.
void clear() { mImpl.clear(); }
// Remove all entries. Unlike clear() this method tries to shrink the table.
// Unlike finish() it does not require the map to be initialized again.
void clearAndShrink() { mImpl.clearAndShrink(); }
// Remove all the entries and release all internal buffers. The map must
// be initialized again before any use.
void finish() { mImpl.finish(); }
// Does the table contain any entries?
bool empty() const { return mImpl.empty(); }
// Number of live elements in the map.
uint32_t count() const { return mImpl.count(); }
// Total number of allocation in the dynamic table. Note: resize will
// happen well before count() == capacity().
size_t capacity() const { return mImpl.capacity(); }
// Don't just call |mImpl.sizeOfExcludingThis()| because there's no
// guarantee that |mImpl| is the first field in HashMap.
size_t sizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
return mImpl.sizeOfExcludingThis(aMallocSizeOf);
}
size_t sizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + mImpl.sizeOfExcludingThis(aMallocSizeOf);
}
Generation generation() const { return mImpl.generation(); }
/************************************************** Shorthand operations */
bool has(const Lookup& aLookup) const
{
return mImpl.lookup(aLookup).found();
}
// Overwrite existing value with aValue. Return false on oom.
template<typename KeyInput, typename ValueInput>
MOZ_MUST_USE bool put(KeyInput&& aKey, ValueInput&& aValue)
{
AddPtr p = lookupForAdd(aKey);
if (p) {
p->value() = std::forward<ValueInput>(aValue);
return true;
}
return add(
p, std::forward<KeyInput>(aKey), std::forward<ValueInput>(aValue));
}
// Like put, but assert that the given key is not already present.
template<typename KeyInput, typename ValueInput>
MOZ_MUST_USE bool putNew(KeyInput&& aKey, ValueInput&& aValue)
{
return mImpl.putNew(
aKey, std::forward<KeyInput>(aKey), std::forward<ValueInput>(aValue));
}
// Only call this to populate an empty map after reserving space with init().
template<typename KeyInput, typename ValueInput>
void putNewInfallible(KeyInput&& aKey, ValueInput&& aValue)
{
mImpl.putNewInfallible(
aKey, std::forward<KeyInput>(aKey), std::forward<ValueInput>(aValue));
}
// Add (aKey,aDefaultValue) if |aKey| is not found. Return a false-y Ptr on
// oom.
Ptr lookupWithDefault(const Key& aKey, const Value& aDefaultValue)
{
AddPtr p = lookupForAdd(aKey);
if (p) {
return p;
}
bool ok = add(p, aKey, aDefaultValue);
MOZ_ASSERT_IF(!ok, !p); // p is left false-y on oom.
(void)ok;
return p;
}
// Remove if present.
void remove(const Lookup& aLookup)
{
if (Ptr p = lookup(aLookup)) {
remove(p);
}
}
// Infallibly rekey one entry, if necessary.
// Requires template parameters Key and HashPolicy::Lookup to be the same
// type.
void rekeyIfMoved(const Key& aOldKey, const Key& aNewKey)
{
if (aOldKey != aNewKey) {
rekeyAs(aOldKey, aNewKey, aNewKey);
}
}
// Infallibly rekey one entry if present, and return whether that happened.
bool rekeyAs(const Lookup& aOldLookup,
const Lookup& aNewLookup,
const Key& aNewKey)
{
if (Ptr p = lookup(aOldLookup)) {
mImpl.rekeyAndMaybeRehash(p, aNewLookup, aNewKey);
return true;
}
return false;
}
// HashMap is movable
HashMap(HashMap&& aRhs)
: mImpl(std::move(aRhs.mImpl))
{
}
void operator=(HashMap&& aRhs)
{
MOZ_ASSERT(this != &aRhs, "self-move assignment is prohibited");
mImpl = std::move(aRhs.mImpl);
}
private:
// HashMap is not copyable or assignable
HashMap(const HashMap& hm) = delete;
HashMap& operator=(const HashMap& hm) = delete;
friend class Impl::Enum;
};
/*****************************************************************************/
// A performant, STL-like container providing a hash-based set of values. In
// particular, HashSet calls constructors and destructors of all objects added
// so non-PODs may be used safely.
//
// T requirements:
// - movable, destructible, assignable
// HashPolicy requirements:
// - see Hash Policy section below
// AllocPolicy:
// - see AllocPolicy.h
//
// Note:
// - HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
// HashSet must not call back into the same HashSet object.
// - Due to the lack of exception handling, the user must call |init()|.
template<class T,
class HashPolicy = DefaultHasher<T>,
class AllocPolicy = MallocAllocPolicy>
class HashSet
{
struct SetOps : HashPolicy
{
using Base = HashPolicy;
using KeyType = T;
static const KeyType& getKey(const T& aT) { return aT; }
static void setKey(T& aT, KeyType& aKey) { HashPolicy::rekey(aT, aKey); }
};
using Impl = detail::HashTable<const T, SetOps, AllocPolicy>;
Impl mImpl;
public:
using Lookup = typename HashPolicy::Lookup;
using Entry = T;
// HashSet construction is fallible (due to OOM); thus the user must call
// init after constructing a HashSet and check the return value.
explicit HashSet(AllocPolicy a = AllocPolicy())
: mImpl(a)
{
}
MOZ_MUST_USE bool init(uint32_t aLen = 16) { return mImpl.init(aLen); }
bool initialized() const { return mImpl.initialized(); }
// Return whether the given lookup value is present in the map. E.g.:
//
// using HS = HashSet<int>;
// HS h;
// if (HS::Ptr p = h.lookup(3)) {
// assert(*p == 3); // p acts like a pointer to int
// }
//
// Also see the definition of Ptr in HashTable above.
using Ptr = typename Impl::Ptr;
MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const
{
return mImpl.lookup(aLookup);
}
// Like lookup, but does not assert if two threads call lookup at the same
// time. Only use this method when none of the threads will modify the map.
MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const
{
return mImpl.readonlyThreadsafeLookup(aLookup);
}
// Assuming |aPtr.found()|, remove |*aPtr|.
void remove(Ptr aPtr) { mImpl.remove(aPtr); }
// Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
// insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
// |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
//
// using HS = HashSet<int>;
// HS h;
// HS::AddPtr p = h.lookupForAdd(3);
// if (!p) {
// if (!h.add(p, 3)) {
// return false;
// }
// }
// assert(*p == 3); // p acts like a pointer to int
//
// Also see the definition of AddPtr in HashTable above.
