gecko-dev/image/test/gtest/TestMetadata.cpp

256 строки
8.8 KiB
C++
Исходник Обычный вид История

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gtest/gtest.h"
#include "Common.h"
#include "Decoder.h"
#include "DecoderFactory.h"
#include "decoders/nsBMPDecoder.h"
#include "IDecodingTask.h"
#include "imgIContainer.h"
#include "imgITools.h"
#include "ImageFactory.h"
#include "mozilla/gfx/2D.h"
#include "nsComponentManagerUtils.h"
#include "nsCOMPtr.h"
#include "nsIInputStream.h"
#include "nsIRunnable.h"
#include "nsIThread.h"
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
#include "mozilla/RefPtr.h"
#include "nsStreamUtils.h"
#include "nsString.h"
#include "nsThreadUtils.h"
#include "ProgressTracker.h"
#include "SourceBuffer.h"
using namespace mozilla;
using namespace mozilla::gfx;
using namespace mozilla::image;
Bug 1214072 (part 2) - Implement transparency properly for BMP images. r=seth. Currently we don't implement transparency at all in BMP images except for an odd-duck case of BMPs within ICOs. This patch does the following. - It implements transparency properly for 16bpp and 32bpp images via bitfield masking. (For 32bpp images this also requires handling colors via bitfield masking.) The patch maintains the existing BMP-within-ICO transparency handling. - It also reworks BitFields::Value::Set(). * It now works correctly if the run of 1s goes all the way to bit 31 (the old code didn't set mBitWidth). * If the mask is 0, will give an mRightShift of 0 (old code gave 32, and right-shifting by 32 is dodgy). * It's now easier to read. - It renames transparent.bmp as transparent-if-within-ico.bmp. Ironically enough this file currently uses BITFIELDS compression and is WinBMPv5 format, which means it contains well-specified alpha data. In order to use it to test the hacky BMP-within-ICO transparency scheme the patch changes it to be WinBMPv3 format with RGB compression (i.e. no compression). I left the now-excess bytes (including the bitfields) in the info header in place because that's allowed -- thanks to the start of the pixel data being specified by the |dataoffset| field -- they'll just be ignored. - It tweaks the naming of the relevant gtests and some of their finer details to work with the new way of doing things. This fixes all four remaining failures in bmpsuite. --HG-- rename : image/test/gtest/transparent.bmp => image/test/gtest/transparent-if-within-ico.bmp extra : rebase_source : 2f4838d04bbae4fac00cc69e8d75469105a5de3b
2015-10-14 07:20:10 +03:00
enum class BMPWithinICO
{
Bug 1214072 (part 2) - Implement transparency properly for BMP images. r=seth. Currently we don't implement transparency at all in BMP images except for an odd-duck case of BMPs within ICOs. This patch does the following. - It implements transparency properly for 16bpp and 32bpp images via bitfield masking. (For 32bpp images this also requires handling colors via bitfield masking.) The patch maintains the existing BMP-within-ICO transparency handling. - It also reworks BitFields::Value::Set(). * It now works correctly if the run of 1s goes all the way to bit 31 (the old code didn't set mBitWidth). * If the mask is 0, will give an mRightShift of 0 (old code gave 32, and right-shifting by 32 is dodgy). * It's now easier to read. - It renames transparent.bmp as transparent-if-within-ico.bmp. Ironically enough this file currently uses BITFIELDS compression and is WinBMPv5 format, which means it contains well-specified alpha data. In order to use it to test the hacky BMP-within-ICO transparency scheme the patch changes it to be WinBMPv3 format with RGB compression (i.e. no compression). I left the now-excess bytes (including the bitfields) in the info header in place because that's allowed -- thanks to the start of the pixel data being specified by the |dataoffset| field -- they'll just be ignored. - It tweaks the naming of the relevant gtests and some of their finer details to work with the new way of doing things. This fixes all four remaining failures in bmpsuite. --HG-- rename : image/test/gtest/transparent.bmp => image/test/gtest/transparent-if-within-ico.bmp extra : rebase_source : 2f4838d04bbae4fac00cc69e8d75469105a5de3b
2015-10-14 07:20:10 +03:00
NO,
YES
};
static void
CheckMetadata(const ImageTestCase& aTestCase,
