gecko-dev/dom/bindings/Codegen.py

3215 строки
125 KiB
Python
Исходник Обычный вид История

# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this file,
# You can obtain one at http://mozilla.org/MPL/2.0/.
# Common codegen classes.
import os
import string
from WebIDL import *
AUTOGENERATED_WARNING_COMMENT = \
"/* THIS FILE IS AUTOGENERATED - DO NOT EDIT */\n\n"
ADDPROPERTY_HOOK_NAME = '_addProperty'
FINALIZE_HOOK_NAME = '_finalize'
TRACE_HOOK_NAME = '_trace'
CONSTRUCT_HOOK_NAME = '_constructor'
HASINSTANCE_HOOK_NAME = '_hasInstance'
def replaceFileIfChanged(filename, newContents):
"""
Read a copy of the old file, so that we don't touch it if it hasn't changed.
Returns True if the file was updated, false otherwise.
"""
oldFileContents = ""
try:
oldFile = open(filename, 'rb')
oldFileContents = ''.join(oldFile.readlines())
oldFile.close()
except:
pass
if newContents == oldFileContents:
return False
f = open(filename, 'wb')
f.write(newContents)
f.close()
def toStringBool(arg):
return str(not not arg).lower()
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
def toBindingNamespace(arg):
return re.sub("((_workers)?$)", "Binding\\1", arg);
class CGThing():
"""
Abstract base class for things that spit out code.
"""
def __init__(self):
pass # Nothing for now
def declare(self):
"""Produce code for a header file."""
assert(False) # Override me!
def define(self):
"""Produce code for a cpp file."""
assert(False) # Override me!
class CGNativePropertyHooks(CGThing):
"""
Generate a NativePropertyHooks for a given descriptor
"""
def __init__(self, descriptor):
CGThing.__init__(self)
self.descriptor = descriptor
def declare(self):
return " extern const NativePropertyHooks NativeHooks;\n"
def define(self):
parent = self.descriptor.interface.parent
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
parentHooks = ("&" + toBindingNamespace(parent.identifier.name) + "::NativeHooks"
if parent else 'NULL')
return """
const NativePropertyHooks NativeHooks = { ResolveProperty, EnumerateProperties, %s };
""" % parentHooks
class CGDOMJSClass(CGThing):
"""
Generate a DOMJSClass for a given descriptor
"""
def __init__(self, descriptor):
CGThing.__init__(self)
self.descriptor = descriptor
def declare(self):
return " extern DOMJSClass Class;\n"
def define(self):
traceHook = TRACE_HOOK_NAME if self.descriptor.customTrace else 'NULL'
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
protoList = ['prototypes::id::' + proto for proto in self.descriptor.prototypeChain]
# Pad out the list to the right length with _ID_Count so we
# guarantee that all the lists are the same length. _ID_Count
# is never the ID of any prototype, so it's safe to use as
# padding.
while len(protoList) < self.descriptor.config.maxProtoChainLength:
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
protoList.append('prototypes::id::_ID_Count')
prototypeChainString = ', '.join(protoList)
return """
DOMJSClass Class = {
{ "%s",
JSCLASS_IS_DOMJSCLASS | JSCLASS_HAS_RESERVED_SLOTS(1),
%s, /* addProperty */
JS_PropertyStub, /* delProperty */
JS_PropertyStub, /* getProperty */
JS_StrictPropertyStub, /* setProperty */
JS_EnumerateStub,
JS_ResolveStub,
JS_ConvertStub,
%s, /* finalize */
NULL, /* checkAccess */
NULL, /* call */
NULL, /* hasInstance */
NULL, /* construct */
%s, /* trace */
JSCLASS_NO_INTERNAL_MEMBERS
},
{ %s },
-1, %s, DOM_OBJECT_SLOT,
&NativeHooks
};
""" % (self.descriptor.interface.identifier.name,
ADDPROPERTY_HOOK_NAME if self.descriptor.concrete and not self.descriptor.workers else 'JS_PropertyStub',
FINALIZE_HOOK_NAME, traceHook, prototypeChainString,
str(self.descriptor.nativeIsISupports).lower())
class CGPrototypeJSClass(CGThing):
def __init__(self, descriptor):
CGThing.__init__(self)
self.descriptor = descriptor
def declare(self):
# We're purely for internal consumption
return ""
def define(self):
return """
static JSClass PrototypeClass = {
"%s Prototype", 0,
JS_PropertyStub, /* addProperty */
JS_PropertyStub, /* delProperty */
JS_PropertyStub, /* getProperty */
JS_StrictPropertyStub, /* setProperty */
JS_EnumerateStub,
JS_ResolveStub,
JS_ConvertStub,
NULL, /* finalize */
NULL, /* checkAccess */
NULL, /* call */
NULL, /* hasInstance */
NULL, /* construct */
NULL, /* trace */
JSCLASS_NO_INTERNAL_MEMBERS
};
""" % (self.descriptor.interface.identifier.name)
class CGInterfaceObjectJSClass(CGThing):
def __init__(self, descriptor):
CGThing.__init__(self)
self.descriptor = descriptor
def declare(self):
# We're purely for internal consumption
return ""
def define(self):
if not self.descriptor.hasInstanceInterface:
return ""
ctorname = "NULL" if not self.descriptor.interface.ctor() else CONSTRUCT_HOOK_NAME
hasinstance = HASINSTANCE_HOOK_NAME
return """
static JSClass InterfaceObjectClass = {
"Function", 0,
JS_PropertyStub, /* addProperty */
JS_PropertyStub, /* delProperty */
JS_PropertyStub, /* getProperty */
JS_StrictPropertyStub, /* setProperty */
JS_EnumerateStub,
JS_ResolveStub,
JS_ConvertStub,
NULL, /* finalize */
NULL, /* checkAccess */
%s, /* call */
%s, /* hasInstance */
%s, /* construct */
NULL, /* trace */
JSCLASS_NO_INTERNAL_MEMBERS
};
""" % (ctorname, hasinstance, ctorname)
class CGList(CGThing):
"""
Generate code for a list of GCThings. Just concatenates them together, with
an optional joiner string. "\n" is a common joiner.
"""
def __init__(self, children, joiner=""):
CGThing.__init__(self)
self.children = children
self.joiner = joiner
def append(self, child):
self.children.append(child)
def prepend(self, child):
self.children.insert(0, child)
def declare(self):
return self.joiner.join([child.declare() for child in self.children
if child is not None])
def define(self):
return self.joiner.join([child.define() for child in self.children
if child is not None])
class CGGeneric(CGThing):
"""
A class that spits out a fixed string into the codegen. Can spit out a
separate string for the declaration too.
"""
def __init__(self, define="", declare=""):
self.declareText = declare
self.defineText = define
def declare(self):
return self.declareText
def define(self):
return self.defineText
# We'll want to insert the indent at the beginnings of lines, but we
# don't want to indent empty lines. So only indent lines that have a
# non-newline character on them.
lineStartDetector = re.compile("^(?=[^\n#])", re.MULTILINE)
class CGIndenter(CGThing):
"""
A class that takes another CGThing and generates code that indents that
CGThing by some number of spaces. The default indent is two spaces.
"""
def __init__(self, child, indentLevel=2):
CGThing.__init__(self)
self.child = child
self.indent = " " * indentLevel
def declare(self):
decl = self.child.declare()
if decl is not "":
return re.sub(lineStartDetector, self.indent, decl)
else:
return ""
def define(self):
defn = self.child.define()
if defn is not "":
return re.sub(lineStartDetector, self.indent, defn)
else:
return ""
class CGWrapper(CGThing):
"""
Generic CGThing that wraps other CGThings with pre and post text.
"""
def __init__(self, child, pre="", post="", declarePre=None,
declarePost=None, definePre=None, definePost=None,
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
declareOnly=False, defineOnly=False, reindent=False):
CGThing.__init__(self)
self.child = child
self.declarePre = declarePre or pre
self.declarePost = declarePost or post
self.definePre = definePre or pre
self.definePost = definePost or post
self.declareOnly = declareOnly
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
self.defineOnly = defineOnly
self.reindent = reindent
def declare(self):
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
if self.defineOnly:
return ''
decl = self.child.declare()
if self.reindent:
# We don't use lineStartDetector because we don't want to
# insert whitespace at the beginning of our _first_ line.
decl = stripTrailingWhitespace(
decl.replace("\n", "\n" + (" " * len(self.declarePre))))
return self.declarePre + decl + self.declarePost
def define(self):
if self.declareOnly:
return ''
defn = self.child.define()
if self.reindent:
# We don't use lineStartDetector because we don't want to
# insert whitespace at the beginning of our _first_ line.
defn = stripTrailingWhitespace(
defn.replace("\n", "\n" + (" " * len(self.definePre))))
return self.definePre + defn + self.definePost
class CGNamespace(CGWrapper):
def __init__(self, namespace, child, declareOnly=False):
pre = "namespace %s {\n" % namespace
post = "} // namespace %s\n" % namespace
CGWrapper.__init__(self, child, pre=pre, post=post,
declareOnly=declareOnly)
@staticmethod
def build(namespaces, child, declareOnly=False):
"""
Static helper method to build multiple wrapped namespaces.
"""
if not namespaces:
return CGWrapper(child, declareOnly=declareOnly)
inner = CGNamespace.build(namespaces[1:], child, declareOnly=declareOnly)
return CGNamespace(namespaces[0], inner, declareOnly=declareOnly)
class CGIncludeGuard(CGWrapper):
"""
Generates include guards for a header.
"""
def __init__(self, prefix, child):
"""|prefix| is the filename without the extension."""
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
define = 'mozilla_dom_%s_h__' % prefix
CGWrapper.__init__(self, child,
declarePre='#ifndef %s\n#define %s\n\n' % (define, define),
declarePost='\n#endif // %s\n' % define)
class CGHeaders(CGWrapper):
"""
Generates the appropriate include statements.
"""
def __init__(self, descriptors, declareIncludes, defineIncludes, child):
"""
Builds a set of includes to cover |descriptors|.
Also includes the files in |declareIncludes| in the header
file and the files in |defineIncludes| in the .cpp.
"""
# Determine the filenames for which we need headers.
interfaceDeps = [d.interface for d in descriptors]
ancestors = []
for iface in interfaceDeps:
while iface.parent:
ancestors.append(iface.parent)
iface = iface.parent
interfaceDeps.extend(ancestors)
bindingIncludes = set(self.getInterfaceFilename(d) for d in interfaceDeps)
# Grab all the implementation declaration files we need.
implementationIncludes = set(d.headerFile for d in descriptors)
# Now find all the things we'll need as arguments because we
# need to wrap or unwrap them.
bindingHeaders = set()
for d in descriptors:
members = [m for m in d.interface.members]
signatures = [s for m in members if m.isMethod() for s in m.signatures()]
types = []
for s in signatures:
assert len(s) == 2
(returnType, arguments) = s
types.append(returnType)
types.extend([a.type for a in arguments])
attrs = [a for a in members if a.isAttr()]
types.extend([a.type for a in attrs])
for t in types:
if t.unroll().isInterface():
if t.unroll().isArrayBuffer():
bindingHeaders.add("jsfriendapi.h")
else:
typeDesc = d.getDescriptor(t.unroll().inner.identifier.name)
if typeDesc is not None:
implementationIncludes.add(typeDesc.headerFile)
bindingHeaders.add(self.getInterfaceFilename(typeDesc.interface))
# Let the machinery do its thing.
def _includeString(includes):
return ''.join(['#include "%s"\n' % i for i in includes]) + '\n'
CGWrapper.__init__(self, child,
declarePre=_includeString(declareIncludes),
definePre=_includeString(sorted(set(defineIncludes) |
bindingIncludes |
bindingHeaders |
implementationIncludes)))
@staticmethod
def getInterfaceFilename(interface):
basename = os.path.basename(interface.filename())
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
return 'mozilla/dom/' + \
basename.replace('.webidl', 'Binding.h')
class Argument():
"""
A class for outputting the type and name of an argument
"""
def __init__(self, argType, name):
self.argType = argType
self.name = name
def __str__(self):
return self.argType + ' ' + self.name
class CGAbstractMethod(CGThing):
"""
An abstract class for generating code for a method. Subclasses
should override definition_body to create the actual code.
descriptor is the descriptor for the interface the method is associated with
name is the name of the method as a string
returnType is the IDLType of the return value
args is a list of Argument objects
inline should be True to generate an inline method, whose body is
part of the declaration.
static should be True to generate a static method, which only has
a definition.
"""
def __init__(self, descriptor, name, returnType, args, inline=False, static=False):
CGThing.__init__(self)
self.descriptor = descriptor
self.name = name
self.returnType = returnType
self.args = args
self.inline = inline
self.static = static
def _argstring(self):
return ', '.join([str(a) for a in self.args])
def _decorators(self):
decorators = []
if self.inline:
decorators.append('inline')
if self.static:
decorators.append('static')
decorators.append(self.returnType)
return ' '.join(decorators)
def declare(self):
if self.inline:
return self._define()
return "\n %s %s(%s);\n" % (self._decorators(), self.name, self._argstring())
def _define(self):
return self.definition_prologue() + "\n" + self.definition_body() + self.definition_epilogue()
def define(self):
return "" if self.inline else self._define()
def definition_prologue(self):
maybeNewline = " " if self.inline else "\n"
return "\n%s%s%s(%s)\n{" % (self._decorators(), maybeNewline,
self.name, self._argstring())
def definition_epilogue(self):
return "\n}\n"
def definition_body(self):
assert(False) # Override me!
class CGAbstractStaticMethod(CGAbstractMethod):
"""
Abstract base class for codegen of implementation-only (no
declaration) static methods.