//
// N.B. The caller must ensure that no mutating hash table operations
// occur between a pair of |lookupForAdd| and |add| calls. To avoid
// looking up the key a second time, the caller may use the more efficient
// relookupOrAdd method. This method reuses part of the hashing computation
// to more efficiently insert the key if it has not been added. For
// example, a mutation-handling version of the previous example:
//
// HS::AddPtr p = h.lookupForAdd(3);
// if (!p) {
// call_that_may_mutate_h();
// if (!h.relookupOrAdd(p, 3, 3)) {
// return false;
// }
// }
// assert(*p == 3);
//
// Note that relookupOrAdd(p,l,t) performs Lookup using |l| and adds the
// entry |t|, where the caller ensures match(l,t).
using AddPtr = typename Impl::AddPtr;
MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) const
{
return mImpl.lookupForAdd(aLookup);
}
template<typename U>
MOZ_MUST_USE bool add(AddPtr& aPtr, U&& aU)
{
return mImpl.add(aPtr, std::forward<U>(aU));
}
template<typename U>
MOZ_MUST_USE bool relookupOrAdd(AddPtr& aPtr, const Lookup& aLookup, U&& aU)
{
return mImpl.relookupOrAdd(aPtr, aLookup, std::forward<U>(aU));
}
// |all()| returns a Range containing |count()| elements:
//
// using HS = HashSet<int>;
// HS h;
// for (HS::Range r = h.all(); !r.empty(); r.popFront()) {
// int i = r.front();
// }
//
// Also see the definition of Range in HashTable above.
using Range = typename Impl::Range;
Range all() const { return mImpl.all(); }
// Typedef for the enumeration class. An Enum may be used to examine and
// remove table entries:
//
// using HS = HashSet<int>;
// HS s;
// for (HS::Enum e(s); !e.empty(); e.popFront()) {
// if (e.front() == 42) {
// e.removeFront();
// }
// }
//
// Table resize may occur in Enum's destructor. Also see the definition of
// Enum in HashTable above.
using Enum = typename Impl::Enum;
// Remove all entries. This does not shrink the table. For that consider
// using the finish() method.
void clear() { mImpl.clear(); }
// Remove all entries. Unlike clear() this method tries to shrink the table.
// Unlike finish() it does not require the set to be initialized again.
void clearAndShrink() { mImpl.clearAndShrink(); }
// Remove all the entries and release all internal buffers. The set must
// be initialized again before any use.
void finish() { mImpl.finish(); }
// Does the table contain any entries?
bool empty() const { return mImpl.empty(); }
// Number of live elements in the map.
uint32_t count() const { return mImpl.count(); }
// Total number of allocation in the dynamic table. Note: resize will
// happen well before count() == capacity().
size_t capacity() const { return mImpl.capacity(); }
// Don't just call |mImpl.sizeOfExcludingThis()| because there's no
// guarantee that |mImpl| is the first field in HashSet.
size_t sizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
return mImpl.sizeOfExcludingThis(aMallocSizeOf);
}
size_t sizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + mImpl.sizeOfExcludingThis(aMallocSizeOf);
}
Generation generation() const { return mImpl.generation(); }
/************************************************** Shorthand operations */
bool has(const Lookup& aLookup) const
{
return mImpl.lookup(aLookup).found();
}
// Add |aU| if it is not present already. Return false on oom.
template<typename U>
MOZ_MUST_USE bool put(U&& aU)
{
AddPtr p = lookupForAdd(aU);
return p ? true : add(p, std::forward<U>(aU));
}
// Like put, but assert that the given key is not already present.
template<typename U>
MOZ_MUST_USE bool putNew(U&& aU)
{
return mImpl.putNew(aU, std::forward<U>(aU));
}
template<typename U>
MOZ_MUST_USE bool putNew(const Lookup& aLookup, U&& aU)
{
return mImpl.putNew(aLookup, std::forward<U>(aU));
}
// Only call this to populate an empty set after reserving space with init().
template<typename U>
void putNewInfallible(const Lookup& aLookup, U&& aU)
{
mImpl.putNewInfallible(aLookup, std::forward<U>(aU));
}
void remove(const Lookup& aLookup)
{
if (Ptr p = lookup(aLookup)) {
remove(p);
}
}
// Infallibly rekey one entry, if present.
// Requires template parameters T and HashPolicy::Lookup to be the same type.
void rekeyIfMoved(const Lookup& aOldValue, const T& aNewValue)
{
if (aOldValue != aNewValue) {
rekeyAs(aOldValue, aNewValue, aNewValue);
}
}
// Infallibly rekey one entry if present, and return whether that happened.
bool rekeyAs(const Lookup& aOldLookup,
const Lookup& aNewLookup,
const T& aNewValue)
{
if (Ptr p = lookup(aOldLookup)) {
mImpl.rekeyAndMaybeRehash(p, aNewLookup, aNewValue);
return true;
}
return false;
}
// Infallibly replace the current key at |p| with an equivalent key.
// Specifically, both HashPolicy::hash and HashPolicy::match must return
// identical results for the new and old key when applied against all
// possible matching values.
void replaceKey(Ptr aPtr, const T& aNewValue)
{
MOZ_ASSERT(aPtr.found());
MOZ_ASSERT(*aPtr != aNewValue);
MOZ_ASSERT(HashPolicy::hash(*aPtr) == HashPolicy::hash(aNewValue));
MOZ_ASSERT(HashPolicy::match(*aPtr, aNewValue));
const_cast<T&>(*aPtr) = aNewValue;
}
// HashSet is movable
HashSet(HashSet&& aRhs)
: mImpl(std::move(aRhs.mImpl))
{
}
void operator=(HashSet&& aRhs)
{
MOZ_ASSERT(this != &aRhs, "self-move assignment is prohibited");
mImpl = std::move(aRhs.mImpl);
}
private:
// HashSet is not copyable or assignable.
HashSet(const HashSet& hs) = delete;
HashSet& operator=(const HashSet& hs) = delete;
friend class Impl::Enum;
};
/*****************************************************************************/
// Hash Policy
//
// A hash policy P for a hash table with key-type Key must provide:
// - a type |P::Lookup| to use to lookup table entries;
// - a static member function |P::hash| with signature
//
// static mozilla::HashNumber hash(Lookup)
//
// to use to hash the lookup type; and
// - a static member function |P::match| with signature
//
// static bool match(Key, Lookup)
//
// to use to test equality of key and lookup values.
