gecko-dev/hal/gonk/GonkSensor.cpp

861 строка
26 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* Copyright 2012 Mozilla Foundation and Mozilla contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <pthread.h>
#include <stdio.h>
#include "mozilla/DebugOnly.h"
#include "mozilla/Saturate.h"
#include "base/basictypes.h"
#include "base/thread.h"
#include "GonkSensorsInterface.h"
#include "GonkSensorsPollInterface.h"
#include "GonkSensorsRegistryInterface.h"
#include "Hal.h"
#include "HalLog.h"
#include "HalSensor.h"
#include "hardware/sensors.h"
#include "nsThreadUtils.h"
using namespace mozilla::hal;
namespace mozilla {
//
// Internal implementation
//
// The value from SensorDevice.h (Android)
#define DEFAULT_DEVICE_POLL_RATE 200000000 /*200ms*/
// ProcessOrientation.cpp needs smaller poll rate to detect delay between
// different orientation angles
#define ACCELEROMETER_POLL_RATE 66667000 /*66.667ms*/
// This is present in Android from API level 18 onwards, which is 4.3. We might
// be building on something before 4.3, so use a local define for its value
#define MOZ_SENSOR_TYPE_GAME_ROTATION_VECTOR 15
double radToDeg(double a) {
return a * (180.0 / M_PI);
}
static SensorType
HardwareSensorToHalSensor(int type)
{
switch(type) {
case SENSOR_TYPE_ORIENTATION:
return SENSOR_ORIENTATION;
case SENSOR_TYPE_ACCELEROMETER:
return SENSOR_ACCELERATION;
case SENSOR_TYPE_PROXIMITY:
return SENSOR_PROXIMITY;
case SENSOR_TYPE_LIGHT:
return SENSOR_LIGHT;
case SENSOR_TYPE_GYROSCOPE:
return SENSOR_GYROSCOPE;
case SENSOR_TYPE_LINEAR_ACCELERATION:
return SENSOR_LINEAR_ACCELERATION;
case SENSOR_TYPE_ROTATION_VECTOR:
return SENSOR_ROTATION_VECTOR;
case MOZ_SENSOR_TYPE_GAME_ROTATION_VECTOR:
return SENSOR_GAME_ROTATION_VECTOR;
default:
return SENSOR_UNKNOWN;
}
}
static SensorAccuracyType
HardwareStatusToHalAccuracy(int status) {
return static_cast<SensorAccuracyType>(status);
}
static int
HalSensorToHardwareSensor(SensorType type)
{
switch(type) {
case SENSOR_ORIENTATION:
return SENSOR_TYPE_ORIENTATION;
case SENSOR_ACCELERATION:
return SENSOR_TYPE_ACCELEROMETER;
case SENSOR_PROXIMITY:
return SENSOR_TYPE_PROXIMITY;
case SENSOR_LIGHT:
return SENSOR_TYPE_LIGHT;
case SENSOR_GYROSCOPE:
return SENSOR_TYPE_GYROSCOPE;
case SENSOR_LINEAR_ACCELERATION:
return SENSOR_TYPE_LINEAR_ACCELERATION;
case SENSOR_ROTATION_VECTOR:
return SENSOR_TYPE_ROTATION_VECTOR;
case SENSOR_GAME_ROTATION_VECTOR:
return MOZ_SENSOR_TYPE_GAME_ROTATION_VECTOR;
default:
return -1;
}
}
static int
SensorseventStatus(const sensors_event_t& data)
{
int type = data.type;
switch(type) {
case SENSOR_ORIENTATION:
return data.orientation.status;
case SENSOR_LINEAR_ACCELERATION:
case SENSOR_ACCELERATION:
return data.acceleration.status;
case SENSOR_GYROSCOPE:
return data.gyro.status;
}
return SENSOR_STATUS_UNRELIABLE;
}
class SensorRunnable : public Runnable
{
public:
SensorRunnable(const sensors_event_t& data, const sensor_t* sensors, ssize_t size)
{
mSensorData.sensor() = HardwareSensorToHalSensor(data.type);
mSensorData.accuracy() = HardwareStatusToHalAccuracy(SensorseventStatus(data));
mSensorData.timestamp() = data.timestamp;
if (mSensorData.sensor() == SENSOR_GYROSCOPE) {
// libhardware returns gyro as rad. convert.
mSensorValues.AppendElement(radToDeg(data.data[0]));
mSensorValues.AppendElement(radToDeg(data.data[1]));
mSensorValues.AppendElement(radToDeg(data.data[2]));
} else if (mSensorData.sensor() == SENSOR_PROXIMITY) {
mSensorValues.AppendElement(data.data[0]);
mSensorValues.AppendElement(0);
// Determine the maxRange for this sensor.