"""
def __init__(self, descriptor, name, returnType, args):
CGAbstractMethod.__init__(self, descriptor, name, returnType, args,
inline=False, static=True)
def declare(self):
# We only have implementation
return ""
class CGAbstractClassHook(CGAbstractStaticMethod):
"""
Meant for implementing JSClass hooks, like Finalize or Trace. Does very raw
'this' unwrapping as it assumes that the unwrapped type is always known.
"""
def __init__(self, descriptor, name, returnType, args):
CGAbstractStaticMethod.__init__(self, descriptor, name, returnType,
args)
def definition_body_prologue(self):
return """
MOZ_ASSERT(js::GetObjectJSClass(obj) == Class.ToJSClass());
%s* self = UnwrapDOMObject<%s>(obj, Class.ToJSClass());
""" % (self.descriptor.nativeType, self.descriptor.nativeType)
def definition_body(self):
return self.definition_body_prologue() + self.generate_code()
def generate_code(self):
# Override me
assert(False)
class CGAddPropertyHook(CGAbstractClassHook):
"""
A hook for addProperty, used to preserve our wrapper from GC.
"""
def __init__(self, descriptor):
args = [Argument('JSContext*', 'cx'), Argument('JSHandleObject', 'obj'),
Argument('JSHandleId', 'id'), Argument('jsval*', 'vp')]
CGAbstractClassHook.__init__(self, descriptor, ADDPROPERTY_HOOK_NAME,
'JSBool', args)
def generate_code(self):
return """
JSCompartment* compartment = js::GetObjectCompartment(obj);
xpc::CompartmentPrivate* priv =
static_cast<xpc::CompartmentPrivate*>(JS_GetCompartmentPrivate(compartment));
if (!priv->RegisterDOMExpandoObject(obj)) {
return false;
}
self->SetPreservingWrapper(true);
return true;"""
class CGClassFinalizeHook(CGAbstractClassHook):
"""
A hook for finalize, used to release our native object.
"""
def __init__(self, descriptor):
args = [Argument('JSFreeOp*', 'fop'), Argument('JSObject*', 'obj')]
CGAbstractClassHook.__init__(self, descriptor, FINALIZE_HOOK_NAME,
'void', args)
def generate_code(self):
if self.descriptor.customFinalize:
return """ if (self) {
self->%s(%s);
}""" % (self.name, self.args[0].name)
if self.descriptor.workers:
release = "self->Release();"
else:
assert self.descriptor.nativeIsISupports
release = """
XPCJSRuntime *rt = nsXPConnect::GetRuntimeInstance();
if (rt) {
rt->DeferredRelease(reinterpret_cast<nsISupports*>(self));
} else {
NS_RELEASE(self);
}"""
return """
self->ClearWrapper();
%s""" % (release)
class CGClassTraceHook(CGAbstractClassHook):
"""
A hook to trace through our native object; used for GC and CC
"""
def __init__(self, descriptor):
args = [Argument('JSTracer*', 'trc'), Argument('JSObject*', 'obj')]
CGAbstractClassHook.__init__(self, descriptor, TRACE_HOOK_NAME, 'void',
args)
def generate_code(self):
return """ if (self) {
self->%s(%s);
}""" % (self.name, self.args[0].name)
class CGClassConstructHook(CGAbstractStaticMethod):
"""
JS-visible constructor for our objects
"""
def __init__(self, descriptor):
args = [Argument('JSContext*', 'cx'), Argument('unsigned', 'argc'), Argument('JS::Value*', 'vp')]
CGAbstractStaticMethod.__init__(self, descriptor, CONSTRUCT_HOOK_NAME,
'JSBool', args)
self._ctor = self.descriptor.interface.ctor()
def define(self):
if not self._ctor:
return ""
return CGAbstractStaticMethod.define(self)
def definition_body(self):
return self.generate_code()
def generate_code(self):
preamble = """
JSObject* obj = JS_GetGlobalForObject(cx, JSVAL_TO_OBJECT(JS_CALLEE(cx, vp)));
"""
preArgs = ""
if self.descriptor.workers:
preArgs = "cx, obj, "
else:
preamble += """
nsISupports* global;
xpc_qsSelfRef globalRef;
{
nsresult rv;
JS::Value val = OBJECT_TO_JSVAL(obj);
rv = xpc_qsUnwrapArg<nsISupports>(cx, val, &global, &globalRef.ptr, &val);
if (NS_FAILED(rv)) {
return Throw<true>(cx, NS_ERROR_XPC_BAD_CONVERT_JS);
}
}
"""
preArgs = "global, "
name = MakeNativeName(self._ctor.identifier.name)
nativeName = self.descriptor.binaryNames.get(name, name)
callGenerator = CGMethodCall(preArgs, nativeName, True,
self.descriptor, self._ctor, {})
return preamble + callGenerator.define();
class CGClassHasInstanceHook(CGAbstractStaticMethod):
def __init__(self, descriptor):
args = [Argument('JSContext*', 'cx'), Argument('JSHandleObject', 'obj'),
Argument('const jsval*', 'v'), Argument('JSBool*', 'bp')]
CGAbstractStaticMethod.__init__(self, descriptor, HASINSTANCE_HOOK_NAME,
'JSBool', args)
def define(self):
if not self.descriptor.hasInstanceInterface:
return ""
return CGAbstractStaticMethod.define(self)
def definition_body(self):
return self.generate_code()
def generate_code(self):
return """ if (!v->isObject()) {
*bp = false;
return true;
}
jsval protov;
if (!JS_GetProperty(cx, obj, "prototype", &protov))
return false;
if (!protov.isObject()) {
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_PROTOTYPE,
"%s");
return false;
}
JSObject *objProto = &protov.toObject();
JSObject* instance = &v->toObject();
JSObject* proto = JS_GetPrototype(instance);
while (proto) {
if (proto == objProto) {
*bp = true;
return true;
}
proto = JS_GetPrototype(proto);
}
nsISupports* native =
nsContentUtils::XPConnect()->GetNativeOfWrapper(cx, instance);
nsCOMPtr<%s> qiResult = do_QueryInterface(native);
*bp = !!qiResult;
return true;
""" % (self.descriptor.name, self.descriptor.hasInstanceInterface)
def isChromeOnly(m):
return m.getExtendedAttribute("ChromeOnly")
class PropertyDefiner:
"""
A common superclass for defining things on prototype objects.
Subclasses should implement generateArray to generate the actual arrays of
things we're defining. They should also set self.chrome to the list of
things exposed to chrome and self.regular to the list of things exposed to
web pages. self.chrome must be a superset of self.regular but also include
all the ChromeOnly stuff.
"""
def __init__(self, descriptor, name):
self.descriptor = descriptor
self.name = name
def hasChromeOnly(self):
return len(self.chrome) > len(self.regular)
def hasNonChromeOnly(self):
return len(self.regular) > 0
def variableName(self, chrome):
if chrome and self.hasChromeOnly():
return "sChrome" + self.name
if self.hasNonChromeOnly():
return "s" + self.name
return "NULL"
def __str__(self):
str = self.generateArray(self.regular, self.variableName(False))
if self.hasChromeOnly():
str += self.generateArray(self.chrome, self.variableName(True))
return str
# The length of a method is the maximum of the lengths of the
# argument lists of all its overloads.
def methodLength(method):
signatures = method.signatures()
return max([len(arguments) for (retType, arguments) in signatures])
class MethodDefiner(PropertyDefiner):
"""
A class for defining methods on a prototype object.
"""
def __init__(self, descriptor, name, static):
PropertyDefiner.__init__(self, descriptor, name)
methods = [m for m in descriptor.interface.members if
m.isMethod() and m.isStatic() == static]
self.chrome = [{"name": m.identifier.name,
"length": methodLength(m),
"flags": "JSPROP_ENUMERATE"} for m in methods]
self.regular = [{"name": m.identifier.name,
"length": methodLength(m),
"flags": "JSPROP_ENUMERATE"}
for m in methods if not isChromeOnly(m)]
if not descriptor.interface.parent and not static and not descriptor.workers:
self.chrome.append({"name": 'QueryInterface',
"length": 1,
"flags": "0"})
self.regular.append({"name": 'QueryInterface',
"length": 1,
"flags": "0"})
if static:
if not descriptor.interface.hasInterfaceObject():
# static methods go on the interface object
assert not self.hasChromeOnly() and not self.hasNonChromeOnly()
else:
if not descriptor.interface.hasInterfacePrototypeObject():
# non-static methods go on the interface prototype object
assert not self.hasChromeOnly() and not self.hasNonChromeOnly()
@staticmethod
def generateArray(array, name):
if len(array) == 0:
return ""
funcdecls = [' JS_FN("%s", %s, %s, %s)' %
(m["name"], m["name"], m["length"], m["flags"])
for m in array]
# And add our JS_FS_END
funcdecls.append(' JS_FS_END')
return ("static JSFunctionSpec %s[] = {\n" +
',\n'.join(funcdecls) + "\n" +
"};\n\n" +
"static jsid %s_ids[%i] = { JSID_VOID };\n\n") % (name, name, len(array))
class AttrDefiner(PropertyDefiner):
def __init__(self, descriptor, name):
PropertyDefiner.__init__(self, descriptor, name)
self.name = name
self.chrome = [m for m in descriptor.interface.members if m.isAttr()]
self.regular = [m for m in self.chrome if not isChromeOnly(m)]
@staticmethod
def generateArray(array, name):
if len(array) == 0:
return ""
def flags(attr):
flags = "JSPROP_SHARED | JSPROP_ENUMERATE"
if generateNativeAccessors:
flags = "JSPROP_NATIVE_ACCESSORS | " + flags
elif attr.readonly:
return "JSPROP_READONLY | " + flags
return flags
def getter(attr):
return "get_" + attr.identifier.name
def setter(attr):
if attr.readonly:
return "NULL"
return "set_" + attr.identifier.name
attrdecls = [' { "%s", 0, %s, (JSPropertyOp)%s, (JSStrictPropertyOp)%s }' %
(attr.identifier.name, flags(attr), getter(attr),
setter(attr)) for attr in array]
attrdecls.append(' { 0, 0, 0, 0, 0 }')
return ("static JSPropertySpec %s[] = {\n" +
',\n'.join(attrdecls) + "\n" +
"};\n\n" +
"static jsid %s_ids[%i] = { JSID_VOID };\n\n") % (name, name, len(array))
class ConstDefiner(PropertyDefiner):
"""
A class for definining constants on the interface object
"""
def __init__(self, descriptor, name):
PropertyDefiner.__init__(self, descriptor, name)
self.name = name
self.chrome = [m for m in descriptor.interface.members if m.isConst()]
self.regular = [m for m in self.chrome if not isChromeOnly(m)]
@staticmethod
def generateArray(array, name):
if len(array) == 0:
return ""
constdecls = [' { "%s", %s }' %
(const.identifier.name,
convertConstIDLValueToJSVal(const.value))
for const in array]
constdecls.append(' { 0, JSVAL_VOID }')
return ("static ConstantSpec %s[] = {\n" +
',\n'.join(constdecls) + "\n" +
"};\n\n" +
"static jsid %s_ids[%i] = { JSID_VOID };\n\n") % (name, name, len(array))
class PropertyArrays():
def __init__(self, descriptor):
self.staticMethods = MethodDefiner(descriptor, "StaticMethods", True)
self.methods = MethodDefiner(descriptor, "Methods", False)
self.attrs = AttrDefiner(descriptor, "Attributes")
self.consts = ConstDefiner(descriptor, "Constants")
@staticmethod
def arrayNames():
return [ "staticMethods", "methods", "attrs", "consts" ]
def hasChromeOnly(self):
return reduce(lambda b, a: b or getattr(self, a).hasChromeOnly(),
self.arrayNames(), False)
def variableNames(self, chrome):
names = {}
for array in self.arrayNames():
names[array] = getattr(self, array).variableName(chrome)
return names
def __str__(self):
define = ""
for array in self.arrayNames():
define += str(getattr(self, array))
return define
class CGCreateInterfaceObjectsMethod(CGAbstractMethod):
"""
Generate the CreateInterfaceObjects method for an interface descriptor.
properties should be a PropertyArrays instance.