//
// Normally, Lookup = Key. In general, though, different values and types of
// values can be used to lookup and store. If a Lookup value |l| is != to the
// added Key value |k|, the user must ensure that |P::match(k,l)|. E.g.:
//
// mozilla::HashSet<Key, P>::AddPtr p = h.lookup(l);
// if (!p) {
// assert(P::match(k, l)); // must hold
// h.add(p, k);
// }
// Pointer hashing policy that uses HashGeneric() to create good hashes for
// pointers. Note that we don't shift out the lowest k bits to generate a
// good distribution for arena allocated pointers.
template<typename Key>
struct PointerHasher
{
using Lookup = Key;
static HashNumber hash(const Lookup& aLookup)
{
size_t word = reinterpret_cast<size_t>(aLookup);
return HashGeneric(word);
}
static bool match(const Key& aKey, const Lookup& aLookup)
{
return aKey == aLookup;
}
static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
};
// Default hash policy: just use the 'lookup' value. This of course only
// works if the lookup value is integral. HashTable applies ScrambleHashCode to
// the result of the 'hash' which means that it is 'ok' if the lookup value is
// not well distributed over the HashNumber domain.
template<class Key>
struct DefaultHasher
{
using Lookup = Key;
static HashNumber hash(const Lookup& aLookup)
{
// Hash if can implicitly cast to hash number type.
return aLookup;
}
static bool match(const Key& aKey, const Lookup& aLookup)
{
// Use builtin or overloaded operator==.
return aKey == aLookup;
}
static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
};
// Specialize hashing policy for pointer types. It assumes that the type is
// at least word-aligned. For types with smaller size use PointerHasher.
template<class T>
struct DefaultHasher<T*> : PointerHasher<T*>
{
};
// Specialize hashing policy for mozilla::UniquePtr to proxy the UniquePtr's
// raw pointer to PointerHasher.
template<class T, class D>
struct DefaultHasher<UniquePtr<T, D>>
{
using Lookup = UniquePtr<T, D>;
using PtrHasher = PointerHasher<T*>;
static HashNumber hash(const Lookup& aLookup)
{
return PtrHasher::hash(aLookup.get());
}
static bool match(const UniquePtr<T, D>& aKey, const Lookup& aLookup)
{
return PtrHasher::match(aKey.get(), aLookup.get());
}
static void rekey(UniquePtr<T, D>& aKey, UniquePtr<T, D>&& aNewKey)
{
aKey = std::move(aNewKey);
}
};
// For doubles, we can xor the two uint32s.
template<>
struct DefaultHasher<double>
{
using Lookup = double;
static HashNumber hash(double aVal)
{
static_assert(sizeof(HashNumber) == 4,
"subsequent code assumes a four-byte hash");
uint64_t u = BitwiseCast<uint64_t>(aVal);
return HashNumber(u ^ (u >> 32));
}
static bool match(double aLhs, double aRhs)
{
return BitwiseCast<uint64_t>(aLhs) == BitwiseCast<uint64_t>(aRhs);
}
};
template<>
struct DefaultHasher<float>
{
using Lookup = float;
static HashNumber hash(float aVal)
{
static_assert(sizeof(HashNumber) == 4,
"subsequent code assumes a four-byte hash");
return HashNumber(BitwiseCast<uint32_t>(aVal));
}
static bool match(float aLhs, float aRhs)
{
return BitwiseCast<uint32_t>(aLhs) == BitwiseCast<uint32_t>(aRhs);
}
};
// A hash policy that compares C strings.
struct CStringHasher
{
using Lookup = const char*;
static HashNumber hash(Lookup aLookup) { return HashString(aLookup); }
static bool match(const char* key, Lookup lookup)
{
return strcmp(key, lookup) == 0;
}
};
// Fallible hashing interface.
//
// Most of the time generating a hash code is infallible so this class provides
// default methods that always succeed. Specialize this class for your own hash
// policy to provide fallible hashing.
//
// This is used by MovableCellHasher to handle the fact that generating a unique
// ID for cell pointer may fail due to OOM.
template<typename HashPolicy>
struct FallibleHashMethods
{
// Return true if a hashcode is already available for its argument. Once
// this returns true for a specific argument it must continue to do so.
template<typename Lookup>
static bool hasHash(Lookup&& aLookup)
{
return true;
}
// Fallible method to ensure a hashcode exists for its argument and create
// one if not. Returns false on error, e.g. out of memory.
template<typename Lookup>
static bool ensureHash(Lookup&& aLookup)
{
return true;
}
};
template<typename HashPolicy, typename Lookup>
static bool
HasHash(Lookup&& aLookup)
{
return FallibleHashMethods<typename HashPolicy::Base>::hasHash(
std::forward<Lookup>(aLookup));
}
template<typename HashPolicy, typename Lookup>
static bool
EnsureHash(Lookup&& aLookup)
{
return FallibleHashMethods<typename HashPolicy::Base>::ensureHash(
std::forward<Lookup>(aLookup));
}
/*****************************************************************************/
// Both HashMap and HashSet are implemented by a single HashTable that is even
// more heavily parameterized than the other two. This leaves HashTable gnarly
// and extremely coupled to HashMap and HashSet; thus code should not use
// HashTable directly.
template<class Key, class Value>
class HashMapEntry
{
Key key_;
Value value_;
template<class, class, class>
friend class detail::HashTable;
template<class>
friend class detail::HashTableEntry;
template<class, class, class, class>
friend class HashMap;
public:
template<typename KeyInput, typename ValueInput>
HashMapEntry(KeyInput&& aKey, ValueInput&& aValue)
: key_(std::forward<KeyInput>(aKey))
, value_(std::forward<ValueInput>(aValue))
{
}
HashMapEntry(HashMapEntry&& aRhs)
: key_(std::move(aRhs.key_))
, value_(std::move(aRhs.value_))
{
}
void operator=(HashMapEntry&& aRhs)
{
key_ = std::move(aRhs.key_);
value_ = std::move(aRhs.value_);
}
using KeyType = Key;
using ValueType = Value;
const Key& key() const { return key_; }
Key& mutableKey() { return key_; }
const Value& value() const { return value_; }
Value& value() { return value_; }
private:
HashMapEntry(const HashMapEntry&) = delete;
void operator=(const HashMapEntry&) = delete;
};
template<typename K, typename V>
struct IsPod<HashMapEntry<K, V>>
: IntegralConstant<bool, IsPod<K>::value && IsPod<V>::value>
{
};
namespace detail {
template<class T, class HashPolicy, class AllocPolicy>
class HashTable;
template<typename T>
class HashTableEntry
{
private:
using NonConstT = typename RemoveConst<T>::Type;
static const HashNumber sFreeKey = 0;
static const HashNumber sRemovedKey = 1;
static const HashNumber sCollisionBit = 1;
HashNumber mKeyHash = sFreeKey;
alignas(NonConstT) unsigned char mValueData[sizeof(NonConstT)];
private:
template<class, class, class>
friend class HashTable;
// Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
// -Werror compile error) to reinterpret_cast<> |mValueData| to |T*|, even
// through |void*|. Placing the latter cast in these separate functions
// breaks the chain such that affected GCC versions no longer warn/error.
