2011-07-27 18:11:19 +04:00
|
|
|
#include <math.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#include <string.h> //memcpy
|
|
|
|
#include "qcmsint.h"
|
|
|
|
#include "transform_util.h"
|
|
|
|
#include "matrix.h"
|
|
|
|
|
|
|
|
#define PARAMETRIC_CURVE_TYPE 0x70617261 //'para'
|
|
|
|
|
|
|
|
/* value must be a value between 0 and 1 */
|
|
|
|
//XXX: is the above a good restriction to have?
|
2012-06-08 00:47:34 +04:00
|
|
|
// the output range of this functions is 0..1
|
|
|
|
float lut_interp_linear(double input_value, uint16_t *table, int length)
|
2011-07-27 18:11:19 +04:00
|
|
|
{
|
|
|
|
int upper, lower;
|
2012-06-08 00:47:34 +04:00
|
|
|
float value;
|
|
|
|
input_value = input_value * (length - 1); // scale to length of the array
|
|
|
|
upper = ceil(input_value);
|
|
|
|
lower = floor(input_value);
|
2011-07-27 18:11:19 +04:00
|
|
|
//XXX: can we be more performant here?
|
2012-06-08 00:47:34 +04:00
|
|
|
value = table[upper]*(1. - (upper - input_value)) + table[lower]*(upper - input_value);
|
2011-07-27 18:11:19 +04:00
|
|
|
/* scale the value */
|
2012-06-08 00:47:34 +04:00
|
|
|
return value * (1.f/65535.f);
|
2011-07-27 18:11:19 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
|
|
|
|
uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
|
|
|
|
{
|
|
|
|
/* Start scaling input_value to the length of the array: 65535*(length-1).
|
|
|
|
* We'll divide out the 65535 next */
|
|
|
|
uint32_t value = (input_value * (length - 1));
|
|
|
|
uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */
|
|
|
|
uint32_t lower = value / 65535; /* equivalent to floor(value/65535) */
|
|
|
|
/* interp is the distance from upper to value scaled to 0..65535 */
|
|
|
|
uint32_t interp = value % 65535;
|
|
|
|
|
|
|
|
value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535
|
|
|
|
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX
|
|
|
|
* and returns a uint8_t value representing a range from 0..1 */
|
|
|
|
static
|
|
|
|
uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, int length)
|
|
|
|
{
|
|
|
|
/* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1).
|
|
|
|
* We'll divide out the PRECACHE_OUTPUT_MAX next */
|
|
|
|
uint32_t value = (input_value * (length - 1));
|
|
|
|
|
|
|
|
/* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */
|
|
|
|
uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX;
|
|
|
|
/* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */
|
|
|
|
uint32_t lower = value / PRECACHE_OUTPUT_MAX;
|
|
|
|
/* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */
|
|
|
|
uint32_t interp = value % PRECACHE_OUTPUT_MAX;
|
|
|
|
|
|
|
|
/* the table values range from 0..65535 */
|
|
|
|
value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX)
|
|
|
|
|
|
|
|
/* round and scale */
|
|
|
|
value += (PRECACHE_OUTPUT_MAX*65535/255)/2;
|
|
|
|
value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* value must be a value between 0 and 1 */
|
|
|
|
//XXX: is the above a good restriction to have?
|
|
|
|
float lut_interp_linear_float(float value, float *table, int length)
|
|
|
|
{
|
|
|
|
int upper, lower;
|
|
|
|
value = value * (length - 1);
|
2012-10-20 00:35:36 +04:00
|
|
|
upper = ceilf(value);
|
|
|
|
lower = floorf(value);
|
2011-07-27 18:11:19 +04:00
|
|
|
//XXX: can we be more performant here?