"""
def __init__(self, descriptor, properties):
args = [Argument('JSContext*', 'aCx'), Argument('JSObject*', 'aGlobal'),
Argument('JSObject*', 'aReceiver')]
CGAbstractMethod.__init__(self, descriptor, 'CreateInterfaceObjects', 'JSObject*', args)
self.properties = properties
def definition_body(self):
protoChain = self.descriptor.prototypeChain
if len(protoChain) == 1:
getParentProto = "JS_GetObjectPrototype(aCx, aGlobal)"
else:
parentProtoName = self.descriptor.prototypeChain[-2]
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
getParentProto = ("%s::GetProtoObject(aCx, aGlobal, aReceiver)" %
toBindingNamespace(parentProtoName))
needInterfaceObject = self.descriptor.interface.hasInterfaceObject()
needInterfacePrototypeObject = self.descriptor.interface.hasInterfacePrototypeObject()
# if we don't need to create anything, why are we generating this?
assert needInterfaceObject or needInterfacePrototypeObject
idsToInit = []
for var in self.properties.arrayNames():
props = getattr(self.properties, var)
if props.hasNonChromeOnly():
idsToInit.append(props.variableName(False))
if props.hasChromeOnly() and not self.descriptor.workers:
idsToInit.append(props.variableName(True))
if len(idsToInit) > 0:
initIds = CGList(
[CGGeneric("!InitIds(aCx, %s, %s_ids)" % (varname, varname)) for
varname in idsToInit], ' ||\n')
if len(idsToInit) > 1:
initIds = CGWrapper(initIds, pre="(", post=")", reindent=True)
initIds = CGList(
[CGGeneric("%s_ids[0] == JSID_VOID &&" % idsToInit[0]), initIds],
"\n")
initIds = CGWrapper(initIds, pre="if (", post=") {", reindent=True)
initIds = CGList(
[initIds,
CGGeneric((" %s_ids[0] = JSID_VOID;\n"
" return NULL;") % idsToInit[0]),
CGGeneric("}")],
"\n")
else:
initIds = None
getParentProto = ("JSObject* parentProto = %s;\n"
"if (!parentProto) {\n"
" return NULL;\n"
"}") % getParentProto
needInterfaceObjectClass = (needInterfaceObject and
self.descriptor.hasInstanceInterface)
needConstructor = (needInterfaceObject and
not self.descriptor.hasInstanceInterface)
if self.descriptor.interface.ctor():
constructHook = CONSTRUCT_HOOK_NAME
constructArgs = methodLength(self.descriptor.interface.ctor())
else:
constructHook = "ThrowingConstructorWorkers" if self.descriptor.workers else "ThrowingConstructor"
constructArgs = 0
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
call = CGGeneric(("return dom::CreateInterfaceObjects(aCx, aGlobal, aReceiver, parentProto,\n"
" %s, %s, %s, %d,\n"
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
" %%(methods)s, %%(attrs)s, %%(consts)s, %%(staticMethods)s,\n"
" %s);") % (
"&PrototypeClass" if needInterfacePrototypeObject else "NULL",
"&InterfaceObjectClass" if needInterfaceObjectClass else "NULL",
constructHook if needConstructor else "NULL",
constructArgs,
'"' + self.descriptor.interface.identifier.name + '"' if needInterfaceObject else "NULL"))
if self.properties.hasChromeOnly():
if self.descriptor.workers:
accessCheck = "mozilla::dom::workers::GetWorkerPrivateFromContext(aCx)->IsChromeWorker()"
else:
accessCheck = "xpc::AccessCheck::isChrome(js::GetObjectCompartment(aGlobal))"
accessCheck = "if (" + accessCheck + ") {\n"
chrome = CGWrapper(CGGeneric((CGIndenter(call).define() % self.properties.variableNames(True))),
pre=accessCheck, post="\n}")
else:
chrome = None
functionBody = CGList(
[CGGeneric(getParentProto), initIds, chrome,
CGGeneric(call.define() % self.properties.variableNames(False))],
"\n\n")
return CGIndenter(functionBody).define()
class CGGetPerInterfaceObject(CGAbstractMethod):
"""
A method for getting a per-interface object (a prototype object or interface
constructor object).
"""
def __init__(self, descriptor, name, idPrefix=""):
args = [Argument('JSContext*', 'aCx'), Argument('JSObject*', 'aGlobal'),
Argument('JSObject*', 'aReceiver')]
CGAbstractMethod.__init__(self, descriptor, name,
'JSObject*', args, inline=True)
self.id = idPrefix + "id::" + self.descriptor.name
def definition_body(self):
return """
/* aGlobal and aReceiver are usually the same, but they can be different
too. For example a sandbox often has an xray wrapper for a window as the
prototype of the sandbox's global. In that case aReceiver is the xray
wrapper and aGlobal is the sandbox's global.
*/
/* Make sure our global is sane. Hopefully we can remove this sometime */
if (!(js::GetObjectClass(aGlobal)->flags & JSCLASS_DOM_GLOBAL)) {
return NULL;
}
/* Check to see whether the interface objects are already installed */
JSObject** protoOrIfaceArray = GetProtoOrIfaceArray(aGlobal);
JSObject* cachedObject = protoOrIfaceArray[%s];
if (!cachedObject) {
protoOrIfaceArray[%s] = cachedObject = CreateInterfaceObjects(aCx, aGlobal, aReceiver);
}
/* cachedObject might _still_ be null, but that's OK */
return cachedObject;""" % (self.id, self.id)
class CGGetProtoObjectMethod(CGGetPerInterfaceObject):
"""
A method for getting the interface prototype object.
"""
def __init__(self, descriptor):
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
CGGetPerInterfaceObject.__init__(self, descriptor, "GetProtoObject",
"prototypes::")
def definition_body(self):
return """
/* Get the interface prototype object for this class. This will create the
object as needed. */""" + CGGetPerInterfaceObject.definition_body(self)
class CGGetConstructorObjectMethod(CGGetPerInterfaceObject):
"""
A method for getting the interface constructor object.
"""
def __init__(self, descriptor):
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
CGGetPerInterfaceObject.__init__(self, descriptor, "GetConstructorObject",
"constructors::")
def definition_body(self):
return """
/* Get the interface object for this class. This will create the object as
needed. */""" + CGGetPerInterfaceObject.definition_body(self)
def CheckPref(descriptor, globalName, varName, retval, wrapperCache = None):
"""
Check whether bindings should be enabled for this descriptor. If not, set
varName to false and return retval.
"""
if not descriptor.prefable:
return ""
if wrapperCache:
wrapperCache = " %s->ClearIsDOMBinding();\n" % (wrapperCache)
else:
wrapperCache = ""
return """
{
XPCWrappedNativeScope* scope =
XPCWrappedNativeScope::FindInJSObjectScope(aCx, %s);
if (!scope) {
return %s;
}
if (!scope->ExperimentalBindingsEnabled()) {
%s %s = false;
return %s;
}
}
""" % (globalName, retval, wrapperCache, varName, retval)
class CGDefineDOMInterfaceMethod(CGAbstractMethod):
"""
A method for resolve hooks to try to lazily define the interface object for
a given interface.
"""
def __init__(self, descriptor):
args = [Argument('JSContext*', 'aCx'), Argument('JSObject*', 'aReceiver'),
Argument('bool*', 'aEnabled')]
CGAbstractMethod.__init__(self, descriptor, 'DefineDOMInterface', 'bool', args)
def declare(self):
if self.descriptor.workers:
return ''
return CGAbstractMethod.declare(self)
def define(self):
if self.descriptor.workers:
return ''
return CGAbstractMethod.define(self)
def definition_body(self):
if self.descriptor.interface.hasInterfacePrototypeObject():
# We depend on GetProtoObject defining an interface constructor
# object as needed.
getter = "GetProtoObject"
else:
getter = "GetConstructorObject"
return (" JSObject* global = JS_GetGlobalForObject(aCx, aReceiver);\n" +
CheckPref(self.descriptor, "global", "*aEnabled", "false") +
"""
*aEnabled = true;
return !!%s(aCx, global, aReceiver);""" % (getter))
class CGWrapMethod(CGAbstractMethod):
def __init__(self, descriptor):
# XXX can we wrap if we don't have an interface prototype object?
assert descriptor.interface.hasInterfacePrototypeObject()
args = [Argument('JSContext*', 'aCx'), Argument('JSObject*', 'aScope'),
Argument(descriptor.nativeType + '*', 'aObject'),
Argument('bool*', 'aTriedToWrap')]
CGAbstractMethod.__init__(self, descriptor, 'Wrap', 'JSObject*', args)
def definition_body(self):
if self.descriptor.workers:
return """
*aTriedToWrap = true;
return aObject->GetJSObject();"""
return """
*aTriedToWrap = true;
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
JSObject* parent = WrapNativeParent(aCx, aScope, aObject->GetParentObject());
if (!parent) {
return NULL;
}
JSAutoEnterCompartment ac;
if (js::GetGlobalForObjectCrossCompartment(parent) != aScope) {
if (!ac.enter(aCx, parent)) {
return NULL;
}
}
JSObject* global = JS_GetGlobalForObject(aCx, parent);
%s
JSObject* proto = GetProtoObject(aCx, global, global);
if (!proto) {
return NULL;
}
JSObject* obj = JS_NewObject(aCx, &Class.mBase, proto, parent);
if (!obj) {
return NULL;
}
js::SetReservedSlot(obj, DOM_OBJECT_SLOT, PRIVATE_TO_JSVAL(aObject));
NS_ADDREF(aObject);
aObject->SetWrapper(obj);
return obj;""" % (CheckPref(self.descriptor, "global", "*aTriedToWrap", "NULL", "aObject"))
builtinNames = {
IDLType.Tags.bool: 'bool',
IDLType.Tags.int8: 'int8_t',
IDLType.Tags.int16: 'int16_t',
IDLType.Tags.int32: 'int32_t',
IDLType.Tags.int64: 'int64_t',
IDLType.Tags.uint8: 'uint8_t',
IDLType.Tags.uint16: 'uint16_t',
IDLType.Tags.uint32: 'uint32_t',
IDLType.Tags.uint64: 'uint64_t',
IDLType.Tags.float: 'float',
IDLType.Tags.double: 'double'
}
class CastableObjectUnwrapper():
"""
A class for unwrapping an object named by the "source" argument
based on the passed-in descriptor and storing it in a variable
called by the name in the "target" argument.
codeOnFailure is the code to run if unwrapping fails.
"""
def __init__(self, descriptor, source, target, codeOnFailure):
assert descriptor.castable
self.substitution = { "type" : descriptor.nativeType,
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
"protoID" : "prototypes::id::" + descriptor.name,
"source" : source,
"target" : target,
"codeOnFailure" : codeOnFailure }
def __str__(self):
return string.Template(
"""{
nsresult rv = UnwrapObject<${protoID}>(cx, ${source}, ${target});
if (NS_FAILED(rv)) {
${codeOnFailure}
}
}""").substitute(self.substitution)
class FailureFatalCastableObjectUnwrapper(CastableObjectUnwrapper):
"""
As CastableObjectUnwrapper, but defaulting to throwing if unwrapping fails
"""
def __init__(self, descriptor, source, target):
CastableObjectUnwrapper.__init__(self, descriptor, source, target,
"return Throw<%s>(cx, rv);" %
toStringBool(not descriptor.workers))
class CallbackObjectUnwrapper:
"""
A class for unwrapping objects implemented in JS.
|source| is the JSObject we want to use in native code.
|target| is an nsCOMPtr of the appropriate type in which we store the result.
"""
def __init__(self, descriptor, source, target, codeOnFailure=None):
if codeOnFailure is None:
codeOnFailure = ("return Throw<%s>(cx, rv);" %
toStringBool(not descriptor.workers))
self.descriptor = descriptor
self.substitution = { "nativeType" : descriptor.nativeType,
"source" : source,
"target" : target,
"codeOnFailure" : codeOnFailure }
def __str__(self):
if self.descriptor.workers:
return string.Template(
"${target} = ${source};"
).substitute(self.substitution)
return string.Template(
"""nsresult rv;
XPCCallContext ccx(JS_CALLER, cx);
if (!ccx.IsValid()) {
rv = NS_ERROR_XPC_BAD_CONVERT_JS;
${codeOnFailure}
}
const nsIID& iid = NS_GET_IID(${nativeType});
nsRefPtr<nsXPCWrappedJS> wrappedJS;
rv = nsXPCWrappedJS::GetNewOrUsed(ccx, ${source}, iid,
NULL, getter_AddRefs(wrappedJS));
if (NS_FAILED(rv) || !wrappedJS) {
${codeOnFailure}
}
// Use a temp nsCOMPtr for the null-check, because ${target} might be
// OwningNonNull, not an nsCOMPtr.
nsCOMPtr<${nativeType}> tmp = do_QueryObject(wrappedJS.get());
if (!tmp) {
${codeOnFailure}
}
${target} = tmp.forget();""").substitute(self.substitution)
def getJSToNativeConversionTemplate(type, descriptorProvider, failureCode=None,
isDefinitelyObject=False,
isSequenceMember=False):
"""
Get a template for converting a JS value to a native object based on the
given type and descriptor. If failureCode is given, then we're actually
testing whether we can convert the argument to the desired type. That
means that failures to convert due to the JS value being the wrong type of
value need to use failureCode instead of throwing exceptions. Failures to
convert that are due to JS exceptions (from toString or valueOf methods) or
out of memory conditions need to throw exceptions no matter what
failureCode is.
If isDefinitelyObject is True, that means we know the value
isObject() and we have no need to recheck that.
The return value from this function is a tuple consisting of three things:
1) A string representing the conversion code. This will have template
substitution performed on it as follows:
${val} replaced by an expression for the JS::Value in question
${valPtr} is a pointer to the JS::Value in question
${holderName} replaced by the holder's name, if any
${declName} replaced by the declaration's name
2) A CGThing representing the native C++ type we're converting to
(declType). This is allowed to be None if the conversion code is
supposed to be used as-is.
3) A CGThing representing the type of a "holder" (holderType) which will
hold a possible reference to the C++ thing whose type we returned in #1,
or None if no such holder is needed.
${declName} must be in scope before the generated code is entered.
If holderType is not None then ${holderName} must be in scope
before the generated code is entered.
"""
# A helper function for wrapping up the template body for
# possibly-nullable objecty stuff
def wrapObjectTemplate(templateBody, isDefinitelyObject, type,
codeToSetNull, isWorker):
if not isDefinitelyObject:
# Handle the non-object cases by wrapping up the whole
# thing in an if cascade.
templateBody = (
"if (${val}.isObject()) {\n" +
CGIndenter(CGGeneric(templateBody)).define() + "\n")
if type.nullable():
templateBody += (
"} else if (${val}.isNullOrUndefined()) {\n"
" %s;\n" % codeToSetNull)
templateBody += (
"} else {\n"
" return Throw<%s>(cx, NS_ERROR_XPC_BAD_CONVERT_JS);\n"
"}" % toStringBool(not isWorker))
return templateBody
if type.isArray():
raise TypeError("Can't handle array arguments yet")
if type.isSequence():
if isSequenceMember:
raise TypeError("Can't handle sequences of sequences")
if failureCode is not None:
raise TypeError("Can't handle sequences when failureCode is not None")
nullable = type.nullable();
if nullable:
type = type.inner;
elementType = type.inner;
# We don't know anything about the object-ness of the things
# we wrap, so don't pass through isDefinitelyObject
(elementTemplate, elementDeclType,
elementHolderType) = getJSToNativeConversionTemplate(
elementType, descriptorProvider, isSequenceMember=True)
if elementHolderType is not None:
raise TypeError("Shouldn't need holders for sequences")
# Have to make sure to use a fallible array, because it's trivial for
# page JS to create things with very large lengths.
typeName = CGWrapper(elementDeclType, pre="nsTArray< ", post=" >")
if nullable:
typeName = CGWrapper(typeName, pre="Nullable< ", post=" >")
templateBody = ("""JSObject* seq = &${val}.toObject();\n
if (!IsArrayLike(cx, seq)) {
return Throw<%s>(cx, NS_ERROR_XPC_BAD_CONVERT_JS);
}
uint32_t length;
// JS_GetArrayLength actually works on all objects
if (!JS_GetArrayLength(cx, seq, &length)) {
return false;
}
// Jump through a hoop to do a fallible allocation but later end up with
// an infallible array.