void* rawValuePtr() { return mValueData; }
static bool isLiveHash(HashNumber hash) { return hash > sRemovedKey; }
HashTableEntry(const HashTableEntry&) = delete;
void operator=(const HashTableEntry&) = delete;
NonConstT* valuePtr() { return reinterpret_cast<NonConstT*>(rawValuePtr()); }
void destroyStoredT()
{
NonConstT* ptr = valuePtr();
ptr->~T();
MOZ_MAKE_MEM_UNDEFINED(ptr, sizeof(*ptr));
}
public:
HashTableEntry() = default;
~HashTableEntry()
{
if (isLive()) {
destroyStoredT();
}
MOZ_MAKE_MEM_UNDEFINED(this, sizeof(*this));
}
void destroy()
{
MOZ_ASSERT(isLive());
destroyStoredT();
}
void swap(HashTableEntry* aOther)
{
if (this == aOther) {
return;
}
MOZ_ASSERT(isLive());
if (aOther->isLive()) {
Swap(*valuePtr(), *aOther->valuePtr());
} else {
*aOther->valuePtr() = std::move(*valuePtr());
destroy();
}
Swap(mKeyHash, aOther->mKeyHash);
}
T& get()
{
MOZ_ASSERT(isLive());
return *valuePtr();
}
NonConstT& getMutable()
{
MOZ_ASSERT(isLive());
return *valuePtr();
}
bool isFree() const { return mKeyHash == sFreeKey; }
void clearLive()
{
MOZ_ASSERT(isLive());
mKeyHash = sFreeKey;
destroyStoredT();
}
void clear()
{
if (isLive()) {
destroyStoredT();
}
MOZ_MAKE_MEM_UNDEFINED(this, sizeof(*this));
mKeyHash = sFreeKey;
}
bool isRemoved() const { return mKeyHash == sRemovedKey; }
void removeLive()
{
MOZ_ASSERT(isLive());
mKeyHash = sRemovedKey;
destroyStoredT();
}
bool isLive() const { return isLiveHash(mKeyHash); }
void setCollision()
{
MOZ_ASSERT(isLive());
mKeyHash |= sCollisionBit;
}
void unsetCollision() { mKeyHash &= ~sCollisionBit; }
bool hasCollision() const { return mKeyHash & sCollisionBit; }
bool matchHash(HashNumber hn) { return (mKeyHash & ~sCollisionBit) == hn; }
HashNumber getKeyHash() const { return mKeyHash & ~sCollisionBit; }
template<typename... Args>
void setLive(HashNumber aHashNumber, Args&&... aArgs)
{
MOZ_ASSERT(!isLive());
mKeyHash = aHashNumber;
new (valuePtr()) T(std::forward<Args>(aArgs)...);
MOZ_ASSERT(isLive());
}
};
template<class T, class HashPolicy, class AllocPolicy>
class HashTable : private AllocPolicy
{
friend class mozilla::ReentrancyGuard;
using NonConstT = typename RemoveConst<T>::Type;
using Key = typename HashPolicy::KeyType;
using Lookup = typename HashPolicy::Lookup;
public:
using Entry = HashTableEntry<T>;
// A nullable pointer to a hash table element. A Ptr |p| can be tested
// either explicitly |if (p.found()) p->...| or using boolean conversion
// |if (p) p->...|. Ptr objects must not be used after any mutating hash
// table operations unless |generation()| is tested.
class Ptr
{
friend class HashTable;
Entry* mEntry;
#ifdef DEBUG
const HashTable* mTable;
Generation mGeneration;
#endif
protected:
Ptr(Entry& aEntry, const HashTable& aTable)
: mEntry(&aEntry)
#ifdef DEBUG
, mTable(&aTable)
, mGeneration(aTable.generation())
#endif
{
}
public:
Ptr()
: mEntry(nullptr)
#ifdef DEBUG
, mTable(nullptr)
, mGeneration(0)
#endif
{
}
bool isValid() const { return !!mEntry; }
bool found() const
{
if (!isValid()) {
return false;
}
#ifdef DEBUG
MOZ_ASSERT(mGeneration == mTable->generation());
#endif
return mEntry->isLive();
}
explicit operator bool() const { return found(); }
bool operator==(const Ptr& aRhs) const
{
MOZ_ASSERT(found() && aRhs.found());
return mEntry == aRhs.mEntry;
}
bool operator!=(const Ptr& aRhs) const
{
#ifdef DEBUG
MOZ_ASSERT(mGeneration == mTable->generation());
#endif
return !(*this == aRhs);
}
T& operator*() const
{
#ifdef DEBUG
MOZ_ASSERT(found());
MOZ_ASSERT(mGeneration == mTable->generation());
#endif
return mEntry->get();
}
T* operator->() const
{
#ifdef DEBUG
MOZ_ASSERT(found());
MOZ_ASSERT(mGeneration == mTable->generation());
#endif
return &mEntry->get();
}
};
// A Ptr that can be used to add a key after a failed lookup.
class AddPtr : public Ptr
{
friend class HashTable;
HashNumber mKeyHash;
#ifdef DEBUG
uint64_t mMutationCount;
#endif
AddPtr(Entry& aEntry, const HashTable& aTable, HashNumber aHashNumber)
: Ptr(aEntry, aTable)
, mKeyHash(aHashNumber)
#ifdef DEBUG
, mMutationCount(aTable.mMutationCount)
#endif
{
}
public:
AddPtr()
: mKeyHash(0)
{
}
};
// A collection of hash table entries. The collection is enumerated by
// calling |front()| followed by |popFront()| as long as |!empty()|. As
// with Ptr/AddPtr, Range objects must not be used after any mutating hash
// table operation unless the |generation()| is tested.
class Range
{
protected:
friend class HashTable;
Range(const HashTable& aTable, Entry* aCur, Entry* aEnd)
: mCur(aCur)
, mEnd(aEnd)
#ifdef DEBUG
, mTable(&aTable)
, mMutationCount(aTable.mMutationCount)
, mGeneration(aTable.generation())
, mValidEntry(true)
#endif
{
while (mCur < mEnd && !mCur->isLive()) {
++mCur;
}
}
Entry* mCur;
Entry* mEnd;
#ifdef DEBUG
const HashTable* mTable;
uint64_t mMutationCount;
Generation mGeneration;
bool mValidEntry;
#endif
public:
Range()
: mCur(nullptr)
, mEnd(nullptr)
#ifdef DEBUG
, mTable(nullptr)
, mMutationCount(0)
, mGeneration(0)
, mValidEntry(false)
#endif
{
}
bool empty() const
{
#ifdef DEBUG
MOZ_ASSERT(mGeneration == mTable->generation());
MOZ_ASSERT(mMutationCount == mTable->mMutationCount);
#endif
return mCur == mEnd;
}
T& front() const
{
MOZ_ASSERT(!empty());
#ifdef DEBUG
MOZ_ASSERT(mValidEntry);
MOZ_ASSERT(mGeneration == mTable->generation());
MOZ_ASSERT(mMutationCount == mTable->mMutationCount);
#endif
return mCur->get();
}
void popFront()
{
MOZ_ASSERT(!empty());
#ifdef DEBUG
MOZ_ASSERT(mGeneration == mTable->generation());
MOZ_ASSERT(mMutationCount == mTable->mMutationCount);
#endif
while (++mCur < mEnd && !mCur->isLive()) {
continue;
}
#ifdef DEBUG
mValidEntry = true;
#endif
}
};
// A Range whose lifetime delimits a mutating enumeration of a hash table.