Bug 1214072 (part 2) - Implement transparency properly for BMP images. r=seth. Currently we don't implement transparency at all in BMP images except for an odd-duck case of BMPs within ICOs. This patch does the following. - It implements transparency properly for 16bpp and 32bpp images via bitfield masking. (For 32bpp images this also requires handling colors via bitfield masking.) The patch maintains the existing BMP-within-ICO transparency handling. - It also reworks BitFields::Value::Set(). * It now works correctly if the run of 1s goes all the way to bit 31 (the old code didn't set mBitWidth). * If the mask is 0, will give an mRightShift of 0 (old code gave 32, and right-shifting by 32 is dodgy). * It's now easier to read. - It renames transparent.bmp as transparent-if-within-ico.bmp. Ironically enough this file currently uses BITFIELDS compression and is WinBMPv5 format, which means it contains well-specified alpha data. In order to use it to test the hacky BMP-within-ICO transparency scheme the patch changes it to be WinBMPv3 format with RGB compression (i.e. no compression). I left the now-excess bytes (including the bitfields) in the info header in place because that's allowed -- thanks to the start of the pixel data being specified by the |dataoffset| field -- they'll just be ignored. - It tweaks the naming of the relevant gtests and some of their finer details to work with the new way of doing things. This fixes all four remaining failures in bmpsuite. --HG-- rename : image/test/gtest/transparent.bmp => image/test/gtest/transparent-if-within-ico.bmp extra : rebase_source : 2f4838d04bbae4fac00cc69e8d75469105a5de3b
2015-10-14 07:20:10 +03:00
BMPWithinICO aBMPWithinICO = BMPWithinICO::NO)
{
nsCOMPtr<nsIInputStream> inputStream = LoadFile(aTestCase.mPath);
ASSERT_TRUE(inputStream != nullptr);
// Figure out how much data we have.
uint64_t length;
nsresult rv = inputStream->Available(&length);
ASSERT_TRUE(NS_SUCCEEDED(rv));
// Write the data into a SourceBuffer.
NotNull<RefPtr<SourceBuffer>> sourceBuffer = WrapNotNull(new SourceBuffer());
sourceBuffer->ExpectLength(length);
rv = sourceBuffer->AppendFromInputStream(inputStream, length);
ASSERT_TRUE(NS_SUCCEEDED(rv));
sourceBuffer->Complete(NS_OK);
// Create a metadata decoder.
DecoderType decoderType =
DecoderFactory::GetDecoderType(aTestCase.mMimeType);
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<Decoder> decoder =
DecoderFactory::CreateAnonymousMetadataDecoder(decoderType, sourceBuffer);
ASSERT_TRUE(decoder != nullptr);
RefPtr<IDecodingTask> task = new AnonymousDecodingTask(WrapNotNull(decoder));
Bug 1214072 (part 2) - Implement transparency properly for BMP images. r=seth. Currently we don't implement transparency at all in BMP images except for an odd-duck case of BMPs within ICOs. This patch does the following. - It implements transparency properly for 16bpp and 32bpp images via bitfield masking. (For 32bpp images this also requires handling colors via bitfield masking.) The patch maintains the existing BMP-within-ICO transparency handling. - It also reworks BitFields::Value::Set(). * It now works correctly if the run of 1s goes all the way to bit 31 (the old code didn't set mBitWidth). * If the mask is 0, will give an mRightShift of 0 (old code gave 32, and right-shifting by 32 is dodgy). * It's now easier to read. - It renames transparent.bmp as transparent-if-within-ico.bmp. Ironically enough this file currently uses BITFIELDS compression and is WinBMPv5 format, which means it contains well-specified alpha data. In order to use it to test the hacky BMP-within-ICO transparency scheme the patch changes it to be WinBMPv3 format with RGB compression (i.e. no compression). I left the now-excess bytes (including the bitfields) in the info header in place because that's allowed -- thanks to the start of the pixel data being specified by the |dataoffset| field -- they'll just be ignored. - It tweaks the naming of the relevant gtests and some of their finer details to work with the new way of doing things. This fixes all four remaining failures in bmpsuite. --HG-- rename : image/test/gtest/transparent.bmp => image/test/gtest/transparent-if-within-ico.bmp extra : rebase_source : 2f4838d04bbae4fac00cc69e8d75469105a5de3b
2015-10-14 07:20:10 +03:00
if (aBMPWithinICO == BMPWithinICO::YES) {
static_cast<nsBMPDecoder*>(decoder.get())->SetIsWithinICO();
}
// Run the metadata decoder synchronously.