FallibleTArray< %s > arr;
if (!arr.SetCapacity(length)) {
return Throw<%s>(cx, NS_ERROR_OUT_OF_MEMORY);
}
for (uint32_t i = 0; i < length; ++i) {
jsval temp;
if (!JS_GetElement(cx, seq, i, &temp)) {
return false;
}
""" % (toStringBool(descriptorProvider.workers),
elementDeclType.define(),
toStringBool(descriptorProvider.workers)))
templateBody += CGIndenter(CGGeneric(
string.Template(elementTemplate).substitute(
{
"val" : "temp",
"declName" : "*arr.AppendElement()"
}
))).define()
templateBody += """
}
// And the other half of the hoop-jump"""
if nullable:
templateBody += """
${declName}.SetValue().SwapElements(arr);
"""
else:
templateBody += """
${declName}.SwapElements(arr);
"""
templateBody = wrapObjectTemplate(templateBody, isDefinitelyObject,
type, "${declName}.SetNull()",
descriptorProvider.workers)
return (templateBody, typeName, None)
if type.isInterface() and not type.isArrayBuffer():
descriptor = descriptorProvider.getDescriptor(
type.unroll().inner.identifier.name)
# This is an interface that we implement as a concrete class
# or an XPCOM interface.
# Allow null pointers for nullable types and old-binding classes
argIsPointer = type.nullable() or type.unroll().inner.isExternal()
# Sequences and non-worker callbacks have to hold a strong ref to the
# thing being passed down.
forceOwningType = (descriptor.interface.isCallback() and
not descriptor.workers) or isSequenceMember
typeName = descriptor.nativeType
typePtr = typeName + "*"
# Compute a few things:
# - declType is the type we want to return as the first element of our
# tuple.
# - holderType is the type we want to return as the third element
# of our tuple.
# - declInit is the initializer expression for our decl, if any.
# - target is where a pointer to the object is being stored
# Set up some sensible defaults for these things insofar as we can.
holderType = None
if argIsPointer:
if forceOwningType:
declType = "nsRefPtr<" + typeName + ">"
else:
declType = typePtr
target = "&${declName}"
else:
if forceOwningType:
declType = "OwningNonNull<" + typeName + ">"
else:
declType = "NonNull<" + typeName + ">"
target = "${declName}.Slot()"
templateBody = ""
if descriptor.castable:
if failureCode is not None:
templateBody += str(CastableObjectUnwrapper(
descriptor,
"&${val}.toObject()",
target,
failureCode))
else:
templateBody += str(FailureFatalCastableObjectUnwrapper(
descriptor,
"&${val}.toObject()",
target))
elif descriptor.interface.isCallback():
templateBody += str(CallbackObjectUnwrapper(
descriptor,
"&${val}.toObject()",
"${declName}",
codeOnFailure=failureCode))
elif descriptor.workers:
templateBody += "${declName} = &${val}.toObject();"
else:
# Either external, or new-binding non-castable. We always have a
# holder for these, because we don't actually know whether we have
# to addref when unwrapping or not. So we just pass an
# getter_AddRefs(nsCOMPtr) to XPConnect and if we'll need a release
# it'll put a non-null pointer in there.
if forceOwningType:
# Don't return a holderType in this case; our declName
# will just own stuff.
templateBody += "nsCOMPtr<" + typeName + "> ${holderName};"
else:
holderType = "nsCOMPtr<" + typeName + ">"
templateBody += (
"jsval tmpVal = ${val};\n" +
typePtr + " tmp;\n"
"if (NS_FAILED(xpc_qsUnwrapArg<" + typeName + ">(cx, ${val}, &tmp, getter_AddRefs(${holderName}), &tmpVal))) {\n")
if failureCode is not None:
templateBody += " " + failureCode + "\n"
else:
templateBody += (
" return Throw<%s>(cx, NS_ERROR_XPC_BAD_CONVERT_JS);\n"
% toStringBool(not descriptor.workers))
templateBody += ("}\n"
"MOZ_ASSERT(tmp);\n")
if not isDefinitelyObject:
# Our tmpVal will go out of scope, so we can't rely on it
# for rooting
templateBody += (
"if (tmpVal != ${val} && !${holderName}) {\n"
" // We have to have a strong ref, because we got this off\n"
" // some random object that might get GCed\n"
" ${holderName} = tmp;\n"
"}\n")
# And store our tmp, before it goes out of scope.
templateBody += "${declName} = tmp;"
templateBody = wrapObjectTemplate(templateBody, isDefinitelyObject,
type, "${declName} = NULL",
descriptor.workers)
declType = CGGeneric(declType)
if holderType is not None:
holderType = CGGeneric(holderType)
return (templateBody, declType, holderType)
if type.isArrayBuffer():
if isSequenceMember:
raise TypeError("Can't handle sequences of arraybuffers")
declType = "JSObject*"
template = (
"if (${val}.isObject() && JS_IsArrayBufferObject(&${val}.toObject(), cx)) {\n"
" ${declName} = &${val}.toObject();\n"
"}")
if type.nullable():
template += (
" else if (${val}.isNullOrUndefined()) {\n"
" ${declName} = NULL;\n"
"}")
template += (
# XXXbz We don't know whether we're on workers, so play it safe
" else {\n"
" return Throw<false>(cx, NS_ERROR_XPC_BAD_CONVERT_JS);\n"
"}")
return (template, CGGeneric(declType), None)
if type.isString():
if isSequenceMember:
raise TypeError("Can't handle sequences of strings")
# XXXbz Need to figure out string behavior based on extended args? Also, how to
# detect them?
# For nullable strings that are not otherwise annotated, null
# and undefined become null strings.
if type.nullable():
nullBehavior = "eNull"
undefinedBehavior = "eNull"
else:
nullBehavior = "eStringify"
undefinedBehavior = "eStringify"
return (
"const xpc_qsDOMString ${declName}(cx, ${val}, ${valPtr},\n"
" xpc_qsDOMString::%s,\n"
" xpc_qsDOMString::%s);\n"
"if (!${declName}.IsValid()) {\n"
" return false;\n"
"}" % (nullBehavior, undefinedBehavior), None, None)
if type.isEnum():
if type.nullable():
raise TypeError("We don't support nullable enumerated arguments "
"yet")
enum = type.inner.identifier.name
return (
"{\n"
" bool ok;\n"
" ${declName} = static_cast<%(enumtype)s>(FindEnumStringIndex(cx, ${val}, %(values)s, &ok));\n"
" if (!ok) {\n"
" return false;\n"
" }\n"
"}" % { "enumtype" : enum,
"values" : enum + "Values::strings" },
CGGeneric(enum), None)
if type.isCallback():
if isSequenceMember:
raise TypeError("Can't handle sequences of callbacks")
# XXXbz we're going to assume that callback types are always
# nullable and always have [TreatNonCallableAsNull] for now.
return (
"if (${val}.isObject() && JS_ObjectIsCallable(cx, &${val}.toObject())) {\n"
" ${declName} = &${val}.toObject();\n"
"} else {\n"
" ${declName} = NULL;\n"
"}", CGGeneric("JSObject*"), None)
if type.isAny():
if isSequenceMember:
raise TypeError("Can't handle sequences of 'any'")
return ("${declName} = ${val};", CGGeneric("JS::Value"), None)
if not type.isPrimitive():
raise TypeError("Need conversion for argument type '%s'" % type)
# XXXbz need to add support for [EnforceRange] and [Clamp]
typeName = builtinNames[type.tag()]
if type.nullable():
return ("if (${val}.isNullOrUndefined()) {\n"
" ${declName}.SetNull();\n"
"} else if (!ValueToPrimitive<" + typeName + ">(cx, ${val}, &${declName}.SetValue())) {\n"
" return false;\n"
"}", CGGeneric("Nullable<" + typeName + ">"), None)
else:
return ("if (!ValueToPrimitive<" + typeName + ">(cx, ${val}, &${declName})) {\n"
" return false;\n"
"}", CGGeneric(typeName), None)
def instantiateJSToNativeConversionTemplate(templateTuple, replacements):
"""
Take a tuple as returned by getJSToNativeConversionTemplate and a set of
replacements as required by the strings in such a tuple, and generate code
to convert into stack C++ types.
"""
(templateBody, declType, holderType) = templateTuple
result = CGList([], "\n")
if holderType is not None:
result.append(
CGList([holderType, CGGeneric(" "),
CGGeneric(replacements["holderName"]),
CGGeneric(";")]))
if declType is not None:
result.append(
CGList([declType, CGGeneric(" "),
CGGeneric(replacements["declName"]),
CGGeneric(";")]))
result.append(CGGeneric(
string.Template(templateBody).substitute(replacements)
))
# Add an empty CGGeneric to get an extra newline after the argument
# conversion.
result.append(CGGeneric(""))
return result;
def convertConstIDLValueToJSVal(value):
if isinstance(value, IDLNullValue):
return "JSVAL_NULL"
tag = value.type.tag()
if tag in [IDLType.Tags.int8, IDLType.Tags.uint8, IDLType.Tags.int16,
IDLType.Tags.uint16, IDLType.Tags.int32]:
return "INT_TO_JSVAL(%s)" % (value.value)
if tag == IDLType.Tags.uint32:
return "UINT_TO_JSVAL(%s)" % (value.value)
if tag in [IDLType.Tags.int64, IDLType.Tags.uint64]:
return "DOUBLE_TO_JSVAL(%s)" % (value.value)
if tag == IDLType.Tags.bool:
return "JSVAL_TRUE" if value.value else "JSVAL_FALSE"
if tag in [IDLType.Tags.float, IDLType.Tags.double]:
return "DOUBLE_TO_JSVAL(%s)" % (value.value)
raise TypeError("Const value of unhandled type: " + value.type)
def convertIDLDefaultValueToJSVal(value):
if value.type:
tag = value.type.tag()
if tag == IDLType.Tags.domstring:
assert False # Not implemented!
return convertConstIDLValueToJSVal(value)
class CGArgumentConverter(CGThing):
"""
A class that takes an IDL argument object, its index in the
argument list, and the argv and argc strings and generates code to
unwrap the argument to the right native type.
"""
def __init__(self, argument, index, argv, argc, descriptorProvider):
CGThing.__init__(self)
self.argument = argument
# XXXbz should optional jsval args get JSVAL_VOID? What about
# others?
replacer = {
"index" : index,
"argc" : argc,
"argv" : argv,
"defaultValue" : "JSVAL_VOID"
}
self.replacementVariables = {
"declName" : "arg%d" % index,
"holderName" : ("arg%d" % index) + "_holder"
}
if argument.optional:
if argument.defaultValue:
replacer["defaultValue"] = convertIDLDefaultValueToJSVal(argument.defaultValue)
self.replacementVariables["val"] = string.Template(
"(${index} < ${argc} ? ${argv}[${index}] : ${defaultValue})"
).substitute(replacer)
self.replacementVariables["valPtr"] = string.Template(
"(${index} < ${argc} ? &${argv}[${index}] : NULL)"
).substitute(replacer)
else:
self.replacementVariables["val"] = string.Template(
"${argv}[${index}]"
).substitute(replacer)
self.replacementVariables["valPtr"] = (
"&" + self.replacementVariables["val"])
self.descriptorProvider = descriptorProvider
def define(self):
return instantiateJSToNativeConversionTemplate(
getJSToNativeConversionTemplate(self.argument.type,
self.descriptorProvider),
self.replacementVariables).define()
def getWrapTemplateForType(type, descriptorProvider, result, successCode):
"""
Reflect a C++ value stored in "result", of IDL type "type" into JS. The
"successCode" is the code to run once we have successfully done the
conversion. The resulting string should be used with string.Template, it
needs the following keys when substituting: jsvalPtr/jsvalRef/obj.
"""
haveSuccessCode = successCode is not None
if not haveSuccessCode:
successCode = "return true;"
def setValue(value, callWrapValue=False):
"""
Returns the code to set the jsval to value. If "callWrapValue" is true
JS_WrapValue will be called on the jsval.