// Since rehashing when elements were removed during enumeration would be
// bad, it is postponed until the Enum is destructed. Since the Enum's
// destructor touches the hash table, the user must ensure that the hash
// table is still alive when the destructor runs.
class Enum : public Range
{
friend class HashTable;
HashTable& mTable;
bool mRekeyed;
bool mRemoved;
// Enum is movable but not copyable.
Enum(const Enum&) = delete;
void operator=(const Enum&) = delete;
public:
template<class Map>
explicit Enum(Map& map)
: Range(map.all())
, mTable(map.mImpl)
, mRekeyed(false)
, mRemoved(false)
{
}
MOZ_IMPLICIT Enum(Enum&& aOther)
: Range(aOther)
, mTable(aOther.mTable)
, mRekeyed(aOther.mRekeyed)
, mRemoved(aOther.mRemoved)
{
aOther.mRekeyed = false;
aOther.mRemoved = false;
}
// Removes the |front()| element from the table, leaving |front()|
// invalid until the next call to |popFront()|. For example:
//
// HashSet<int> s;
// for (HashSet<int>::Enum e(s); !e.empty(); e.popFront()) {
// if (e.front() == 42) {
// e.removeFront();
// }
// }
void removeFront()
{
mTable.remove(*this->mCur);
mRemoved = true;
#ifdef DEBUG
this->mValidEntry = false;
this->mMutationCount = mTable.mMutationCount;
#endif
}
NonConstT& mutableFront()
{
MOZ_ASSERT(!this->empty());
#ifdef DEBUG
MOZ_ASSERT(this->mValidEntry);
MOZ_ASSERT(this->mGeneration == this->Range::mTable->generation());
MOZ_ASSERT(this->mMutationCount == this->Range::mTable->mMutationCount);
#endif
return this->mCur->getMutable();
}
// Removes the |front()| element and re-inserts it into the table with
// a new key at the new Lookup position. |front()| is invalid after
// this operation until the next call to |popFront()|.
void rekeyFront(const Lookup& aLookup, const Key& aKey)
{
MOZ_ASSERT(&aKey != &HashPolicy::getKey(this->mCur->get()));
Ptr p(*this->mCur, mTable);
mTable.rekeyWithoutRehash(p, aLookup, aKey);
mRekeyed = true;
#ifdef DEBUG
this->mValidEntry = false;
this->mMutationCount = mTable.mMutationCount;
#endif
}
void rekeyFront(const Key& aKey) { rekeyFront(aKey, aKey); }
// Potentially rehashes the table.
~Enum()
{
if (mRekeyed) {
mTable.mGen++;
mTable.checkOverRemoved();
}
if (mRemoved) {
mTable.compactIfUnderloaded();
}
}
};
// HashTable is movable
HashTable(HashTable&& aRhs)
: AllocPolicy(aRhs)
{
PodAssign(this, &aRhs);
aRhs.mTable = nullptr;
}
void operator=(HashTable&& aRhs)
{
MOZ_ASSERT(this != &aRhs, "self-move assignment is prohibited");
if (mTable) {
destroyTable(*this, mTable, capacity());
}
PodAssign(this, &aRhs);
aRhs.mTable = nullptr;
}
private:
// HashTable is not copyable or assignable
HashTable(const HashTable&) = delete;
void operator=(const HashTable&) = delete;
static const size_t CAP_BITS = 30;
public:
uint64_t mGen : 56; // entry storage generation number
uint64_t mHashShift : 8; // multiplicative hash shift
Entry* mTable; // entry storage
uint32_t mEntryCount; // number of entries in mTable
uint32_t mRemovedCount; // removed entry sentinels in mTable
#ifdef DEBUG
uint64_t mMutationCount;
mutable bool mEntered;
// Note that some updates to these stats are not thread-safe. See the
// comment on the three-argument overloading of HashTable::lookup().
mutable struct Stats
{
uint32_t mSearches; // total number of table searches
uint32_t mSteps; // hash chain links traversed
uint32_t mHits; // searches that found key
uint32_t mMisses; // searches that didn't find key
uint32_t mAddOverRemoved; // adds that recycled a removed entry
uint32_t mRemoves; // calls to remove
uint32_t mRemoveFrees; // calls to remove that freed the entry
uint32_t mGrows; // table expansions
uint32_t mShrinks; // table contractions
uint32_t mCompresses; // table compressions
uint32_t mRehashes; // tombstone decontaminations
} mStats;
#define METER(x) x
#else
#define METER(x)
#endif
// The default initial capacity is 32 (enough to hold 16 elements), but it
// can be as low as 4.
static const uint32_t sMinCapacity = 4;
static const uint32_t sMaxInit = 1u << (CAP_BITS - 1);
static const uint32_t sMaxCapacity = 1u << CAP_BITS;
// Hash-table alpha is conceptually a fraction, but to avoid floating-point
// math we implement it as a ratio of integers.
static const uint8_t sAlphaDenominator = 4;
static const uint8_t sMinAlphaNumerator = 1; // min alpha: 1/4
static const uint8_t sMaxAlphaNumerator = 3; // max alpha: 3/4
static const HashNumber sFreeKey = Entry::sFreeKey;
static const HashNumber sRemovedKey = Entry::sRemovedKey;
static const HashNumber sCollisionBit = Entry::sCollisionBit;
void setTableSizeLog2(uint32_t aSizeLog2)
{
mHashShift = kHashNumberBits - aSizeLog2;
}
static bool isLiveHash(HashNumber aHash) { return Entry::isLiveHash(aHash); }
static HashNumber prepareHash(const Lookup& aLookup)
{
HashNumber keyHash = ScrambleHashCode(HashPolicy::hash(aLookup));
// Avoid reserved hash codes.