task->Run();
Bug 1214072 (part 2) - Implement transparency properly for BMP images. r=seth. Currently we don't implement transparency at all in BMP images except for an odd-duck case of BMPs within ICOs. This patch does the following. - It implements transparency properly for 16bpp and 32bpp images via bitfield masking. (For 32bpp images this also requires handling colors via bitfield masking.) The patch maintains the existing BMP-within-ICO transparency handling. - It also reworks BitFields::Value::Set(). * It now works correctly if the run of 1s goes all the way to bit 31 (the old code didn't set mBitWidth). * If the mask is 0, will give an mRightShift of 0 (old code gave 32, and right-shifting by 32 is dodgy). * It's now easier to read. - It renames transparent.bmp as transparent-if-within-ico.bmp. Ironically enough this file currently uses BITFIELDS compression and is WinBMPv5 format, which means it contains well-specified alpha data. In order to use it to test the hacky BMP-within-ICO transparency scheme the patch changes it to be WinBMPv3 format with RGB compression (i.e. no compression). I left the now-excess bytes (including the bitfields) in the info header in place because that's allowed -- thanks to the start of the pixel data being specified by the |dataoffset| field -- they'll just be ignored. - It tweaks the naming of the relevant gtests and some of their finer details to work with the new way of doing things. This fixes all four remaining failures in bmpsuite. --HG-- rename : image/test/gtest/transparent.bmp => image/test/gtest/transparent-if-within-ico.bmp extra : rebase_source : 2f4838d04bbae4fac00cc69e8d75469105a5de3b
2015-10-14 07:20:10 +03:00
// Ensure that the metadata decoder didn't make progress it shouldn't have
// (which would indicate that it decoded past the header of the image).
Progress metadataProgress = decoder->TakeProgress();
EXPECT_TRUE(0 == (metadataProgress & ~(FLAG_SIZE_AVAILABLE |
FLAG_HAS_TRANSPARENCY |
FLAG_IS_ANIMATED)));
// If the test case is corrupt, assert what we can and return early.
if (aTestCase.mFlags & TEST_CASE_HAS_ERROR) {
EXPECT_TRUE(decoder->GetDecodeDone());
EXPECT_TRUE(decoder->HasError());
return;
}
EXPECT_TRUE(decoder->GetDecodeDone() && !decoder->HasError());
// Check that we got the expected metadata.