"""
if not callWrapValue:
tail = successCode
elif haveSuccessCode:
tail = ("if (!JS_WrapValue(cx, ${jsvalPtr})) {\n" +
" return false;\n" +
"}\n" +
successCode)
else:
tail = "return JS_WrapValue(cx, ${jsvalPtr});"
return ("${jsvalRef} = %s;\n" +
tail) % (value)
def wrapAndSetPtr(wrapCall, failureCode=None):
"""
Returns the code to set the jsval by calling "wrapCall". "failureCode"
is the code to run if calling "wrapCall" fails
"""
if failureCode is None:
if not haveSuccessCode:
return "return " + wrapCall + ";"
failureCode = "return false;"
str = ("if (!%s) {\n" +
CGIndenter(CGGeneric(failureCode)).define() + "\n" +
"}\n" +
successCode) % (wrapCall)
return str
if type is None or type.isVoid():
return setValue("JSVAL_VOID")
if type.isArray():
raise TypeError("Can't handle array return values yet")
if type.isSequence():
if type.nullable():
# Nullable sequences are Nullable< nsTArray<T> >
return """
if (%s.IsNull()) {
%s
}
%s""" % (result, CGIndenter(CGGeneric(setValue("JSVAL_NULL"))).define(),
getWrapTemplateForType(type.inner, descriptorProvider,
"%s.Value()" % result, successCode))
# Now do non-nullable sequences. We use setting the element
# in the array as our succcess code because when we succeed in
# wrapping that's what we should do.
innerTemplate = wrapForType(
type.inner, descriptorProvider,
{
'result' : "%s[i]" % result,
'successCode': ("if (!JS_SetElement(cx, returnArray, i, &tmp)) {\n"
" return false;\n"
"}"),
'jsvalRef': "tmp",
'jsvalPtr': "&tmp"
}
)
innerTemplate = CGIndenter(CGGeneric(innerTemplate)).define()
return ("""
uint32_t length = %s.Length();
JSObject *returnArray = JS_NewArrayObject(cx, length, NULL);
if (!returnArray) {
return false;
}
jsval tmp;
for (uint32_t i = 0; i < length; ++i) {
%s
}\n""" % (result, innerTemplate)) + setValue("JS::ObjectValue(*returnArray)")
if type.isInterface() and not type.isArrayBuffer():
descriptor = descriptorProvider.getDescriptor(type.unroll().inner.identifier.name)
if type.nullable():
wrappingCode = ("if (!%s) {\n" % (result) +
CGIndenter(CGGeneric(setValue("JSVAL_NULL"))).define() + "\n" +
"}\n")
else:
wrappingCode = ""
if descriptor.castable and not type.unroll().inner.isExternal():
wrap = "WrapNewBindingObject(cx, ${obj}, %s, ${jsvalPtr})" % result
# We don't support prefable stuff in workers.
assert(not descriptor.prefable or not descriptor.workers)
if not descriptor.prefable:
# Non-prefable bindings can only fail to wrap as a new-binding object
# if they already threw an exception. Same thing for
# non-prefable bindings.
failed = ("MOZ_ASSERT(JS_IsExceptionPending(cx));\n" +
"return false;")
else:
# Try old-style wrapping for bindings which might be preffed off.
failed = wrapAndSetPtr("HandleNewBindingWrappingFailure(cx, ${obj}, %s, ${jsvalPtr})" % result)
wrappingCode += wrapAndSetPtr(wrap, failed)
else:
if descriptor.notflattened:
getIID = "&NS_GET_IID(%s), " % descriptor.nativeType
else:
getIID = ""
wrap = "WrapObject(cx, ${obj}, %s, %s${jsvalPtr})" % (result, getIID)
wrappingCode += wrapAndSetPtr(wrap)
return wrappingCode
if type.isString():
if type.nullable():
return wrapAndSetPtr("xpc::StringToJsval(cx, %s, ${jsvalPtr})" % result)
else:
return wrapAndSetPtr("xpc::NonVoidStringToJsval(cx, %s, ${jsvalPtr})" % result)
if type.isEnum():
if type.nullable():
raise TypeError("We don't support nullable enumerated return types "
"yet")
return """MOZ_ASSERT(uint32_t(%(result)s) < ArrayLength(%(strings)s));
JSString* %(resultStr)s = JS_NewStringCopyN(cx, %(strings)s[uint32_t(%(result)s)].value, %(strings)s[uint32_t(%(result)s)].length);
if (!%(resultStr)s) {
return false;
}
""" % { "result" : result,
"resultStr" : result + "_str",
"strings" : type.inner.identifier.name + "Values::strings" } + setValue("JS::StringValue(%s_str)" % result)
if type.isCallback() and not type.isInterface():
# XXXbz we're going to assume that callback types are always
# nullable and always have [TreatNonCallableAsNull] for now.
# See comments in WrapNewBindingObject explaining why we need
# to wrap here.
return setValue("JS::ObjectOrNullValue(%s)" % result, True)
if type.tag() == IDLType.Tags.any:
# See comments in WrapNewBindingObject explaining why we need
# to wrap here.
return setValue(result, True)
if not type.isPrimitive():
raise TypeError("Need to learn to wrap %s" % type)
if type.nullable():
return ("if (%s.IsNull()) {\n" % result +
CGIndenter(CGGeneric(setValue("JSVAL_NULL"))).define() + "\n" +
"}\n" +
getWrapTemplateForType(type.inner, descriptorProvider,
"%s.Value()" % result, successCode))
tag = type.tag()
if tag in [IDLType.Tags.int8, IDLType.Tags.uint8, IDLType.Tags.int16,
IDLType.Tags.uint16, IDLType.Tags.int32]:
return setValue("INT_TO_JSVAL(int32_t(%s))" % result)
elif tag in [IDLType.Tags.int64, IDLType.Tags.uint64, IDLType.Tags.float,
IDLType.Tags.double]:
# XXXbz will cast to double do the "even significand" thing that webidl
# calls for for 64-bit ints? Do we care?
return wrapAndSetPtr("JS_NewNumberValue(cx, double(%s), ${jsvalPtr})" % result)
elif tag == IDLType.Tags.uint32:
return setValue("UINT_TO_JSVAL(%s)" % result)
elif tag == IDLType.Tags.bool:
return setValue("BOOLEAN_TO_JSVAL(%s)" % result)
else:
raise TypeError("Need to learn to wrap primitive: %s" % type)
def wrapForType(type, descriptorProvider, templateValues):
"""
Reflect a C++ value of IDL type "type" into JS. TemplateValues is a dict
that should contain:
* 'jsvalRef': a C++ reference to the jsval in which to store the result of
the conversion
* 'jsvalPtr': a C++ pointer to the jsval in which to store the result of
the conversion
* 'obj' (optional): the name of the variable that contains the JSObject to
use as a scope when wrapping, if not supplied 'obj'
will be used as the name
* 'result' (optional): the name of the variable in which the C++ value is
stored, if not supplied 'result' will be used as
the name
* 'successCode' (optional): the code to run once we have successfully done
the conversion, if not supplied 'return true;'
will be used as the code
"""
wrap = getWrapTemplateForType(type, descriptorProvider,
templateValues.get('result', 'result'),
templateValues.get('successCode', None))
defaultValues = {'obj': 'obj'}
return string.Template(wrap).substitute(defaultValues, **templateValues)
def getRetvalDeclarationForType(returnType, descriptorProvider,
resultAlreadyAddRefed):
if returnType is None or returnType.isVoid():
# Nothing to declare
result = None
elif returnType.isPrimitive() and returnType.tag() in builtinNames:
result = CGGeneric(builtinNames[returnType.tag()])
if returnType.nullable():
result = CGWrapper(result, pre="Nullable<", post=">")
elif returnType.isString():
result = CGGeneric("nsString")
elif returnType.isEnum():
if returnType.nullable():
raise TypeError("We don't support nullable enum return values")
result = CGGeneric(returnType.inner.identifier.name)
elif returnType.isInterface() and not returnType.isArrayBuffer():
result = CGGeneric(descriptorProvider.getDescriptor(
returnType.unroll().inner.identifier.name).nativeType)
if resultAlreadyAddRefed:
result = CGWrapper(result, pre="nsRefPtr<", post=">")
else:
result = CGWrapper(result, post="*")
elif returnType.isCallback():
# XXXbz we're going to assume that callback types are always
# nullable for now.
result = CGGeneric("JSObject*")
elif returnType.tag() is IDLType.Tags.any:
result = CGGeneric("JS::Value")
elif returnType.isSequence():
nullable = returnType.nullable()
if nullable:
returnType = returnType.inner
# Assume no need to addref for now
result = CGWrapper(getRetvalDeclarationForType(returnType.inner,
descriptorProvider,
False),
pre="nsTArray< ", post=" >")
if nullable:
result = CGWrapper(result, pre="Nullable< ", post=" >")
else:
raise TypeError("Don't know how to declare return value for %s" %
returnType)
return result
class CGCallGenerator(CGThing):
"""
A class to generate an actual call to a C++ object. Assumes that the C++
object is stored in a variable named "self".
"""
def __init__(self, errorReport, argCount, argsPre, returnType,
resultAlreadyAddRefed, descriptorProvider, nativeMethodName, static):
CGThing.__init__(self)
isFallible = errorReport is not None
args = CGList([CGGeneric("arg" + str(i)) for i in range(argCount)], ", ")
resultOutParam = (returnType is not None and
(returnType.isString() or returnType.isSequence()))
# Return values that go in outparams go here
if resultOutParam:
args.append(CGGeneric("result"))
if isFallible:
args.append(CGGeneric("rv"))
result = getRetvalDeclarationForType(returnType, descriptorProvider,
resultAlreadyAddRefed)
# Build up our actual call
self.cgRoot = CGList([], "\n")
call = CGGeneric(nativeMethodName)
if static:
call = CGWrapper(call, pre="%s::" % (descriptorProvider.getDescriptor(
returnType.unroll().inner.identifier.name).nativeType))
else:
call = CGWrapper(call, pre="self->")
call = CGList([call, CGWrapper(args, pre="(" + argsPre, post=");")])
if result is not None:
result = CGWrapper(result, post=" result;")
self.cgRoot.prepend(result)
if not resultOutParam:
call = CGWrapper(call, pre="result = ")
call = CGWrapper(call)
self.cgRoot.append(call)
if isFallible:
self.cgRoot.prepend(CGGeneric("ErrorResult rv;"))
self.cgRoot.append(CGGeneric("if (rv.Failed()) {"))
self.cgRoot.append(CGIndenter(CGGeneric(errorReport)))
self.cgRoot.append(CGGeneric("}"))
def define(self):
return self.cgRoot.define()
class CGPerSignatureCall(CGThing):
"""
This class handles the guts of generating code for a particular
call signature. A call signature consists of four things:
1) A return type, which can be None to indicate that there is no
actual return value (e.g. this is an attribute setter) or an
IDLType if there's an IDL type involved (including |void|).
2) An argument list, which is allowed to be empty.
3) A name of a native method to call.
4) Whether or not this method is static.
We also need to know whether this is a method or a getter/setter
to do error reporting correctly.
The idlNode parameter can be either a method or an attr. We can query
|idlNode.identifier| in both cases, so we can be agnostic between the two.
"""
# XXXbz For now each entry in the argument list is either an
# IDLArgument or a FakeArgument, but longer-term we may want to
# have ways of flagging things like JSContext* or optional_argc in
# there.
def __init__(self, returnType, argsPre, arguments, nativeMethodName, static,
descriptor, idlNode, extendedAttributes, argConversionStartsAt=0):
CGThing.__init__(self)
self.returnType = returnType
self.descriptor = descriptor
self.idlNode = idlNode
self.extendedAttributes = extendedAttributes
# Default to already_AddRefed on the main thread, raw pointer in workers
self.resultAlreadyAddRefed = not descriptor.workers and not 'resultNotAddRefed' in self.extendedAttributes
self.argsPre = "cx, " if 'implicitJSContext' in self.extendedAttributes else ""
self.argsPre += argsPre
self.argCount = len(arguments)
if self.argCount > argConversionStartsAt:
# Insert our argv in there
cgThings = [CGGeneric(self.getArgvDecl())]
else:
cgThings = []
cgThings.extend([CGArgumentConverter(arguments[i], i, self.getArgv(),
self.getArgc(), self.descriptor) for
i in range(argConversionStartsAt, self.argCount)])
cgThings.append(CGCallGenerator(
self.getErrorReport() if self.isFallible() else None,
self.argCount, self.argsPre, returnType,
self.resultAlreadyAddRefed, descriptor, nativeMethodName,
static))
self.cgRoot = CGList(cgThings, "\n")
def getArgv(self):
return "argv" if self.argCount > 0 else ""
def getArgvDecl(self):
return "\nJS::Value* argv = JS_ARGV(cx, vp);\n"
def getArgc(self):
return "argc"
def isFallible(self):
return not 'infallible' in self.extendedAttributes
def wrap_return_value(self):
resultTemplateValues = {'jsvalRef': '*vp', 'jsvalPtr': 'vp'}
return wrapForType(self.returnType, self.descriptor,
resultTemplateValues)
def getErrorReport(self):
return 'return ThrowMethodFailedWithDetails<%s>(cx, rv, "%s", "%s");'\
% (toStringBool(not self.descriptor.workers),
self.descriptor.interface.identifier.name,
self.idlNode.identifier.name)
def define(self):
return (self.cgRoot.define() + "\n" + self.wrap_return_value())
class CGSwitch(CGList):
"""
A class to generate code for a switch statement.
Takes three constructor arguments: an expression, a list of cases,
and an optional default.
Each case is a CGCase. The default is a CGThing for the body of
the default case, if any.
"""
def __init__(self, expression, cases, default=None):
CGList.__init__(self, [CGIndenter(c) for c in cases], "\n")
self.prepend(CGWrapper(CGGeneric(expression),
pre="switch (", post=") {"));
if default is not None:
self.append(
CGIndenter(
CGWrapper(
CGIndenter(default),
pre="default: {\n",
post="\n break;\n}"
)
)
)
self.append(CGGeneric("}"))
class CGCase(CGList):
"""
A class to generate code for a case statement.
Takes three constructor arguments: an expression, a CGThing for
the body (allowed to be None if there is no body), and an optional
argument (defaulting to False) for whether to fall through.
"""
def __init__(self, expression, body, fallThrough=False):
CGList.__init__(self, [], "\n")
self.append(CGWrapper(CGGeneric(expression), pre="case ", post=": {"))
bodyList = CGList([body], "\n")
if fallThrough:
bodyList.append(CGGeneric("/* Fall through */"))
else:
bodyList.append(CGGeneric("break;"))
self.append(CGIndenter(bodyList));
self.append(CGGeneric("}"))
class CGMethodCall(CGThing):
"""
A class to generate selection of a method signature from a set of
signatures and generation of a call to that signature.