|
|
|
|
value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value);
|
|
|
|
/* scale the value */
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
/* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient
|
|
|
|
* because we can avoid the divisions and use a shifting instead */
|
|
|
|
/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
|
|
|
|
uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
|
|
|
|
{
|
|
|
|
uint32_t value = (input_value * (length - 1));
|
|
|
|
uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */
|
|
|
|
uint32_t lower = value / 4096; /* equivalent to floor(value/4096) */
|
|
|
|
uint32_t interp = value % 4096;
|
|
|
|
|
|
|
|
value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096
|
|
|
|
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-06-08 00:47:34 +04:00
|
|
|
void compute_curve_gamma_table_type1(float gamma_table[256], uint16_t gamma)
|
2011-07-27 18:11:19 +04:00
|
|
|
{
|
|
|
|
unsigned int i;
|
2012-06-08 00:47:34 +04:00
|
|
|
float gamma_float = u8Fixed8Number_to_float(gamma);
|
2011-07-27 18:11:19 +04:00
|
|
|
for (i = 0; i < 256; i++) {
|
2012-06-08 00:47:34 +04:00
|
|
|
// 0..1^(0..255 + 255/256) will always be between 0 and 1
|
|
|
|
gamma_table[i] = pow(i/255., gamma_float);
|
2011-07-27 18:11:19 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length)
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
|
gamma_table[i] = lut_interp_linear(i/255., table, length);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void compute_curve_gamma_table_type_parametric(float gamma_table[256], float parameter[7], int count)
|
|
|
|
{
|
|
|
|
size_t X;
|
|
|
|
float interval;
|
|
|
|
float a, b, c, e, f;
|
|
|
|
float y = parameter[0];
|
|
|
|
if (count == 0) {
|
|
|
|
a = 1;
|
|
|
|
b = 0;
|
|
|
|
c = 0;
|
|
|
|
e = 0;
|
|
|
|
f = 0;
|
2015-09-18 03:11:27 +03:00
|
|
|
interval = -1;
|
2011-07-27 18:11:19 +04:00
|
|
|
} else if(count == 1) {
|
|
|
|
a = parameter[1];
|
|
|
|
b = parameter[2];
|
|
|
|
c = 0;
|
|
|
|
e = 0;
|
|
|
|
f = 0;
|
|
|
|
interval = -1 * parameter[2] / parameter[1];
|
|
|
|
} else if(count == 2) {
|
|
|
|
a = parameter[1];
|
|
|
|
b = parameter[2];
|
|
|
|
c = 0;
|
|
|
|
e = parameter[3];
|
|
|
|
f = parameter[3];
|
|
|
|
interval = -1 * parameter[2] / parameter[1];
|
|
|
|
} else if(count == 3) {
|
|
|
|
a = parameter[1];
|
|
|
|
b = parameter[2];
|
|
|
|
c = parameter[3];
|
|
|
|
e = -c;
|
|
|
|
f = 0;
|
|
|
|
interval = parameter[4];
|
|
|
|
} else if(count == 4) {
|
|
|
|
a = parameter[1];
|
|
|
|
b = parameter[2];
|
|
|
|
c = parameter[3];
|
|
|
|
e = parameter[5] - c;
|
|
|
|
f = parameter[6];
|
|
|
|
interval = parameter[4];
|
|
|
|
} else {
|
|
|
|
assert(0 && "invalid parametric function type.");
|
|
|
|
a = 1;
|
|
|
|
b = 0;
|
|
|
|
c = 0;
|
|
|
|
e = 0;
|
|
|
|
f = 0;
|
2015-09-18 03:11:27 +03:00
|
|
|
interval = -1;
|
|
|
|
}
|
2011-07-27 18:11:19 +04:00
|
|
|
for (X = 0; X < 256; X++) {
|
|
|
|
if (X >= interval) {
|
2015-09-18 03:11:27 +03:00
|
|
|
// XXX The equations are not exactly as defined in the spec but are
|
|
|
|
// algebraically equivalent.
|
2011-07-27 18:11:19 +04:00
|
|
|
// TODO Should division by 255 be for the whole expression.
|
2012-06-08 00:47:34 +04:00
|
|
|
gamma_table[X] = clamp_float(pow(a * X / 255. + b, y) + c + e);
|
2011-07-27 18:11:19 +04:00
|
|
|
} else {
|
2012-06-08 00:47:34 +04:00
|
|
|
gamma_table[X] = clamp_float(c * X / 255. + f);
|
2011-07-27 18:11:19 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void compute_curve_gamma_table_type0(float gamma_table[256])
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
|
gamma_table[i] = i/255.;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
float *build_input_gamma_table(struct curveType *TRC)
|
|
|
|
{
|
|
|
|
float *gamma_table;
|
|
|
|
|
|
|
|
if (!TRC) return NULL;
|
|
|
|
gamma_table = malloc(sizeof(float)*256);
|
|
|
|
if (gamma_table) {
|
|
|
|
if (TRC->type == PARAMETRIC_CURVE_TYPE) {
|
|
|
|
compute_curve_gamma_table_type_parametric(gamma_table, TRC->parameter, TRC->count);
|
|
|
|
} else {
|
|
|
|
if (TRC->count == 0) {
|
|
|
|
compute_curve_gamma_table_type0(gamma_table);
|
|
|
|
} else if (TRC->count == 1) {
|
2012-06-08 00:47:34 +04:00
|
|
|
compute_curve_gamma_table_type1(gamma_table, TRC->data[0]);
|
2011-07-27 18:11:19 +04:00
|
|
|
} else {
|
|
|
|
compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return gamma_table;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct matrix build_colorant_matrix(qcms_profile *p)
|
|
|
|
{
|
|
|
|
struct matrix result;
|
|
|
|
result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X);
|
|
|
|
result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X);
|
|
|
|
result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X);
|
|
|
|
result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y);
|
|
|
|
result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y);
|
|
|
|
result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y);
|
|
|
|
result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z);
|
|
|
|
result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z);
|
|
|
|
result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z);
|
|
|
|
result.invalid = false;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The following code is copied nearly directly from lcms.