EXPECT_TRUE(metadataProgress & FLAG_SIZE_AVAILABLE);
IntSize metadataSize = decoder->Size();
EXPECT_EQ(aTestCase.mSize.width, metadataSize.width);
EXPECT_EQ(aTestCase.mSize.height, metadataSize.height);
Bug 1214072 (part 2) - Implement transparency properly for BMP images. r=seth. Currently we don't implement transparency at all in BMP images except for an odd-duck case of BMPs within ICOs. This patch does the following. - It implements transparency properly for 16bpp and 32bpp images via bitfield masking. (For 32bpp images this also requires handling colors via bitfield masking.) The patch maintains the existing BMP-within-ICO transparency handling. - It also reworks BitFields::Value::Set(). * It now works correctly if the run of 1s goes all the way to bit 31 (the old code didn't set mBitWidth). * If the mask is 0, will give an mRightShift of 0 (old code gave 32, and right-shifting by 32 is dodgy). * It's now easier to read. - It renames transparent.bmp as transparent-if-within-ico.bmp. Ironically enough this file currently uses BITFIELDS compression and is WinBMPv5 format, which means it contains well-specified alpha data. In order to use it to test the hacky BMP-within-ICO transparency scheme the patch changes it to be WinBMPv3 format with RGB compression (i.e. no compression). I left the now-excess bytes (including the bitfields) in the info header in place because that's allowed -- thanks to the start of the pixel data being specified by the |dataoffset| field -- they'll just be ignored. - It tweaks the naming of the relevant gtests and some of their finer details to work with the new way of doing things. This fixes all four remaining failures in bmpsuite. --HG-- rename : image/test/gtest/transparent.bmp => image/test/gtest/transparent-if-within-ico.bmp extra : rebase_source : 2f4838d04bbae4fac00cc69e8d75469105a5de3b
2015-10-14 07:20:10 +03:00
bool expectTransparency = aBMPWithinICO == BMPWithinICO::YES
? true
: bool(aTestCase.mFlags & TEST_CASE_IS_TRANSPARENT);
EXPECT_EQ(expectTransparency, bool(metadataProgress & FLAG_HAS_TRANSPARENCY));
EXPECT_EQ(bool(aTestCase.mFlags & TEST_CASE_IS_ANIMATED),
bool(metadataProgress & FLAG_IS_ANIMATED));
// Create a full decoder, so we can compare the result.
decoder =
DecoderFactory::CreateAnonymousDecoder(decoderType, sourceBuffer, Nothing(),
DefaultSurfaceFlags());
ASSERT_TRUE(decoder != nullptr);
task = new AnonymousDecodingTask(WrapNotNull(decoder));
Bug 1214072 (part 2) - Implement transparency properly for BMP images. r=seth. Currently we don't implement transparency at all in BMP images except for an odd-duck case of BMPs within ICOs. This patch does the following. - It implements transparency properly for 16bpp and 32bpp images via bitfield masking. (For 32bpp images this also requires handling colors via bitfield masking.) The patch maintains the existing BMP-within-ICO transparency handling. - It also reworks BitFields::Value::Set(). * It now works correctly if the run of 1s goes all the way to bit 31 (the old code didn't set mBitWidth). * If the mask is 0, will give an mRightShift of 0 (old code gave 32, and right-shifting by 32 is dodgy). * It's now easier to read. - It renames transparent.bmp as transparent-if-within-ico.bmp. Ironically enough this file currently uses BITFIELDS compression and is WinBMPv5 format, which means it contains well-specified alpha data. In order to use it to test the hacky BMP-within-ICO transparency scheme the patch changes it to be WinBMPv3 format with RGB compression (i.e. no compression). I left the now-excess bytes (including the bitfields) in the info header in place because that's allowed -- thanks to the start of the pixel data being specified by the |dataoffset| field -- they'll just be ignored. - It tweaks the naming of the relevant gtests and some of their finer details to work with the new way of doing things. This fixes all four remaining failures in bmpsuite. --HG-- rename : image/test/gtest/transparent.bmp => image/test/gtest/transparent-if-within-ico.bmp extra : rebase_source : 2f4838d04bbae4fac00cc69e8d75469105a5de3b
2015-10-14 07:20:10 +03:00
if (aBMPWithinICO == BMPWithinICO::YES) {
static_cast<nsBMPDecoder*>(decoder.get())->SetIsWithinICO();
}
// Run the full decoder synchronously.