for (ssize_t i = 0; i < size; i++) {
if (sensors[i].type == SENSOR_TYPE_PROXIMITY) {
mSensorValues.AppendElement(sensors[i].maxRange);
}
}
} else if (mSensorData.sensor() == SENSOR_LIGHT) {
mSensorValues.AppendElement(data.data[0]);
} else if (mSensorData.sensor() == SENSOR_ROTATION_VECTOR) {
mSensorValues.AppendElement(data.data[0]);
mSensorValues.AppendElement(data.data[1]);
mSensorValues.AppendElement(data.data[2]);
if (data.data[3] == 0.0) {
// data.data[3] was optional in Android <= API level 18. It can be computed from 012,
// but it's better to take the actual value if one is provided. The computation is
// v = 1 - d[0]*d[0] - d[1]*d[1] - d[2]*d[2]
// d[3] = v > 0 ? sqrt(v) : 0;
// I'm assuming that it will be 0 if it's not passed in. (The values form a unit
// quaternion, so the angle can be computed from the direction vector.)
float sx = data.data[0], sy = data.data[1], sz = data.data[2];
float v = 1.0f - sx*sx - sy*sy - sz*sz;
mSensorValues.AppendElement(v > 0.0f ? sqrt(v) : 0.0f);
} else {
mSensorValues.AppendElement(data.data[3]);
}
} else if (mSensorData.sensor() == SENSOR_GAME_ROTATION_VECTOR) {
mSensorValues.AppendElement(data.data[0]);
mSensorValues.AppendElement(data.data[1]);
mSensorValues.AppendElement(data.data[2]);
mSensorValues.AppendElement(data.data[3]);
} else {
mSensorValues.AppendElement(data.data[0]);
mSensorValues.AppendElement(data.data[1]);
mSensorValues.AppendElement(data.data[2]);
}
mSensorData.values() = mSensorValues;
}
~SensorRunnable() {}
NS_IMETHOD Run()
{
NotifySensorChange(mSensorData);
return NS_OK;
}
private:
SensorData mSensorData;
AutoTArray<float, 4> mSensorValues;
};
namespace hal_impl {
static DebugOnly<int> sSensorRefCount[NUM_SENSOR_TYPE];
static base::Thread* sPollingThread;
static sensors_poll_device_t* sSensorDevice;
static sensors_module_t* sSensorModule;
static void
PollSensors()
{
const size_t numEventMax = 16;
sensors_event_t buffer[numEventMax];
const sensor_t* sensors;
int size = sSensorModule->get_sensors_list(sSensorModule, &sensors);
do {
// didn't check sSensorDevice because already be done on creating pollingThread.
int n = sSensorDevice->poll(sSensorDevice, buffer, numEventMax);
if (n < 0) {
HAL_ERR("Error polling for sensor data (err=%d)", n);
break;
}
for (int i = 0; i < n; ++i) {
// FIXME: bug 802004, add proper support for the magnetic field sensor.
if (buffer[i].type == SENSOR_TYPE_MAGNETIC_FIELD)
continue;
// Bug 938035, transfer HAL data for orientation sensor to meet w3c spec
// ex: HAL report alpha=90 means East but alpha=90 means West in w3c spec
if (buffer[i].type == SENSOR_TYPE_ORIENTATION) {
buffer[i].orientation.azimuth = 360 - buffer[i].orientation.azimuth;
buffer[i].orientation.pitch = -buffer[i].orientation.pitch;
buffer[i].orientation.roll = -buffer[i].orientation.roll;
}
if (HardwareSensorToHalSensor(buffer[i].type) == SENSOR_UNKNOWN) {
// Emulator is broken and gives us events without types set
int index;
for (index = 0; index < size; index++) {
if (sensors[index].handle == buffer[i].sensor) {
break;
}
}
if (index < size &&
HardwareSensorToHalSensor(sensors[index].type) != SENSOR_UNKNOWN) {
buffer[i].type = sensors[index].type;
} else {
HAL_LOG("Could not determine sensor type of event");
continue;
}
}
NS_DispatchToMainThread(new SensorRunnable(buffer[i], sensors, size));
}
} while (true);
}
static void
SwitchSensor(bool aActivate, sensor_t aSensor, pthread_t aThreadId)
{
int index = HardwareSensorToHalSensor(aSensor.type);
MOZ_ASSERT(sSensorRefCount[index] || aActivate);
sSensorDevice->activate(sSensorDevice, aSensor.handle, aActivate);
if (aActivate) {
if (aSensor.type == SENSOR_TYPE_ACCELEROMETER) {
sSensorDevice->setDelay(sSensorDevice, aSensor.handle,
ACCELEROMETER_POLL_RATE);
} else {
sSensorDevice->setDelay(sSensorDevice, aSensor.handle,
DEFAULT_DEVICE_POLL_RATE);
}
}
if (aActivate) {
sSensorRefCount[index]++;