|
|
|
|
* I think it could be much better. For example, Argyll seems to have better code in
|
|
|
|
* icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way
|
|
|
|
* to a working solution and allows for easy comparing with lcms. */
|
|
|
|
uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length)
|
|
|
|
{
|
|
|
|
int l = 1;
|
|
|
|
int r = 0x10000;
|
|
|
|
int x = 0, res; // 'int' Give spacing for negative values
|
|
|
|
int NumZeroes, NumPoles;
|
|
|
|
int cell0, cell1;
|
|
|
|
double val2;
|
|
|
|
double y0, y1, x0, x1;
|
|
|
|
double a, b, f;
|
|
|
|
|
|
|
|
// July/27 2001 - Expanded to handle degenerated curves with an arbitrary
|
|
|
|
// number of elements containing 0 at the begining of the table (Zeroes)
|
|
|
|
// and another arbitrary number of poles (FFFFh) at the end.
|
|
|
|
// First the zero and pole extents are computed, then value is compared.
|
|
|
|
|
|
|
|
NumZeroes = 0;
|
|
|
|
while (LutTable[NumZeroes] == 0 && NumZeroes < length-1)
|
|
|
|
NumZeroes++;
|
|
|
|
|
|
|
|
// There are no zeros at the beginning and we are trying to find a zero, so
|
|
|
|
// return anything. It seems zero would be the less destructive choice
|
|
|
|
/* I'm not sure that this makes sense, but oh well... */
|
|
|
|
if (NumZeroes == 0 && Value == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
NumPoles = 0;
|
|
|
|
while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1)
|
|
|
|
NumPoles++;
|
|
|
|
|
|
|
|
// Does the curve belong to this case?
|
|
|
|
if (NumZeroes > 1 || NumPoles > 1)
|
2015-06-05 02:30:52 +03:00
|
|
|
{
|
2011-07-27 18:11:19 +04:00
|
|
|
int a, b;
|
|
|
|
|
2015-06-05 02:30:52 +03:00
|
|
|
// Identify if value fall downto 0 or FFFF zone
|
2011-07-27 18:11:19 +04:00
|
|
|
if (Value == 0) return 0;
|
2015-06-05 02:30:52 +03:00
|
|
|
// if (Value == 0xFFFF) return 0xFFFF;
|
2011-07-27 18:11:19 +04:00
|
|
|
|
|
|
|
// else restrict to valid zone
|
|
|
|
|
2015-06-05 02:30:52 +03:00
|
|
|
if (NumZeroes > 1) {
|
|
|
|
a = ((NumZeroes-1) * 0xFFFF) / (length-1);
|
|
|
|
l = a - 1;
|
|
|
|
}
|
|
|
|
if (NumPoles > 1) {
|
|
|
|
b = ((length-1 - NumPoles) * 0xFFFF) / (length-1);
|
|
|
|
r = b + 1;
|
|
|
|
}
|
2011-07-27 18:11:19 +04:00
|
|
|
}
|
|
|
|
|
2015-06-05 02:30:52 +03:00
|
|
|
if (r <= l) {
|
|
|
|
// If this happens LutTable is not invertible
|
|
|
|
return 0;
|
|
|
|
}
|
2011-07-27 18:11:19 +04:00
|
|
|
|
|
|
|
|
2015-06-05 02:30:52 +03:00
|
|
|
// Seems not a degenerated case... apply binary search
|
2011-07-27 18:11:19 +04:00
|
|
|
while (r > l) {
|
|
|
|
|
|
|
|
x = (l + r) / 2;
|
|
|
|
|
|
|
|
res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length);
|
|
|
|
|
|
|
|
if (res == Value) {
|
|
|
|
|
2015-06-05 02:30:52 +03:00
|
|
|
// Found exact match.