task->Run();
Bug 1214072 (part 2) - Implement transparency properly for BMP images. r=seth. Currently we don't implement transparency at all in BMP images except for an odd-duck case of BMPs within ICOs. This patch does the following. - It implements transparency properly for 16bpp and 32bpp images via bitfield masking. (For 32bpp images this also requires handling colors via bitfield masking.) The patch maintains the existing BMP-within-ICO transparency handling. - It also reworks BitFields::Value::Set(). * It now works correctly if the run of 1s goes all the way to bit 31 (the old code didn't set mBitWidth). * If the mask is 0, will give an mRightShift of 0 (old code gave 32, and right-shifting by 32 is dodgy). * It's now easier to read. - It renames transparent.bmp as transparent-if-within-ico.bmp. Ironically enough this file currently uses BITFIELDS compression and is WinBMPv5 format, which means it contains well-specified alpha data. In order to use it to test the hacky BMP-within-ICO transparency scheme the patch changes it to be WinBMPv3 format with RGB compression (i.e. no compression). I left the now-excess bytes (including the bitfields) in the info header in place because that's allowed -- thanks to the start of the pixel data being specified by the |dataoffset| field -- they'll just be ignored. - It tweaks the naming of the relevant gtests and some of their finer details to work with the new way of doing things. This fixes all four remaining failures in bmpsuite. --HG-- rename : image/test/gtest/transparent.bmp => image/test/gtest/transparent-if-within-ico.bmp extra : rebase_source : 2f4838d04bbae4fac00cc69e8d75469105a5de3b
2015-10-14 07:20:10 +03:00
EXPECT_TRUE(decoder->GetDecodeDone() && !decoder->HasError());
Progress fullProgress = decoder->TakeProgress();
// If the metadata decoder set a progress bit, the full decoder should also
// have set the same bit.
EXPECT_EQ(fullProgress, metadataProgress | fullProgress);
// The full decoder and the metadata decoder should agree on the image's size.
IntSize fullSize = decoder->Size();
EXPECT_EQ(metadataSize.width, fullSize.width);
EXPECT_EQ(metadataSize.height, fullSize.height);
// We should not discover transparency during the full decode that we didn't
// discover during the metadata decode, unless the image is animated.
EXPECT_TRUE(!(fullProgress & FLAG_HAS_TRANSPARENCY) ||
(metadataProgress & FLAG_HAS_TRANSPARENCY) ||
(fullProgress & FLAG_IS_ANIMATED));
}
class ImageDecoderMetadata : public ::testing::Test
{
protected:
AutoInitializeImageLib mInit;
};
TEST_F(ImageDecoderMetadata, PNG) { CheckMetadata(GreenPNGTestCase()); }
TEST_F(ImageDecoderMetadata, TransparentPNG) { CheckMetadata(TransparentPNGTestCase()); }
TEST_F(ImageDecoderMetadata, GIF) { CheckMetadata(GreenGIFTestCase()); }
TEST_F(ImageDecoderMetadata, TransparentGIF) { CheckMetadata(TransparentGIFTestCase()); }
TEST_F(ImageDecoderMetadata, JPG) { CheckMetadata(GreenJPGTestCase()); }
TEST_F(ImageDecoderMetadata, BMP) { CheckMetadata(GreenBMPTestCase()); }
TEST_F(ImageDecoderMetadata, ICO) { CheckMetadata(GreenICOTestCase()); }
TEST_F(ImageDecoderMetadata, Icon) { CheckMetadata(GreenIconTestCase()); }
TEST_F(ImageDecoderMetadata, AnimatedGIF)
{
CheckMetadata(GreenFirstFrameAnimatedGIFTestCase());
}
TEST_F(ImageDecoderMetadata, AnimatedPNG)
{
CheckMetadata(GreenFirstFrameAnimatedPNGTestCase());
}
TEST_F(ImageDecoderMetadata, FirstFramePaddingGIF)
{
CheckMetadata(FirstFramePaddingGIFTestCase());
}
TEST_F(ImageDecoderMetadata, TransparentIfWithinICOBMPNotWithinICO)
{