if (!isLiveHash(keyHash)) {
keyHash -= (sRemovedKey + 1);
}
return keyHash & ~sCollisionBit;
}
enum FailureBehavior
{
DontReportFailure = false,
ReportFailure = true
};
static Entry* createTable(AllocPolicy& aAllocPolicy,
uint32_t aCapacity,
FailureBehavior aReportFailure = ReportFailure)
{
Entry* table = aReportFailure
? aAllocPolicy.template pod_malloc<Entry>(aCapacity)
: aAllocPolicy.template maybe_pod_malloc<Entry>(aCapacity);
if (table) {
for (uint32_t i = 0; i < aCapacity; i++) {
new (&table[i]) Entry();
}
}
return table;
}
static Entry* maybeCreateTable(AllocPolicy& aAllocPolicy, uint32_t aCapacity)
{
Entry* table = aAllocPolicy.template maybe_pod_malloc<Entry>(aCapacity);
if (table) {
for (uint32_t i = 0; i < aCapacity; i++) {
new (&table[i]) Entry();
}
}
return table;
}
static void destroyTable(AllocPolicy& aAllocPolicy,
Entry* aOldTable,
uint32_t aCapacity)
{
Entry* end = aOldTable + aCapacity;
for (Entry* e = aOldTable; e < end; ++e) {
e->~Entry();
}
aAllocPolicy.free_(aOldTable, aCapacity);
}
public:
explicit HashTable(AllocPolicy aAllocPolicy)
: AllocPolicy(aAllocPolicy)
, mGen(0)
, mHashShift(kHashNumberBits)
, mTable(nullptr)
, mEntryCount(0)
, mRemovedCount(0)
#ifdef DEBUG
, mMutationCount(0)
, mEntered(false)
#endif
{
}
MOZ_MUST_USE bool init(uint32_t aLen)
{
MOZ_ASSERT(!initialized());
// Reject all lengths whose initial computed capacity would exceed
// sMaxCapacity. Round that maximum aLen down to the nearest power of two
// for speedier code.
if (MOZ_UNLIKELY(aLen > sMaxInit)) {
this->reportAllocOverflow();
return false;
}
static_assert((sMaxInit * sAlphaDenominator) / sAlphaDenominator ==
sMaxInit,
"multiplication in numerator below could overflow");
static_assert(sMaxInit * sAlphaDenominator <=
UINT32_MAX - sMaxAlphaNumerator,
"numerator calculation below could potentially overflow");
// Compute the smallest capacity allowing |aLen| elements to be
// inserted without rehashing: ceil(aLen / max-alpha). (Ceiling
// integral division: <http://stackoverflow.com/a/2745086>.)
uint32_t newCapacity =
(aLen * sAlphaDenominator + sMaxAlphaNumerator - 1) / sMaxAlphaNumerator;
if (newCapacity < sMinCapacity) {
newCapacity = sMinCapacity;
}
// Round up capacity to next power-of-two.
uint32_t log2 = mozilla::CeilingLog2(newCapacity);
newCapacity = 1u << log2;
MOZ_ASSERT(newCapacity >= aLen);
MOZ_ASSERT(newCapacity <= sMaxCapacity);
mTable = createTable(*this, newCapacity);
if (!mTable) {
return false;
}
setTableSizeLog2(log2);
METER(memset(&mStats, 0, sizeof(mStats)));
return true;
}
bool initialized() const { return !!mTable; }
~HashTable()
{
if (mTable) {
destroyTable(*this, mTable, capacity());
}
}
private:
HashNumber hash1(HashNumber aHash0) const { return aHash0 >> mHashShift; }
struct DoubleHash
{
HashNumber mHash2;
HashNumber mSizeMask;
};
DoubleHash hash2(HashNumber aCurKeyHash) const
{
uint32_t sizeLog2 = kHashNumberBits - mHashShift;
DoubleHash dh = { ((aCurKeyHash << sizeLog2) >> mHashShift) | 1,
(HashNumber(1) << sizeLog2) - 1 };
return dh;
}
static HashNumber applyDoubleHash(HashNumber aHash1,
const DoubleHash& aDoubleHash)
{
return (aHash1 - aDoubleHash.mHash2) & aDoubleHash.mSizeMask;
}
bool overloaded()
{
static_assert(sMaxCapacity <= UINT32_MAX / sMaxAlphaNumerator,
"multiplication below could overflow");
return mEntryCount + mRemovedCount >=
capacity() * sMaxAlphaNumerator / sAlphaDenominator;
}
// Would the table be underloaded if it had the given capacity and entryCount?
static bool wouldBeUnderloaded(uint32_t aCapacity, uint32_t aEntryCount)
{
static_assert(sMaxCapacity <= UINT32_MAX / sMinAlphaNumerator,
"multiplication below could overflow");
return aCapacity > sMinCapacity &&
aEntryCount <= aCapacity * sMinAlphaNumerator / sAlphaDenominator;
}
bool underloaded() { return wouldBeUnderloaded(capacity(), mEntryCount); }
static MOZ_ALWAYS_INLINE bool match(Entry& aEntry, const Lookup& aLookup)
{
return HashPolicy::match(HashPolicy::getKey(aEntry.get()), aLookup);
}
// Warning: in order for readonlyThreadsafeLookup() to be safe this
// function must not modify the table in any way when |collisionBit| is 0.
// (The use of the METER() macro to increment stats violates this
// restriction but we will live with that for now because it's enabled so
// rarely.)
MOZ_ALWAYS_INLINE Entry& lookup(const Lookup& aLookup,
HashNumber aKeyHash,
uint32_t aCollisionBit) const
{
MOZ_ASSERT(isLiveHash(aKeyHash));
MOZ_ASSERT(!(aKeyHash & sCollisionBit));
MOZ_ASSERT(aCollisionBit == 0 || aCollisionBit == sCollisionBit);
MOZ_ASSERT(mTable);
METER(mStats.mSearches++);
// Compute the primary hash address.
HashNumber h1 = hash1(aKeyHash);
Entry* entry = &mTable[h1];
// Miss: return space for a new entry.
if (entry->isFree()) {
METER(mStats.mMisses++);
return *entry;
}
// Hit: return entry.
if (entry->matchHash(aKeyHash) && match(*entry, aLookup)) {
METER(mStats.mHits++);
return *entry;
}
// Collision: double hash.
DoubleHash dh = hash2(aKeyHash);
// Save the first removed entry pointer so we can recycle later.
Entry* firstRemoved = nullptr;
while (true) {
if (MOZ_UNLIKELY(entry->isRemoved())) {
if (!firstRemoved) {
firstRemoved = entry;
}
} else {
if (aCollisionBit == sCollisionBit) {
entry->setCollision();
}
}
METER(mStats.mSteps++);
h1 = applyDoubleHash(h1, dh);
entry = &mTable[h1];
if (entry->isFree()) {
METER(mStats.mMisses++);
return firstRemoved ? *firstRemoved : *entry;
}
if (entry->matchHash(aKeyHash) && match(*entry, aLookup)) {
METER(mStats.mHits++);
return *entry;
}
}
}
// This is a copy of lookup hardcoded to the assumptions:
// 1. the lookup is a lookupForAdd
// 2. the key, whose |keyHash| has been passed is not in the table,
// 3. no entries have been removed from the table.