|
|
|
|
|
2011-07-27 18:11:19 +04:00
|
|
|
return (uint16_fract_t) (x - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (res > Value) r = x - 1;
|
|
|
|
else l = x + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Not found, should we interpolate?
|
|
|
|
|
|
|
|
// Get surrounding nodes
|
2015-06-05 02:30:52 +03:00
|
|
|
|
|
|
|
assert(x >= 1);
|
|
|
|
|
2011-07-27 18:11:19 +04:00
|
|
|
val2 = (length-1) * ((double) (x - 1) / 65535.0);
|
|
|
|
|
|
|
|
cell0 = (int) floor(val2);
|
|
|
|
cell1 = (int) ceil(val2);
|
|
|
|
|
|
|
|
if (cell0 == cell1) return (uint16_fract_t) x;
|
|
|
|
|
|
|
|
y0 = LutTable[cell0] ;
|
|
|
|
x0 = (65535.0 * cell0) / (length-1);
|
|
|
|
|
|
|
|
y1 = LutTable[cell1] ;
|
|
|
|
x1 = (65535.0 * cell1) / (length-1);
|
|
|
|
|
|
|
|
a = (y1 - y0) / (x1 - x0);
|
|
|
|
b = y0 - a * x0;
|
|
|
|
|
|
|
|
if (fabs(a) < 0.01) return (uint16_fract_t) x;
|
|
|
|
|
|
|
|
f = ((Value - b) / a);
|
|
|
|
|
|
|
|
if (f < 0.0) return (uint16_fract_t) 0;
|
|
|
|
if (f >= 65535.0) return (uint16_fract_t) 0xFFFF;
|
|
|
|
|
|
|
|
return (uint16_fract_t) floor(f + 0.5);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
The number of entries needed to invert a lookup table should not
|
|
|
|
necessarily be the same as the original number of entries. This is
|
|
|
|
especially true of lookup tables that have a small number of entries.
|
|
|
|
|
|
|
|
For example:
|
|
|
|
Using a table like:
|
|
|
|
{0, 3104, 14263, 34802, 65535}
|
|
|
|
invert_lut will produce an inverse of:
|
|
|
|
{3, 34459, 47529, 56801, 65535}
|
|
|
|
which has an maximum error of about 9855 (pixel difference of ~38.346)
|
|
|
|
|
|
|
|
For now, we punt the decision of output size to the caller. */
|
|
|
|
static uint16_t *invert_lut(uint16_t *table, int length, int out_length)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
/* for now we invert the lut by creating a lut of size out_length
|
|
|
|
* and attempting to lookup a value for each entry using lut_inverse_interp16 */
|
|
|
|
uint16_t *output = malloc(sizeof(uint16_t)*out_length);
|
|
|
|
if (!output)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
for (i = 0; i < out_length; i++) {
|
|
|
|
double x = ((double) i * 65535.) / (double) (out_length - 1);
|
|
|
|
uint16_fract_t input = floor(x + .5);
|
|
|
|
output[i] = lut_inverse_interp16(input, table, length);
|
|
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void compute_precache_pow(uint8_t *output, float gamma)
|
|
|
|
{
|
|
|
|
uint32_t v = 0;
|
|
|
|
for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
|
|
|
|
//XXX: don't do integer/float conversion... and round?
|
|
|
|
output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void compute_precache_lut(uint8_t *output, uint16_t *table, int length)
|
|
|
|
{
|
|
|
|
uint32_t v = 0;
|
|
|
|
for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
|
|
|
|
output[v] = lut_interp_linear_precache_output(v, table, length);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void compute_precache_linear(uint8_t *output)
|
|
|
|
{
|
|
|
|
uint32_t v = 0;
|
|
|
|
for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
|
|
|
|
//XXX: round?
|
|
|
|
output[v] = v / (PRECACHE_OUTPUT_SIZE/256);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
qcms_bool compute_precache(struct curveType *trc, uint8_t *output)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (trc->type == PARAMETRIC_CURVE_TYPE) {
|
|
|
|
float gamma_table[256];
|
|
|
|
uint16_t gamma_table_uint[256];
|
|
|
|
uint16_t i;
|
|
|
|
uint16_t *inverted;
|
|
|
|
int inverted_size = 256;
|
|
|
|
|
|
|
|
compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count);
|
|
|
|
for(i = 0; i < 256; i++) {
|
|
|
|
gamma_table_uint[i] = (uint16_t)(gamma_table[i] * 65535);
|
|
|
|
}
|
|
|
|
|
|
|
|
//XXX: the choice of a minimum of 256 here is not backed by any theory,
|
|
|
|
// measurement or data, howeve r it is what lcms uses.