Bug 1214072 (part 2) - Implement transparency properly for BMP images. r=seth. Currently we don't implement transparency at all in BMP images except for an odd-duck case of BMPs within ICOs. This patch does the following. - It implements transparency properly for 16bpp and 32bpp images via bitfield masking. (For 32bpp images this also requires handling colors via bitfield masking.) The patch maintains the existing BMP-within-ICO transparency handling. - It also reworks BitFields::Value::Set(). * It now works correctly if the run of 1s goes all the way to bit 31 (the old code didn't set mBitWidth). * If the mask is 0, will give an mRightShift of 0 (old code gave 32, and right-shifting by 32 is dodgy). * It's now easier to read. - It renames transparent.bmp as transparent-if-within-ico.bmp. Ironically enough this file currently uses BITFIELDS compression and is WinBMPv5 format, which means it contains well-specified alpha data. In order to use it to test the hacky BMP-within-ICO transparency scheme the patch changes it to be WinBMPv3 format with RGB compression (i.e. no compression). I left the now-excess bytes (including the bitfields) in the info header in place because that's allowed -- thanks to the start of the pixel data being specified by the |dataoffset| field -- they'll just be ignored. - It tweaks the naming of the relevant gtests and some of their finer details to work with the new way of doing things. This fixes all four remaining failures in bmpsuite. --HG-- rename : image/test/gtest/transparent.bmp => image/test/gtest/transparent-if-within-ico.bmp extra : rebase_source : 2f4838d04bbae4fac00cc69e8d75469105a5de3b
2015-10-14 07:20:10 +03:00
CheckMetadata(TransparentIfWithinICOBMPTestCase(TEST_CASE_DEFAULT_FLAGS),
BMPWithinICO::NO);
}
TEST_F(ImageDecoderMetadata, TransparentIfWithinICOBMPWithinICO)
{
Bug 1214072 (part 2) - Implement transparency properly for BMP images. r=seth. Currently we don't implement transparency at all in BMP images except for an odd-duck case of BMPs within ICOs. This patch does the following. - It implements transparency properly for 16bpp and 32bpp images via bitfield masking. (For 32bpp images this also requires handling colors via bitfield masking.) The patch maintains the existing BMP-within-ICO transparency handling. - It also reworks BitFields::Value::Set(). * It now works correctly if the run of 1s goes all the way to bit 31 (the old code didn't set mBitWidth). * If the mask is 0, will give an mRightShift of 0 (old code gave 32, and right-shifting by 32 is dodgy). * It's now easier to read. - It renames transparent.bmp as transparent-if-within-ico.bmp. Ironically enough this file currently uses BITFIELDS compression and is WinBMPv5 format, which means it contains well-specified alpha data. In order to use it to test the hacky BMP-within-ICO transparency scheme the patch changes it to be WinBMPv3 format with RGB compression (i.e. no compression). I left the now-excess bytes (including the bitfields) in the info header in place because that's allowed -- thanks to the start of the pixel data being specified by the |dataoffset| field -- they'll just be ignored. - It tweaks the naming of the relevant gtests and some of their finer details to work with the new way of doing things. This fixes all four remaining failures in bmpsuite. --HG-- rename : image/test/gtest/transparent.bmp => image/test/gtest/transparent-if-within-ico.bmp extra : rebase_source : 2f4838d04bbae4fac00cc69e8d75469105a5de3b
2015-10-14 07:20:10 +03:00
CheckMetadata(TransparentIfWithinICOBMPTestCase(TEST_CASE_IS_TRANSPARENT),
BMPWithinICO::YES);
}
TEST_F(ImageDecoderMetadata, RLE4BMP) { CheckMetadata(RLE4BMPTestCase()); }
TEST_F(ImageDecoderMetadata, RLE8BMP) { CheckMetadata(RLE8BMPTestCase()); }
TEST_F(ImageDecoderMetadata, Corrupt) { CheckMetadata(CorruptTestCase()); }
TEST_F(ImageDecoderMetadata, NoFrameDelayGIF)
{
CheckMetadata(NoFrameDelayGIFTestCase());
}
TEST_F(ImageDecoderMetadata, NoFrameDelayGIFFullDecode)
{
ImageTestCase testCase = NoFrameDelayGIFTestCase();
// The previous test (NoFrameDelayGIF) verifies that we *don't* detect that
// this test case is animated, because it has a zero frame delay for the first
// frame. This test verifies that when we do a full decode, we detect the
// animation at that point and successfully decode all the frames.