"""
def __init__(self, argsPre, nativeMethodName, static, descriptor, method,
extendedAttributes):
CGThing.__init__(self)
def requiredArgCount(signature):
arguments = signature[1]
if len(arguments) == 0:
return 0
requiredArgs = len(arguments)
while requiredArgs and arguments[requiredArgs-1].optional:
requiredArgs -= 1
return requiredArgs
def maxSigLength(signatures):
return max([len(s[1]) for s in signatures])
def signaturesForArgCount(i, signatures):
return filter(
lambda s: len(s[1]) == i or (len(s[1]) > i and
s[1][i].optional),
signatures)
def findDistinguishingIndex(argCount, signatures):
def isValidDistinguishingIndex(idx, signatures):
for firstSigIndex in range(0, len(signatures)):
for secondSigIndex in range(0, firstSigIndex):
firstType = signatures[firstSigIndex][1][idx].type
secondType = signatures[secondSigIndex][1][idx].type
if not firstType.isDistinguishableFrom(secondType):
return False
return True
for idx in range(0, argCount):
if isValidDistinguishingIndex(idx, signatures):
return idx
return -1
def getPerSignatureCall(signature, argConversionStartsAt=0):
return CGPerSignatureCall(signature[0], argsPre, signature[1],
nativeMethodName, static, descriptor,
method, extendedAttributes,
argConversionStartsAt)
signatures = method.signatures()
if len(signatures) == 1:
# Special case: we can just do a per-signature method call
# here for our one signature and not worry about switching
# on anything.
signature = signatures[0]
self.cgRoot = CGList([ CGIndenter(getPerSignatureCall(signature)) ])
requiredArgs = requiredArgCount(signature)
if requiredArgs > 0:
self.cgRoot.prepend(
CGWrapper(
CGIndenter(
CGGeneric(
"if (argc < %d) {\n"
" return Throw<%s>(cx, NS_ERROR_XPC_NOT_ENOUGH_ARGS);\n"
"}" % (requiredArgs,
toStringBool(not descriptor.workers)))
),
pre="\n", post="\n")
)
return
# Need to find the right overload
maxSigArgs = maxSigLength(signatures)
allowedArgCounts = [ i for i in range(0, maxSigArgs+1)
if len(signaturesForArgCount(i, signatures)) != 0 ]
argCountCases = []
for argCount in allowedArgCounts:
possibleSignatures = signaturesForArgCount(argCount, signatures)
if len(possibleSignatures) == 1:
# easy case!
signature = possibleSignatures[0]
# (possibly) important optimization: if signature[1] has >
# argCount arguments and signature[1][argCount] is optional and
# there is only one signature for argCount+1, then the
# signature for argCount+1 is just ourselves and we can fall
# through.
if (len(signature[1]) > argCount and
signature[1][argCount].optional and
(argCount+1) in allowedArgCounts and
len(signaturesForArgCount(argCount+1, signatures)) == 1):
argCountCases.append(
CGCase(str(argCount), None, True))
else:
argCountCases.append(
CGCase(str(argCount), getPerSignatureCall(signature)))
continue
distinguishingIndex = findDistinguishingIndex(argCount,
possibleSignatures)
if distinguishingIndex == -1:
raise TypeError(("Signatures with %s arguments for " +
descriptor.interface.identifier.name + "." +
method.identifier.name +
" are not distinguishable") % argCount)
for idx in range(0, distinguishingIndex):
firstSigType = possibleSignatures[0][1][idx].type
for sigIdx in range(1, len(possibleSignatures)):
if possibleSignatures[sigIdx][1][idx].type != firstSigType:
raise TypeError(("Signatures with %d arguments for " +
descriptor.interface.identifier.name +
"." + method.identifier.name +
" have different types at index %d" +
" which is before distinguishing" +
" index %d") % (argCount,
idx,
distinguishingIndex))
# Convert all our arguments up to the distinguishing index.
# Doesn't matter which of the possible signatures we use, since
# they all have the same types up to that point; just use
# possibleSignatures[0]
caseBody = [CGGeneric("JS::Value* argv_start = JS_ARGV(cx, vp);")]
caseBody.extend([ CGArgumentConverter(possibleSignatures[0][1][i],
i, "argv_start", "argc",
descriptor) for i in
range(0, distinguishingIndex) ])
# Select the right overload from our set.
distinguishingArg = "argv_start[%d]" % distinguishingIndex
def pickFirstSignature(condition, filterLambda):
sigs = filter(filterLambda, possibleSignatures)
assert len(sigs) < 2
if len(sigs) > 0:
if condition is None:
caseBody.append(
getPerSignatureCall(sigs[0], distinguishingIndex))
else:
caseBody.append(CGGeneric("if (" + condition + ") {"))
caseBody.append(CGIndenter(
getPerSignatureCall(sigs[0], distinguishingIndex)))
caseBody.append(CGGeneric("}"))
return True
return False
# First check for null or undefined
pickFirstSignature("%s.isNullOrUndefined()" % distinguishingArg,
lambda s: s[1][distinguishingIndex].type.nullable())
# Now check for distinguishingArg being a platform object.
# We can actually check separately for array buffers and
# other things.
# XXXbz Do we need to worry about security
# wrappers around the array buffer?
pickFirstSignature("%s.isObject() && JS_IsArrayBufferObject(&%s.toObject(), cx)" %
(distinguishingArg, distinguishingArg),
lambda s: (s[1][distinguishingIndex].type.isArrayBuffer() or
s[1][distinguishingIndex].type.isObject()))
interfacesSigs = [
s for s in possibleSignatures
if (s[1][distinguishingIndex].type.isObject() or
(s[1][distinguishingIndex].type.isInterface() and
not s[1][distinguishingIndex].type.isArrayBuffer() and
not s[1][distinguishingIndex].type.isCallback())) ]
# There might be more than one of these; we need to check
# which ones we unwrap to.
if len(interfacesSigs) > 0:
caseBody.append(CGGeneric("if (%s.isObject() &&\n"
" IsPlatformObject(cx, &%s.toObject())) {" %
(distinguishingArg, distinguishingArg)))
for sig in interfacesSigs:
caseBody.append(CGIndenter(CGGeneric("do {")));
type = sig[1][distinguishingIndex].type
testCode = instantiateJSToNativeConversionTemplate(
getJSToNativeConversionTemplate(type, descriptor,
failureCode="break;",
isDefinitelyObject=True),
{
"declName" : "arg%d" % distinguishingIndex,
"holderName" : ("arg%d" % distinguishingIndex) + "_holder",
"val" : distinguishingArg
})
# Indent by 4, since we need to indent further than our "do" statement
caseBody.append(CGIndenter(testCode, 4));
# If we got this far, we know we unwrapped to the right
# interface, so just do the call. Start conversion with
# distinguishingIndex + 1, since we already converted
# distinguishingIndex.
caseBody.append(CGIndenter(
getPerSignatureCall(sig, distinguishingIndex + 1), 4))
caseBody.append(CGIndenter(CGGeneric("} while (0);")))
caseBody.append(CGGeneric("}"))
# XXXbz Now we're supposed to check for distinguishingArg being
# an array or a platform object that supports indexed
# properties... skip that last for now. It's a bit of a pain.
pickFirstSignature("%s.isObject() && IsArrayLike(cx, &%s.toObject())" %
(distinguishingArg, distinguishingArg),
lambda s:
(s[1][distinguishingIndex].type.isArray() or
s[1][distinguishingIndex].type.isSequence() or
s[1][distinguishingIndex].type.isObject()))
# Check for Date objects
# XXXbz Do we need to worry about security wrappers around the Date?
pickFirstSignature("%s.isObject() && JS_ObjectIsDate(cx, &%s.toObject())" %
(distinguishingArg, distinguishingArg),
lambda s: (s[1][distinguishingIndex].type.isDate() or
s[1][distinguishingIndex].type.isObject()))
# Check for vanilla JS objects
# XXXbz Do we need to worry about security wrappers?
pickFirstSignature("%s.isObject() && !IsPlatformObject(cx, &%s.toObject())" %
(distinguishingArg, distinguishingArg),
lambda s: (s[1][distinguishingIndex].type.isCallback() or
s[1][distinguishingIndex].type.isDictionary() or
s[1][distinguishingIndex].type.isObject()))
# The remaining cases are mutually exclusive. The
# pickFirstSignature calls are what change caseBody
# Check for strings or enums
if pickFirstSignature(None,
lambda s: (s[1][distinguishingIndex].type.isString() or
s[1][distinguishingIndex].type.isEnum())):
pass
# Check for primitives
elif pickFirstSignature(None,
lambda s: s[1][distinguishingIndex].type.isPrimitive()):
pass
# Check for "any"
elif pickFirstSignature(None,
lambda s: s[1][distinguishingIndex].type.isAny()):
pass
else:
# Just throw; we have no idea what we're supposed to
# do with this.
caseBody.append(CGGeneric("return Throw<%s>(cx, NS_ERROR_XPC_BAD_CONVERT_JS);" %
toStringBool(not descriptor.workers)))
argCountCases.append(CGCase(str(argCount),
CGList(caseBody, "\n")))
overloadCGThings = []
overloadCGThings.append(
CGGeneric("unsigned argcount = NS_MIN(argc, %du);" %
maxSigArgs))
overloadCGThings.append(
CGSwitch("argcount",
argCountCases,
CGGeneric("return Throw<%s>(cx, NS_ERROR_XPC_NOT_ENOUGH_ARGS);" %
toStringBool(not descriptor.workers))))
overloadCGThings.append(
CGGeneric('MOZ_NOT_REACHED("We have an always-returning default case");\n'
'return false;'))
self.cgRoot = CGWrapper(CGIndenter(CGList(overloadCGThings, "\n")),
pre="\n")
def define(self):
return self.cgRoot.define()
class CGGetterSetterCall(CGPerSignatureCall):
"""
A class to generate a native object getter or setter call for a
particular IDL getter or setter.
"""
def __init__(self, returnType, arguments, nativeMethodName, descriptor,
attr, extendedAttributes):
CGPerSignatureCall.__init__(self, returnType, "", arguments,
nativeMethodName, False, descriptor, attr,
extendedAttributes)
def getArgv(self):
if generateNativeAccessors:
return CGPerSignatureCall.getArgv(self)
return "vp"
class CGGetterCall(CGGetterSetterCall):
"""
A class to generate a native object getter call for a particular IDL
getter.
"""
def __init__(self, returnType, nativeMethodName, descriptor, attr,
extendedAttributes):
CGGetterSetterCall.__init__(self, returnType, [], nativeMethodName,
descriptor, attr, extendedAttributes)
def getArgc(self):
if generateNativeAccessors:
return CGGetterSetterCall.getArgc()
return "0"
def getArgvDecl(self):
if generateNativeAccessors:
return CGPerSignatureCall.getArgvDecl(self)
# We just get our stuff from vp
return ""
class FakeArgument():
def __init__(self, type):
self.type = type
self.optional = False
class CGSetterCall(CGGetterSetterCall):
"""
A class to generate a native object setter call for a particular IDL
setter.
"""
def __init__(self, argType, nativeMethodName, descriptor, attr,
extendedAttributes):
CGGetterSetterCall.__init__(self, None, [FakeArgument(argType)],
nativeMethodName, descriptor, attr,
extendedAttributes)
def wrap_return_value(self):
if generateNativeAccessors:
return CGGetterSetterCall.wrap_return_value(self)
# We have no return value
return "\nreturn true;"
def getArgc(self):
if generateNativeAccessors:
return CGGetterSetterCall.getArgc(self)
return "1"
def getArgvDecl(self):
if generateNativeAccessors:
return (CGPerSignatureCall.getArgvDecl(self) +
"jsval undef = JS::UndefinedValue();\n"
"if (argc == 0) {\n"
" argv = &undef;\n"
" argc = 1;\n"
"}")
# We just get our stuff from vp
return ""
class CGAbstractBindingMethod(CGAbstractStaticMethod):
"""
Common class to generate the JSNatives for all our methods, getters, and
setters. This will generate the function declaration and unwrap the
|this| object. Subclasses are expected to override the generate_code
function to do the rest of the work. This function should return a
CGThing which is already properly indented.
"""
def __init__(self, descriptor, name, args, extendedAttributes):
self.extendedAttributes = extendedAttributes
CGAbstractStaticMethod.__init__(self, descriptor, name, "JSBool", args)
def definition_body(self):
unwrapThis = CGIndenter(CGGeneric(
str(FailureFatalCastableObjectUnwrapper(self.descriptor,
"obj", "&self"))))
return CGList([ self.getThis(), unwrapThis,
self.generate_code() ], "\n").define()
def getThis(self):
return CGIndenter(
CGGeneric("JSObject* obj = JS_THIS_OBJECT(cx, vp);\n"
"if (!obj) {\n"
" return false;\n"
"}\n"
"\n"
"%s* self;" % self.descriptor.nativeType))
def generate_code(self):
assert(False) # Override me
def MakeNativeName(name):
return name[0].upper() + name[1:]
class CGNativeMethod(CGAbstractBindingMethod):
"""
A class for generating the C++ code for an IDL method..
"""
def __init__(self, descriptor, method):
self.method = method
baseName = method.identifier.name
args = [Argument('JSContext*', 'cx'), Argument('unsigned', 'argc'),
Argument('JS::Value*', 'vp')]
CGAbstractBindingMethod.__init__(self, descriptor, baseName, args,
descriptor.getExtendedAttributes(method))
def generate_code(self):
name = self.method.identifier.name
nativeName = self.descriptor.binaryNames.get(name, MakeNativeName(name))
return CGMethodCall("", nativeName, self.method.isStatic(),
self.descriptor, self.method,
self.extendedAttributes)
class CGNativeGetter(CGAbstractBindingMethod):
"""
A class for generating the C++ code for an IDL attribute getter.