|
|
|
|
// the maximum number we would need is 65535 because that's the
|
|
|
|
// accuracy used for computing the pre cache table
|
|
|
|
if (inverted_size < 256)
|
|
|
|
inverted_size = 256;
|
|
|
|
|
|
|
|
inverted = invert_lut(gamma_table_uint, 256, inverted_size);
|
|
|
|
if (!inverted)
|
|
|
|
return false;
|
|
|
|
compute_precache_lut(output, inverted, inverted_size);
|
|
|
|
free(inverted);
|
|
|
|
} else {
|
|
|
|
if (trc->count == 0) {
|
|
|
|
compute_precache_linear(output);
|
|
|
|
} else if (trc->count == 1) {
|
|
|
|
compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0]));
|
|
|
|
} else {
|
|
|
|
uint16_t *inverted;
|
|
|
|
int inverted_size = trc->count;
|
|
|
|
//XXX: the choice of a minimum of 256 here is not backed by any theory,
|
|
|
|
// measurement or data, howeve r it is what lcms uses.
|
|
|
|
// the maximum number we would need is 65535 because that's the
|
|
|
|
// accuracy used for computing the pre cache table
|
|
|
|
if (inverted_size < 256)
|
|
|
|
inverted_size = 256;
|
|
|
|
|
|
|
|
inverted = invert_lut(trc->data, trc->count, inverted_size);
|
|
|
|
if (!inverted)
|
|
|
|
return false;
|
|
|
|
compute_precache_lut(output, inverted, inverted_size);
|
|
|
|
free(inverted);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static uint16_t *build_linear_table(int length)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
uint16_t *output = malloc(sizeof(uint16_t)*length);
|
|
|
|
if (!output)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
for (i = 0; i < length; i++) {
|
|
|
|
double x = ((double) i * 65535.) / (double) (length - 1);
|
|
|
|
uint16_fract_t input = floor(x + .5);
|
|
|
|
output[i] = input;
|
|
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint16_t *build_pow_table(float gamma, int length)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
uint16_t *output = malloc(sizeof(uint16_t)*length);
|
|
|
|
if (!output)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
for (i = 0; i < length; i++) {
|
|
|
|
uint16_fract_t result;
|
|
|
|
double x = ((double) i) / (double) (length - 1);
|
|
|
|
x = pow(x, gamma); //XXX turn this conversion into a function
|
|
|
|
result = floor(x*65535. + .5);
|
|
|
|
output[i] = result;
|
|
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
|
|
|
|
void build_output_lut(struct curveType *trc,
|
|
|
|
uint16_t **output_gamma_lut, size_t *output_gamma_lut_length)
|
|
|
|
{
|
|
|
|
if (trc->type == PARAMETRIC_CURVE_TYPE) {
|
|
|
|
float gamma_table[256];
|
|
|
|
uint16_t i;
|
|
|
|
uint16_t *output = malloc(sizeof(uint16_t)*256);
|
|
|
|
|
|
|
|
if (!output) {
|
|
|
|
*output_gamma_lut = NULL;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count);
|
|
|
|
*output_gamma_lut_length = 256;
|
|
|
|
for(i = 0; i < 256; i++) {
|
|
|
|
output[i] = (uint16_t)(gamma_table[i] * 65535);
|
|
|
|
}
|
|
|
|
*output_gamma_lut = output;
|
|
|
|
} else {
|
|
|
|
if (trc->count == 0) {
|
|
|
|
*output_gamma_lut = build_linear_table(4096);
|
|
|
|
*output_gamma_lut_length = 4096;
|
|
|
|
} else if (trc->count == 1) {
|
|
|
|
float gamma = 1./u8Fixed8Number_to_float(trc->data[0]);
|
|
|
|
*output_gamma_lut = build_pow_table(gamma, 4096);
|
|
|
|
*output_gamma_lut_length = 4096;
|
|
|
|
} else {
|
|
|
|
//XXX: the choice of a minimum of 256 here is not backed by any theory,
|
|
|
|
// measurement or data, however it is what lcms uses.
|
|
|
|
*output_gamma_lut_length = trc->count;
|
|
|
|
if (*output_gamma_lut_length < 256)
|
|
|
|
*output_gamma_lut_length = 256;
|
|
|
|
|
|
|
|
*output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|