// Create an image.
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<Image> image =
ImageFactory::CreateAnonymousImage(nsDependentCString(testCase.mMimeType));
ASSERT_TRUE(!image->HasError());
nsCOMPtr<nsIInputStream> inputStream = LoadFile(testCase.mPath);
ASSERT_TRUE(inputStream != nullptr);
// Figure out how much data we have.
uint64_t length;
nsresult rv = inputStream->Available(&length);
ASSERT_TRUE(NS_SUCCEEDED(rv));
// Write the data into the image.
rv = image->OnImageDataAvailable(nullptr, nullptr, inputStream, 0,
static_cast<uint32_t>(length));
ASSERT_TRUE(NS_SUCCEEDED(rv));
// Let the image know we've sent all the data.
rv = image->OnImageDataComplete(nullptr, nullptr, NS_OK, true);
ASSERT_TRUE(NS_SUCCEEDED(rv));
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<ProgressTracker> tracker = image->GetProgressTracker();
tracker->SyncNotifyProgress(FLAG_LOAD_COMPLETE);
// Use GetFrame() to force a sync decode of the image.
Bug 1207245 - part 6 - rename nsRefPtr<T> to RefPtr<T>; r=ehsan; a=Tomcat The bulk of this commit was generated with a script, executed at the top level of a typical source code checkout. The only non-machine-generated part was modifying MFBT's moz.build to reflect the new naming. CLOSED TREE makes big refactorings like this a piece of cake. # The main substitution. find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \ xargs perl -p -i -e ' s/nsRefPtr\.h/RefPtr\.h/g; # handle includes s/nsRefPtr ?</RefPtr</g; # handle declarations and variables ' # Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h. perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h # Handle nsRefPtr.h itself, a couple places that define constructors # from nsRefPtr, and code generators specially. We do this here, rather # than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename # things like nsRefPtrHashtable. perl -p -i -e 's/nsRefPtr/RefPtr/g' \ mfbt/nsRefPtr.h \ xpcom/glue/nsCOMPtr.h \ xpcom/base/OwningNonNull.h \ ipc/ipdl/ipdl/lower.py \ ipc/ipdl/ipdl/builtin.py \ dom/bindings/Codegen.py \ python/lldbutils/lldbutils/utils.py # In our indiscriminate substitution above, we renamed # nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up. find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \ xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g' if [ -d .git ]; then git mv mfbt/nsRefPtr.h mfbt/RefPtr.h else hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h fi --HG-- rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
2015-10-18 08:24:48 +03:00
RefPtr<SourceSurface> surface =
image->GetFrame(imgIContainer::FRAME_CURRENT,
imgIContainer::FLAG_SYNC_DECODE);
// Ensure that the image's metadata meets our expectations.
IntSize imageSize(0, 0);
rv = image->GetWidth(&imageSize.width);
EXPECT_TRUE(NS_SUCCEEDED(rv));
rv = image->GetHeight(&imageSize.height);
EXPECT_TRUE(NS_SUCCEEDED(rv));
EXPECT_EQ(testCase.mSize.width, imageSize.width);
EXPECT_EQ(testCase.mSize.height, imageSize.height);
Progress imageProgress = tracker->GetProgress();
EXPECT_TRUE(bool(imageProgress & FLAG_HAS_TRANSPARENCY) == false);
EXPECT_TRUE(bool(imageProgress & FLAG_IS_ANIMATED) == true);
// Ensure that we decoded both frames of the image.
LookupResult result =
SurfaceCache::Lookup(ImageKey(image.get()),
RasterSurfaceKey(imageSize,
DefaultSurfaceFlags(),
PlaybackType::eAnimated));
ASSERT_EQ(MatchType::EXACT, result.Type());
EXPECT_TRUE(NS_SUCCEEDED(result.Surface().Seek(0)));
EXPECT_TRUE(bool(result.Surface()));
EXPECT_TRUE(NS_SUCCEEDED(result.Surface().Seek(1)));
EXPECT_TRUE(bool(result.Surface()));
}