// This specialized search avoids the need for recovering lookup values
// from entries, which allows more flexible Lookup/Key types.
Entry& findFreeEntry(HashNumber aKeyHash)
{
MOZ_ASSERT(!(aKeyHash & sCollisionBit));
MOZ_ASSERT(mTable);
METER(mStats.mSearches++);
// We assume 'aKeyHash' has already been distributed.
// Compute the primary hash address.
HashNumber h1 = hash1(aKeyHash);
Entry* entry = &mTable[h1];
// Miss: return space for a new entry.
if (!entry->isLive()) {
METER(mStats.mMisses++);
return *entry;
}
// Collision: double hash.
DoubleHash dh = hash2(aKeyHash);
while (true) {
MOZ_ASSERT(!entry->isRemoved());
entry->setCollision();
METER(mStats.mSteps++);
h1 = applyDoubleHash(h1, dh);
entry = &mTable[h1];
if (!entry->isLive()) {
METER(mStats.mMisses++);
return *entry;
}
}
}
enum RebuildStatus
{
NotOverloaded,
Rehashed,
RehashFailed
};
RebuildStatus changeTableSize(int aDeltaLog2,
FailureBehavior aReportFailure = ReportFailure)
{
// Look, but don't touch, until we succeed in getting new entry store.
Entry* oldTable = mTable;
uint32_t oldCap = capacity();
uint32_t newLog2 = kHashNumberBits - mHashShift + aDeltaLog2;
uint32_t newCapacity = 1u << newLog2;
if (MOZ_UNLIKELY(newCapacity > sMaxCapacity)) {
if (aReportFailure) {
this->reportAllocOverflow();
}
return RehashFailed;
}
Entry* newTable = createTable(*this, newCapacity, aReportFailure);
if (!newTable) {
return RehashFailed;
}
// We can't fail from here on, so update table parameters.
setTableSizeLog2(newLog2);
mRemovedCount = 0;
mGen++;
mTable = newTable;
// Copy only live entries, leaving removed ones behind.
Entry* end = oldTable + oldCap;
for (Entry* src = oldTable; src < end; ++src) {
if (src->isLive()) {
HashNumber hn = src->getKeyHash();
findFreeEntry(hn).setLive(
hn, std::move(const_cast<typename Entry::NonConstT&>(src->get())));
}
src->~Entry();
}
// All entries have been destroyed, no need to destroyTable.
this->free_(oldTable, oldCap);
return Rehashed;
}
bool shouldCompressTable()
{
// Compress if a quarter or more of all entries are removed.
return mRemovedCount >= (capacity() >> 2);
}
RebuildStatus checkOverloaded(FailureBehavior aReportFailure = ReportFailure)
{
if (!overloaded()) {
return NotOverloaded;
}
int deltaLog2;
if (shouldCompressTable()) {
METER(mStats.mCompresses++);
deltaLog2 = 0;
} else {
METER(mStats.mGrows++);
deltaLog2 = 1;
}
return changeTableSize(deltaLog2, aReportFailure);
}
// Infallibly rehash the table if we are overloaded with removals.
void checkOverRemoved()
{
if (overloaded()) {
if (checkOverloaded(DontReportFailure) == RehashFailed) {
rehashTableInPlace();
}
}
}
void remove(Entry& aEntry)
{
MOZ_ASSERT(mTable);
METER(mStats.mRemoves++);
if (aEntry.hasCollision()) {
aEntry.removeLive();
mRemovedCount++;
} else {
METER(mStats.mRemoveFrees++);
aEntry.clearLive();
}
mEntryCount--;
#ifdef DEBUG
mMutationCount++;
#endif
}
void checkUnderloaded()
{
if (underloaded()) {
METER(mStats.mShrinks++);
(void)changeTableSize(-1, DontReportFailure);
}
}
// Resize the table down to the largest capacity which doesn't underload the
// table. Since we call checkUnderloaded() on every remove, you only need
// to call this after a bulk removal of items done without calling remove().
void compactIfUnderloaded()
{
int32_t resizeLog2 = 0;
uint32_t newCapacity = capacity();
while (wouldBeUnderloaded(newCapacity, mEntryCount)) {
newCapacity = newCapacity >> 1;
resizeLog2--;
}
if (resizeLog2 != 0) {
(void)changeTableSize(resizeLog2, DontReportFailure);
}
}
// This is identical to changeTableSize(currentSize), but without requiring
// a second table. We do this by recycling the collision bits to tell us if
// the element is already inserted or still waiting to be inserted. Since
// already-inserted elements win any conflicts, we get the same table as we
// would have gotten through random insertion order.
void rehashTableInPlace()
{
METER(mStats.mRehashes++);
mRemovedCount = 0;
mGen++;
for (size_t i = 0; i < capacity(); ++i) {
mTable[i].unsetCollision();
}
for (size_t i = 0; i < capacity();) {
Entry* src = &mTable[i];
if (!src->isLive() || src->hasCollision()) {
++i;
continue;
}
HashNumber keyHash = src->getKeyHash();
HashNumber h1 = hash1(keyHash);
DoubleHash dh = hash2(keyHash);
Entry* tgt = &mTable[h1];
while (true) {
if (!tgt->hasCollision()) {
src->swap(tgt);
tgt->setCollision();
break;
}
h1 = applyDoubleHash(h1, dh);
tgt = &mTable[h1];
}
}
// TODO: this algorithm leaves collision bits on *all* elements, even if
// they are on no collision path. We have the option of setting the
// collision bits correctly on a subsequent pass or skipping the rehash
// unless we are totally filled with tombstones: benchmark to find out
// which approach is best.
}
// Note: |aLookup| may be a reference to a piece of |u|, so this function
// must take care not to use |aLookup| after moving |u|.