"""
def __init__(self, descriptor, attr):
self.attr = attr
name = 'get_' + attr.identifier.name
if generateNativeAccessors:
args = [Argument('JSContext*', 'cx'), Argument('unsigned', 'argc'),
Argument('JS::Value*', 'vp')]
else:
args = [Argument('JSContext*', 'cx'), Argument('JSHandleObject', 'obj'),
Argument('JSHandleId', 'id'), Argument('JS::Value*', 'vp')]
CGAbstractBindingMethod.__init__(self, descriptor, name, args,
descriptor.getExtendedAttributes(self.attr, getter=True))
def getThis(self):
if generateNativeAccessors:
return CGAbstractBindingMethod.getThis(self)
return CGIndenter(
CGGeneric("%s* self;" % self.descriptor.nativeType))
def generate_code(self):
nativeMethodName = "Get" + MakeNativeName(self.attr.identifier.name)
return CGIndenter(CGGetterCall(self.attr.type, nativeMethodName, self.descriptor,
self.attr, self.extendedAttributes))
class CGNativeSetter(CGAbstractBindingMethod):
"""
A class for generating the C++ code for an IDL attribute setter.
"""
def __init__(self, descriptor, attr):
self.attr = attr
baseName = attr.identifier.name
name = 'set_' + attr.identifier.name
if generateNativeAccessors:
args = [Argument('JSContext*', 'cx'), Argument('unsigned', 'argc'),
Argument('JS::Value*', 'vp')]
else:
args = [Argument('JSContext*', 'cx'), Argument('JSHandleObject', 'obj'),
Argument('JSHandleId', 'id'), Argument('JSBool', 'strict'),
Argument('JS::Value*', 'vp')]
CGAbstractBindingMethod.__init__(self, descriptor, name, args,
descriptor.getExtendedAttributes(self.attr, setter=True))
def getThis(self):
if generateNativeAccessors:
return CGAbstractBindingMethod.getThis(self)
return CGIndenter(
CGGeneric("%s* self;" % self.descriptor.nativeType))
def generate_code(self):
nativeMethodName = "Set" + MakeNativeName(self.attr.identifier.name)
return CGIndenter(CGSetterCall(self.attr.type, nativeMethodName, self.descriptor,
self.attr, self.extendedAttributes))
def getEnumValueName(value):
# Some enum values can be empty strings. Others might have weird
# characters in them. Deal with the former by returning "_empty",
# deal with possible name collisions from that by throwing if the
# enum value is actually "_empty", and throw on any value
# containing chars other than [a-z] or '-' for now. Replace '-' with '_'.
value = value.replace('-', '_')
if value == "_empty":
raise SyntaxError('"_empty" is not an IDL enum value we support yet')
if value == "":
return "_empty"
if not re.match("^[a-z_]+$", value):
raise SyntaxError('Enum value "' + value + '" contains characters '
'outside [a-z_]')
return value
class CGEnum(CGThing):
def __init__(self, enum):
CGThing.__init__(self)
self.enum = enum
def declare(self):
return """
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
enum valuelist {
%s
};
extern const EnumEntry strings[%d];
""" % (",\n ".join(map(getEnumValueName, self.enum.values())),
len(self.enum.values()) + 1)
def define(self):
return """
const EnumEntry strings[%d] = {
%s,
{ NULL, 0 }
};
""" % (len(self.enum.values()) + 1,
",\n ".join(['{"' + val + '", ' + str(len(val)) + '}' for val in self.enum.values()]))
class ClassItem:
""" Use with CGClass """
def __init__(self, name, visibility):
self.name = name
self.visibility = visibility
def declare(self, cgClass):
assert False
def define(self, cgClass):
assert False
class ClassBase(ClassItem):
def __init__(self, name, visibility='public'):
ClassItem.__init__(self, name, visibility)
def declare(self, cgClass):
return '%s %s' % (self.visibility, self.name)
def define(self, cgClass):
# Only in the header
return ''
class ClassMethod(ClassItem):
def __init__(self, name, returnType, args, inline=False, static=False,
virtual=False, const=False, bodyInHeader=False,
templateArgs=None, visibility='public', body=None):
self.returnType = returnType
self.args = args
self.inline = inline or bodyInHeader
self.static = static
self.virtual = virtual
self.const = const
self.bodyInHeader = bodyInHeader
self.templateArgs = templateArgs
self.body = body
ClassItem.__init__(self, name, visibility)
def getDecorators(self, declaring):
decorators = []
if self.inline:
decorators.append('inline')
if declaring:
if self.static:
decorators.append('static')
if self.virtual:
decorators.append('virtual')
if decorators:
return ' '.join(decorators) + ' '
return ''
def getBody(self):
# Override me or pass a string to constructor
assert self.body is not None
return self.body
def declare(self, cgClass):
templateClause = 'template <%s>\n' % ', '.join(self.templateArgs) \
if self.bodyInHeader and self.templateArgs else ''
args = ', '.join([str(a) for a in self.args])
if self.bodyInHeader:
body = ' ' + self.getBody();
body = body.replace('\n', '\n ').rstrip(' ')
body = '\n{\n' + body + '\n}'
else:
body = ';'
return string.Template("""${templateClause}${decorators}${returnType}
${name}(${args})${const}${body}
""").substitute({ 'templateClause': templateClause,
'decorators': self.getDecorators(True),
'returnType': self.returnType,
'name': self.name,
'const': ' const' if self.const else '',
'args': args,
'body': body })
def define(self, cgClass):
if self.bodyInHeader:
return ''
templateArgs = cgClass.templateArgs
if templateArgs:
if cgClass.templateSpecialization:
templateArgs = \
templateArgs[len(cgClass.templateSpecialization):]
if templateArgs:
templateClause = \
'template <%s>\n' % ', '.join([str(a) for a in templateArgs])
else:
templateClause = ''
args = ', '.join([str(a) for a in self.args])
body = ' ' + self.getBody()
body = body.replace('\n', '\n ').rstrip(' ')
return string.Template("""${templateClause}${decorators}${returnType}
${className}::${name}(${args})${const}
{
${body}
}\n
""").substitute({ 'templateClause': templateClause,
'decorators': self.getDecorators(False),
'returnType': self.returnType,
'className': cgClass.getNameString(),
'name': self.name,
'args': args,
'const': ' const' if self.const else '',
'body': body })
class ClassMember(ClassItem):
def __init__(self, name, type, visibility="private", static=False,
body=None):
self.type = type;
self.static = static
self.body = body
ClassItem.__init__(self, name, visibility)
def getBody(self):
assert self.body is not None
return self.body
def declare(self, cgClass):
return '%s%s %s;\n' % ('static ' if self.static else '', self.type,
self.name)
def define(self, cgClass):
if not self.static:
return ''
return '%s %s::%s = %s;\n' % (self.type, cgClass.getNameString(),
self.name, self.getBody())
class ClassTypedef(ClassItem):
def __init__(self, name, type, visibility="public"):
self.type = type
ClassItem.__init__(self, name, visibility)
def declare(self, cgClass):
return 'typedef %s %s;\n' % (self.type, self.name)
def define(self, cgClass):
# Only goes in the header
return ''
class ClassEnum(ClassItem):
def __init__(self, name, entries, values=None, visibility="public"):
self.entries = entries
self.values = values
ClassItem.__init__(self, name, visibility)
def declare(self, cgClass):
entries = []
for i in range(0, len(self.entries)):
if i >= len(self.values):
entry = '%s' % self.entries[i]
else:
entry = '%s = %s' % (self.entries[i], self.values[i])
entries.append(entry)
name = '' if not self.name else ' ' + self.name
return 'enum%s\n{\n %s\n};\n' % (name, ',\n '.join(entries))
def define(self, cgClass):
# Only goes in the header
return ''
class CGClass(CGThing):
def __init__(self, name, bases=[], members=[], methods=[], typedefs = [],
enums=[], templateArgs=[], templateSpecialization=[],
isStruct=False, indent=''):
CGThing.__init__(self)
self.name = name
self.bases = bases
self.members = members
self.methods = methods
self.typedefs = typedefs
self.enums = enums
self.templateArgs = templateArgs
self.templateSpecialization = templateSpecialization
self.isStruct = isStruct
self.indent = indent
self.defaultVisibility ='public' if isStruct else 'private'
def getNameString(self):
className = self.name
if self.templateSpecialization:
className = className + \
'<%s>' % ', '.join([str(a) for a
in self.templateSpecialization])
return className
def declare(self):
result = ''
if self.templateArgs:
templateArgs = [str(a) for a in self.templateArgs]
templateArgs = templateArgs[len(self.templateSpecialization):]
result = result + self.indent + 'template <%s>\n' \
% ','.join([str(a) for a in templateArgs])
type = 'struct' if self.isStruct else 'class'
if self.templateSpecialization:
specialization = \
'<%s>' % ', '.join([str(a) for a in self.templateSpecialization])
else:
specialization = ''
result = result + '%s%s %s%s' \
% (self.indent, type, self.name, specialization)
if self.bases:
result = result + ' : %s' % ', '.join([d.declare(self) for d in self.bases])
result = result + '\n%s{\n' % self.indent
def declareMembers(cgClass, memberList, defaultVisibility, itemCount,
separator=''):
members = { 'private': [], 'protected': [], 'public': [] }
for member in memberList:
members[member.visibility].append(member)
if defaultVisibility == 'public':
order = [ 'public', 'protected', 'private' ]
else:
order = [ 'private', 'protected', 'public' ]
result = ''
lastVisibility = defaultVisibility
for visibility in order:
list = members[visibility]
if list:
if visibility != lastVisibility:
if itemCount:
result = result + '\n'
result = result + visibility + ':\n'
itemCount = 0
for member in list:
if itemCount == 0:
result = result + ' '
else:
result = result + separator + ' '
declaration = member.declare(cgClass)
declaration = declaration.replace('\n', '\n ')
declaration = declaration.rstrip(' ')
result = result + declaration
itemCount = itemCount + 1
lastVisibility = visibility
return (result, lastVisibility, itemCount)
order = [(self.enums, ''), (self.typedefs, ''), (self.members, ''),
(self.methods, '\n')]
lastVisibility = self.defaultVisibility
itemCount = 0
for (memberList, separator) in order:
(memberString, lastVisibility, itemCount) = \
declareMembers(self, memberList, lastVisibility, itemCount,
separator)
if self.indent:
memberString = self.indent + memberString
memberString = memberString.replace('\n', '\n' + self.indent)
memberString = memberString.rstrip(' ')
result = result + memberString
result = result + self.indent + '};\n\n'
return result
def define(self):
def defineMembers(cgClass, memberList, itemCount, separator=''):
result = ''
for member in memberList:
if itemCount != 0:
result = result + separator
result = result + member.define(cgClass)
itemCount = itemCount + 1
return (result, itemCount)
order = [(self.members, '\n'), (self.methods, '\n')]
result = ''
itemCount = 0
for (memberList, separator) in order:
(memberString, itemCount) = defineMembers(self, memberList,
itemCount, separator)
result = result + memberString
return result
class CGResolveProperty(CGAbstractMethod):
def __init__(self, descriptor, properties):
args = [Argument('JSContext*', 'cx'), Argument('JSObject*', 'wrapper'),
Argument('jsid', 'id'), Argument('bool', 'set'),
Argument('JSPropertyDescriptor*', 'desc')]
CGAbstractMethod.__init__(self, descriptor, "ResolveProperty", "bool", args)
self.properties = properties
def definition_body(self):
str = ""
varNames = self.properties.variableNames(True)
methods = self.properties.methods
if methods.hasNonChromeOnly() or methods.hasChromeOnly():
str += """ for (size_t i = 0; i < ArrayLength(%(methods)s_ids); ++i) {
if (id == %(methods)s_ids[i]) {
JSFunction *fun = JS_NewFunctionById(cx, %(methods)s[i].call, %(methods)s[i].nargs, 0, wrapper, id);
if (!fun)
return false;
JSObject *funobj = JS_GetFunctionObject(fun);
desc->value.setObject(*funobj);
desc->attrs = %(methods)s[i].flags;
desc->obj = wrapper;
desc->setter = nsnull;
desc->getter = nsnull;
return true;
}
}
""" % varNames
attrs = self.properties.attrs
if attrs.hasNonChromeOnly() or attrs.hasChromeOnly():
str += """ for (size_t i = 0; i < ArrayLength(%(attrs)s_ids); ++i) {
if (id == %(attrs)s_ids[i]) {
desc->attrs = %(attrs)s[i].flags;
desc->obj = wrapper;
desc->setter = %(attrs)s[i].setter;
desc->getter = %(attrs)s[i].getter;
return true;
}
}
""" % varNames
return str + " return true;"
class CGEnumerateProperties(CGAbstractMethod):
def __init__(self, descriptor, properties):
args = [Argument('JS::AutoIdVector&', 'props')]
CGAbstractMethod.__init__(self, descriptor, "EnumerateProperties", "bool", args)
self.properties = properties
def definition_body(self):
str = ""
varNames = self.properties.variableNames(True)
methods = self.properties.methods
if methods.hasNonChromeOnly() or methods.hasChromeOnly():
str += """ for (size_t i = 0; i < sizeof(%(methods)s_ids); ++i) {
if ((%(methods)s[i].flags & JSPROP_ENUMERATE) &&
!props.append(%(methods)s_ids[i])) {
return false;
}
}
""" % varNames
attrs = self.properties.attrs
if attrs.hasNonChromeOnly() or attrs.hasChromeOnly():
str += """ for (size_t i = 0; i < sizeof(%(attrs)s_ids); ++i) {
if ((%(attrs)s[i].flags & JSPROP_ENUMERATE) &&
!props.append(%(attrs)s_ids[i])) {
return false;
}
}
""" % varNames
return str + " return true;"
class CGPrototypeTraitsClass(CGClass):
def __init__(self, descriptor, indent=''):
templateArgs = [Argument('prototypes::ID', 'PrototypeID')]
templateSpecialization = ['prototypes::id::' + descriptor.name]
enums = [ClassEnum('', ['Depth'],
[descriptor.interface.inheritanceDepth()])]
typedefs = [ClassTypedef('NativeType', descriptor.nativeType)]
CGClass.__init__(self, 'PrototypeTraits', indent=indent,
templateArgs=templateArgs,
templateSpecialization=templateSpecialization,
enums=enums, typedefs=typedefs, isStruct=True)
class CGPrototypeIDMapClass(CGClass):
def __init__(self, descriptor, indent=''):
templateArgs = [Argument('class', 'ConcreteClass')]
templateSpecialization = [descriptor.nativeType]
enums = [ClassEnum('', ['PrototypeID'],
['prototypes::id::' + descriptor.name])]
CGClass.__init__(self, 'PrototypeIDMap', indent=indent,
templateArgs=templateArgs,
templateSpecialization=templateSpecialization,
enums=enums, isStruct=True)
class CGClassForwardDeclare(CGThing):
def __init__(self, name, isStruct=False):
CGThing.__init__(self)
self.name = name
self.isStruct = isStruct
def declare(self):
type = 'struct' if self.isStruct else 'class'
return '%s %s;\n' % (type, self.name)
def define(self):
# Header only
return ''
def stripTrailingWhitespace(text):
lines = text.splitlines()
for i in range(len(lines)):
lines[i] = lines[i].rstrip()
return '\n'.join(lines)
class CGDescriptor(CGThing):
def __init__(self, descriptor):
CGThing.__init__(self)
assert not descriptor.concrete or descriptor.interface.hasInterfacePrototypeObject()
cgThings = []
if descriptor.interface.hasInterfacePrototypeObject():
cgThings.extend([CGNativeMethod(descriptor, m) for m in
descriptor.interface.members if
m.isMethod() and not m.isStatic()])
cgThings.extend([CGNativeGetter(descriptor, a) for a in
descriptor.interface.members if a.isAttr()])
cgThings.extend([CGNativeSetter(descriptor, a) for a in
descriptor.interface.members if
a.isAttr() and not a.readonly])
if descriptor.concrete:
if not descriptor.workers:
cgThings.append(CGAddPropertyHook(descriptor))
# Always have a finalize hook, regardless of whether the class wants a
# custom hook.
cgThings.append(CGClassFinalizeHook(descriptor))
# Only generate a trace hook if the class wants a custom hook.
if (descriptor.customTrace):
cgThings.append(CGClassTraceHook(descriptor))
if descriptor.concrete or descriptor.interface.hasInterfacePrototypeObject():
cgThings.append(CGNativePropertyHooks(descriptor))
if descriptor.concrete:
cgThings.append(CGDOMJSClass(descriptor))
if descriptor.interface.hasInterfaceObject():
cgThings.append(CGClassConstructHook(descriptor))
cgThings.append(CGClassHasInstanceHook(descriptor))
cgThings.append(CGInterfaceObjectJSClass(descriptor))
if descriptor.interface.hasInterfacePrototypeObject():
cgThings.append(CGPrototypeJSClass(descriptor))
properties = PropertyArrays(descriptor)
cgThings.append(CGGeneric(define=str(properties)))
cgThings.append(CGCreateInterfaceObjectsMethod(descriptor, properties))
if descriptor.interface.hasInterfacePrototypeObject():
cgThings.append(CGIndenter(CGGetProtoObjectMethod(descriptor)))
else:
cgThings.append(CGIndenter(CGGetConstructorObjectMethod(descriptor)))
if descriptor.concrete or descriptor.interface.hasInterfacePrototypeObject():
cgThings.append(CGResolveProperty(descriptor, properties))
cgThings.append(CGEnumerateProperties(descriptor, properties))
if descriptor.interface.hasInterfaceObject():
cgThings.append(CGDefineDOMInterfaceMethod(descriptor))
if descriptor.concrete:
cgThings.append(CGWrapMethod(descriptor))
cgThings = CGList(cgThings)
cgThings = CGWrapper(cgThings, post='\n')
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
self.cgRoot = CGWrapper(CGNamespace(toBindingNamespace(descriptor.name),
cgThings),
post='\n')
def declare(self):
return self.cgRoot.declare()
def define(self):
return self.cgRoot.define()
class CGNamespacedEnum(CGThing):
def __init__(self, namespace, enumName, names, values, comment=""):
if not values:
values = []
# Account for explicit enum values.
entries = []
for i in range(0, len(names)):
if len(values) > i and values[i] is not None:
entry = "%s = %s" % (names[i], values[i])
else:
entry = names[i]
entries.append(entry)
# Append a Count.
entries.append('_' + enumName + '_Count')
# Indent.
entries = [' ' + e for e in entries]
# Build the enum body.
enumstr = comment + 'enum %s\n{\n%s\n};\n' % (enumName, ',\n'.join(entries))
curr = CGGeneric(declare=enumstr)
# Add some whitespace padding.
curr = CGWrapper(curr, pre='\n',post='\n')
# Add the namespace.
curr = CGNamespace(namespace, curr)
# Add the typedef
typedef = '\ntypedef %s::%s %s;\n\n' % (namespace, enumName, enumName)
curr = CGList([curr, CGGeneric(declare=typedef)])
# Save the result.
self.node = curr
def declare(self):
return self.node.declare()
def define(self):
assert False # Only for headers.
class CGRegisterProtos(CGAbstractMethod):
def __init__(self, config):
CGAbstractMethod.__init__(self, None, 'Register', 'void',
[Argument('nsScriptNameSpaceManager*', 'aNameSpaceManager')])
self.config = config
def _defineMacro(self):
return """
#define REGISTER_PROTO(_dom_class) \\
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
aNameSpaceManager->RegisterDefineDOMInterface(NS_LITERAL_STRING(#_dom_class), _dom_class##Binding::DefineDOMInterface);\n\n"""
def _undefineMacro(self):
return "\n#undef REGISTER_PROTO"
def _registerProtos(self):
lines = ["REGISTER_PROTO(%s);" % desc.name
for desc in self.config.getDescriptors(hasInterfaceObject=True,
isExternal=False,
workers=False)]
return '\n'.join(lines) + '\n'
def definition_body(self):
return self._defineMacro() + self._registerProtos() + self._undefineMacro()
class CGBindingRoot(CGThing):
"""
Root codegen class for binding generation. Instantiate the class, and call
declare or define to generate header or cpp code (respectively).
"""
def __init__(self, config, prefix, webIDLFile):
descriptors = config.getDescriptors(webIDLFile=webIDLFile,
hasInterfaceOrInterfacePrototypeObject=True)
forwardDeclares = [CGClassForwardDeclare('XPCWrappedNativeScope')]
for x in descriptors:
nativeType = x.nativeType
components = x.nativeType.split('::')
declare = CGClassForwardDeclare(components[-1])
if len(components) > 1:
declare = CGNamespace.build(components[:-1],
CGWrapper(declare, declarePre='\n',
declarePost='\n'),
declareOnly=True)
forwardDeclares.append(CGWrapper(declare, declarePost='\n'))
forwardDeclares = CGList(forwardDeclares)
descriptorsWithPrototype = filter(lambda d: d.interface.hasInterfacePrototypeObject(),
descriptors)
traitsClasses = [CGPrototypeTraitsClass(d) for d in descriptorsWithPrototype]
# We must have a 1:1 mapping here, skip for prototypes that have more
# than one concrete class implementation.
traitsClasses.extend([CGPrototypeIDMapClass(d) for d in descriptorsWithPrototype
if d.uniqueImplementation])
# Wrap all of that in our namespaces.
if len(traitsClasses) > 0:
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
traitsClasses = CGNamespace.build(['mozilla', 'dom'],
CGWrapper(CGList(traitsClasses),
declarePre='\n'),
declareOnly=True)
traitsClasses = CGWrapper(traitsClasses, declarePost='\n')
else:
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
traitsClasses = None
# Do codegen for all the descriptors and enums.
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
def makeEnum(e):
return CGNamespace.build([e.identifier.name + "Values"],
CGEnum(e))
def makeEnumTypedef(e):
return CGGeneric(declare=("typedef %sValues::valuelist %s;\n" %
(e.identifier.name, e.identifier.name)))
cgthings = [ fun(e) for e in config.getEnums(webIDLFile)
for fun in [makeEnum, makeEnumTypedef] ]
cgthings.extend([CGDescriptor(x) for x in descriptors])
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
curr = CGList(cgthings, "\n")
# Wrap all of that in our namespaces.
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
curr = CGNamespace.build(['mozilla', 'dom'],
CGWrapper(curr, pre="\n"))
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
curr = CGList([forwardDeclares,
CGWrapper(CGGeneric("using namespace mozilla::dom;"),
defineOnly=True),
traitsClasses, curr],
"\n")
# Add header includes.
curr = CGHeaders(descriptors,
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
['mozilla/dom/BindingUtils.h',
'mozilla/dom/DOMJSClass.h'],
['mozilla/dom/Nullable.h',
'mozilla/dom/PrimitiveConversions.h',
'XPCQuickStubs.h',
'AccessCheck.h',
'WorkerPrivate.h',
'nsContentUtils.h'],
curr)
# Add include guards.
curr = CGIncludeGuard(prefix, curr)
# Add the auto-generated comment.
curr = CGWrapper(curr, pre=AUTOGENERATED_WARNING_COMMENT)
# Store the final result.
self.root = curr
def declare(self):
return stripTrailingWhitespace(self.root.declare())
def define(self):
return stripTrailingWhitespace(self.root.define())
class GlobalGenRoots():
"""
Roots for global codegen.
To generate code, call the method associated with the target, and then
call the appropriate define/declare method.
"""
@staticmethod
def PrototypeList(config):
# Prototype ID enum.
protos = [d.name for d in config.getDescriptors(hasInterfacePrototypeObject=True)]
idEnum = CGNamespacedEnum('id', 'ID', protos, [0])
idEnum = CGList([idEnum])
idEnum.append(CGGeneric(declare="const unsigned MaxProtoChainLength = " +
str(config.maxProtoChainLength) + ";\n\n"))
# Wrap all of that in our namespaces.
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
idEnum = CGNamespace.build(['mozilla', 'dom', 'prototypes'],
CGWrapper(idEnum, pre='\n'))
idEnum = CGWrapper(idEnum, post='\n')
curr = CGList([idEnum])
# Constructor ID enum.
constructors = [d.name for d in config.getDescriptors(hasInterfaceObject=True,
hasInterfacePrototypeObject=False)]
idEnum = CGNamespacedEnum('id', 'ID', constructors, [0])
# Wrap all of that in our namespaces.
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
idEnum = CGNamespace.build(['mozilla', 'dom', 'constructors'],
CGWrapper(idEnum, pre='\n'))
idEnum = CGWrapper(idEnum, post='\n')
curr.append(idEnum)
traitsDecl = CGGeneric(declare="""
template <prototypes::ID PrototypeID>
struct PrototypeTraits;
template <class ConcreteClass>
struct PrototypeIDMap;
""")
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
traitsDecl = CGNamespace.build(['mozilla', 'dom'],
CGWrapper(traitsDecl, post='\n'))
curr.append(traitsDecl)
# Add include guards.
curr = CGIncludeGuard('PrototypeList', curr)
# Add the auto-generated comment.
curr = CGWrapper(curr, pre=AUTOGENERATED_WARNING_COMMENT)
# Done.
return curr
@staticmethod
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
def RegisterBindings(config):
# TODO - Generate the methods we want
curr = CGRegisterProtos(config)
# Wrap all of that in our namespaces.
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
curr = CGNamespace.build(['mozilla', 'dom'],
CGWrapper(curr, post='\n'))
curr = CGWrapper(curr, post='\n')
# Add the includes
defineIncludes = [CGHeaders.getInterfaceFilename(desc.interface)
for desc in config.getDescriptors(hasInterfaceObject=True,
workers=False)]
defineIncludes.append('nsScriptNameSpaceManager.h')
curr = CGHeaders([], [], defineIncludes, curr)
# Add include guards.
Bug 742217. Reduce the use of nested namespaces in our binding code. r=peterv,bent In the new setup, all per-interface DOM binding files are exported into mozilla/dom. General files not specific to an interface are also exported into mozilla/dom. In terms of namespaces, most things now live in mozilla::dom. Each interface Foo that has generated code has a mozilla::dom::FooBinding namespace for said generated code (and possibly a mozilla::bindings::FooBinding_workers if there's separate codegen for workers). IDL enums are a bit weird: since the name of the enum and the names of its entries all end up in the same namespace, we still generate a C++ namespace with the name of the IDL enum type with "Values" appended to it, with a ::valuelist inside for the actual C++ enum. We then typedef EnumFooValues::valuelist to EnumFoo. That makes it a bit more difficult to refer to the values, but means that values from different enums don't collide with each other. The enums with the proto and constructor IDs in them now live under the mozilla::dom::prototypes and mozilla::dom::constructors namespaces respectively. Again, this lets us deal sanely with the whole "enum value names are flattened into the namespace the enum is in" deal. The main benefit of this setup (and the reason "Binding" got appended to the per-interface namespaces) is that this way "using mozilla::dom" should Just Work for consumers and still allow C++ code to sanely use the IDL interface names for concrete classes, which is fairly desirable. --HG-- rename : dom/bindings/Utils.cpp => dom/bindings/BindingUtils.cpp rename : dom/bindings/Utils.h => dom/bindings/BindingUtils.h
2012-05-03 08:35:38 +04:00
curr = CGIncludeGuard('RegisterBindings', curr)
# Done.
return curr