//
// Prefer to use putNewInfallible; this function does not check
// invariants.
template<typename... Args>
void putNewInfallibleInternal(const Lookup& aLookup, Args&&... aArgs)
{
MOZ_ASSERT(mTable);
HashNumber keyHash = prepareHash(aLookup);
Entry* entry = &findFreeEntry(keyHash);
MOZ_ASSERT(entry);
if (entry->isRemoved()) {
METER(mStats.mAddOverRemoved++);
mRemovedCount--;
keyHash |= sCollisionBit;
}
entry->setLive(keyHash, std::forward<Args>(aArgs)...);
mEntryCount++;
#ifdef DEBUG
mMutationCount++;
#endif
}
public:
void clear()
{
Entry* end = mTable + capacity();
for (Entry* e = mTable; e < end; ++e) {
e->clear();
}
mRemovedCount = 0;
mEntryCount = 0;
#ifdef DEBUG
mMutationCount++;
#endif
}
void clearAndShrink()
{
clear();
compactIfUnderloaded();
}
void finish()
{
#ifdef DEBUG
MOZ_ASSERT(!mEntered);
#endif
if (!mTable) {
return;
}
destroyTable(*this, mTable, capacity());
mTable = nullptr;
mGen++;
mEntryCount = 0;
mRemovedCount = 0;
#ifdef DEBUG
mMutationCount++;
#endif
}
Range all() const
{
MOZ_ASSERT(mTable);
return Range(*this, mTable, mTable + capacity());
}
bool empty() const
{
MOZ_ASSERT(mTable);
return !mEntryCount;
}
uint32_t count() const
{
MOZ_ASSERT(mTable);
return mEntryCount;
}
uint32_t capacity() const
{
MOZ_ASSERT(mTable);
return 1u << (kHashNumberBits - mHashShift);
}
Generation generation() const
{
MOZ_ASSERT(mTable);
return Generation(mGen);
}
size_t sizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(mTable);
}
size_t sizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + sizeOfExcludingThis(aMallocSizeOf);
}
MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const
{
ReentrancyGuard g(*this);
if (!HasHash<HashPolicy>(aLookup)) {
return Ptr();
}
HashNumber keyHash = prepareHash(aLookup);
return Ptr(lookup(aLookup, keyHash, 0), *this);
}
MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const
{
if (!HasHash<HashPolicy>(aLookup)) {
return Ptr();
}
HashNumber keyHash = prepareHash(aLookup);
return Ptr(lookup(aLookup, keyHash, 0), *this);
}
MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) const
{
ReentrancyGuard g(*this);
if (!EnsureHash<HashPolicy>(aLookup)) {
return AddPtr();
}
HashNumber keyHash = prepareHash(aLookup);
// Directly call the constructor in the return statement to avoid
// excess copying when building with Visual Studio 2017.
// See bug 1385181.
return AddPtr(lookup(aLookup, keyHash, sCollisionBit), *this, keyHash);
}
template<typename... Args>
MOZ_MUST_USE bool add(AddPtr& aPtr, Args&&... aArgs)
{
ReentrancyGuard g(*this);
MOZ_ASSERT(mTable);
MOZ_ASSERT_IF(aPtr.isValid(), aPtr.mTable == this);
MOZ_ASSERT(!aPtr.found());
MOZ_ASSERT(!(aPtr.mKeyHash & sCollisionBit));
// Check for error from ensureHash() here.
if (!aPtr.isValid()) {
return false;
}
MOZ_ASSERT(aPtr.mGeneration == generation());
#ifdef DEBUG
MOZ_ASSERT(aPtr.mMutationCount == mMutationCount);
#endif
// Changing an entry from removed to live does not affect whether we
// are overloaded and can be handled separately.
if (aPtr.mEntry->isRemoved()) {
if (!this->checkSimulatedOOM()) {
return false;
}
METER(mStats.mAddOverRemoved++);
mRemovedCount--;
aPtr.mKeyHash |= sCollisionBit;
} else {
// Preserve the validity of |aPtr.mEntry|.
RebuildStatus status = checkOverloaded();
if (status == RehashFailed) {
return false;
}
if (status == NotOverloaded && !this->checkSimulatedOOM()) {
return false;
}
if (status == Rehashed) {
aPtr.mEntry = &findFreeEntry(aPtr.mKeyHash);
}
}
aPtr.mEntry->setLive(aPtr.mKeyHash, std::forward<Args>(aArgs)...);
mEntryCount++;
#ifdef DEBUG
mMutationCount++;
aPtr.mGeneration = generation();
aPtr.mMutationCount = mMutationCount;
#endif
return true;
}
// Note: |aLookup| may be a reference to a piece of |u|, so this function
// must take care not to use |aLookup| after moving |u|.
template<typename... Args>
void putNewInfallible(const Lookup& aLookup, Args&&... aArgs)
{
MOZ_ASSERT(!lookup(aLookup).found());
ReentrancyGuard g(*this);
putNewInfallibleInternal(aLookup, std::forward<Args>(aArgs)...);
}
// Note: |aLookup| may be alias arguments in |aArgs|, so this function must
// take care not to use |aLookup| after moving |aArgs|.
template<typename... Args>
MOZ_MUST_USE bool putNew(const Lookup& aLookup, Args&&... aArgs)
{
if (!this->checkSimulatedOOM()) {
return false;
}
if (!EnsureHash<HashPolicy>(aLookup)) {
return false;
}
if (checkOverloaded() == RehashFailed) {
return false;
}
putNewInfallible(aLookup, std::forward<Args>(aArgs)...);
return true;
}
// Note: |aLookup| may be a reference to a piece of |u|, so this function
// must take care not to use |aLookup| after moving |u|.
template<typename... Args>
MOZ_MUST_USE bool relookupOrAdd(AddPtr& aPtr,
const Lookup& aLookup,
Args&&... aArgs)
{
// Check for error from ensureHash() here.
if (!aPtr.isValid()) {
return false;
}
#ifdef DEBUG
aPtr.mGeneration = generation();
aPtr.mMutationCount = mMutationCount;
#endif
{
ReentrancyGuard g(*this);
// Check that aLookup has not been destroyed.
MOZ_ASSERT(prepareHash(aLookup) == aPtr.mKeyHash);
aPtr.mEntry = &lookup(aLookup, aPtr.mKeyHash, sCollisionBit);
}
return aPtr.found() || add(aPtr, std::forward<Args>(aArgs)...);
}
void remove(Ptr aPtr)
{
MOZ_ASSERT(mTable);
ReentrancyGuard g(*this);
MOZ_ASSERT(aPtr.found());
MOZ_ASSERT(aPtr.mGeneration == generation());
remove(*aPtr.mEntry);
checkUnderloaded();
}
void rekeyWithoutRehash(Ptr aPtr, const Lookup& aLookup, const Key& aKey)
{
MOZ_ASSERT(mTable);
ReentrancyGuard g(*this);
MOZ_ASSERT(aPtr.found());
MOZ_ASSERT(aPtr.mGeneration == generation());
typename HashTableEntry<T>::NonConstT t(std::move(*aPtr));
HashPolicy::setKey(t, const_cast<Key&>(aKey));
remove(*aPtr.mEntry);
putNewInfallibleInternal(aLookup, std::move(t));
}
void rekeyAndMaybeRehash(Ptr aPtr, const Lookup& aLookup, const Key& aKey)
{
rekeyWithoutRehash(aPtr, aLookup, aKey);
checkOverRemoved();
}
#undef METER
};
} // namespace detail
} // namespace mozilla
#endif /* mozilla_HashTable_h */