} else {
sSensorRefCount[index]--;
}
}
static void
SetSensorState(SensorType aSensor, bool activate)
{
int type = HalSensorToHardwareSensor(aSensor);
const sensor_t* sensors = nullptr;
int size = sSensorModule->get_sensors_list(sSensorModule, &sensors);
for (ssize_t i = 0; i < size; i++) {
if (sensors[i].type == type) {
SwitchSensor(activate, sensors[i], pthread_self());
break;
}
}
}
static void
EnableSensorNotificationsInternal(SensorType aSensor)
{
if (!sSensorModule) {
hw_get_module(SENSORS_HARDWARE_MODULE_ID,
(hw_module_t const**)&sSensorModule);
if (!sSensorModule) {
HAL_ERR("Can't get sensor HAL module\n");
return;
}
sensors_open(&sSensorModule->common, &sSensorDevice);
if (!sSensorDevice) {
sSensorModule = nullptr;
HAL_ERR("Can't get sensor poll device from module \n");
return;
}
sensor_t const* sensors;
int count = sSensorModule->get_sensors_list(sSensorModule, &sensors);
for (size_t i=0 ; i<size_t(count) ; i++) {
sSensorDevice->activate(sSensorDevice, sensors[i].handle, 0);
}
}
if (!sPollingThread) {
sPollingThread = new base::Thread("GonkSensors");
MOZ_ASSERT(sPollingThread);
// sPollingThread never terminates because poll may never return
sPollingThread->Start();
sPollingThread->message_loop()->PostTask(FROM_HERE,
NewRunnableFunction(PollSensors));
}
SetSensorState(aSensor, true);
}
static void
DisableSensorNotificationsInternal(SensorType aSensor)
{
if (!sSensorModule) {
return;
}
SetSensorState(aSensor, false);
}
//
// Daemon
//
typedef detail::SaturateOp<uint32_t> SaturateOpUint32;
/**
* The poll notification handler receives all events about sensors and
* sensor events.
*/
class SensorsPollNotificationHandler final
: public GonkSensorsPollNotificationHandler
{
public:
SensorsPollNotificationHandler(GonkSensorsPollInterface* aPollInterface)
: mPollInterface(aPollInterface)
{
MOZ_ASSERT(mPollInterface);
mPollInterface->SetNotificationHandler(this);
}
void EnableSensorsByType(SensorsType aType)
{
if (SaturateOpUint32(mClasses[aType].mActivated)++) {
return;
}
SensorsDeliveryMode deliveryMode = DefaultSensorsDeliveryMode(aType);
// Old ref-count for the sensor type was 0, so we
// activate all sensors of the type.
for (size_t i = 0; i < mSensors.Length(); ++i) {
if (mSensors[i].mType == aType &&
mSensors[i].mDeliveryMode == deliveryMode) {
mPollInterface->EnableSensor(mSensors[i].mId, nullptr);
mPollInterface->SetPeriod(mSensors[i].mId, DefaultSensorPeriod(aType),
nullptr);
}
}
}
void DisableSensorsByType(SensorsType aType)
{
if (SaturateOpUint32(mClasses[aType].mActivated)-- != 1) {
return;
}
SensorsDeliveryMode deliveryMode = DefaultSensorsDeliveryMode(aType);
// Old ref-count for the sensor type was 1, so we
// deactivate all sensors of the type.
for (size_t i = 0; i < mSensors.Length(); ++i) {
if (mSensors[i].mType == aType &&
mSensors[i].mDeliveryMode == deliveryMode) {
mPollInterface->DisableSensor(mSensors[i].mId, nullptr);
}
}
}
void ClearSensorClasses()
{
for (size_t i = 0; i < MOZ_ARRAY_LENGTH(mClasses); ++i) {
mClasses[i] = SensorsSensorClass();
}
}
void ClearSensors()
{
mSensors.Clear();
}
// Methods for SensorsPollNotificationHandler
//
void ErrorNotification(SensorsError aError) override
{
// XXX: Bug 1206056: Try to repair some of the errors or restart cleanly.
}
void SensorDetectedNotification(int32_t aId, SensorsType aType,
float aRange, float aResolution,
float aPower, int32_t aMinPeriod,
int32_t aMaxPeriod,
SensorsTriggerMode aTriggerMode,
SensorsDeliveryMode aDeliveryMode) override
{
auto i = FindSensorIndexById(aId);
if (i == -1) {
// Add a new sensor...
i = mSensors.Length();
mSensors.AppendElement(SensorsSensor(aId, aType, aRange, aResolution,
aPower, aMinPeriod, aMaxPeriod,
aTriggerMode, aDeliveryMode));
} else {
// ...or update an existing one.
mSensors[i] = SensorsSensor(aId, aType, aRange, aResolution, aPower,
aMinPeriod, aMaxPeriod, aTriggerMode,
aDeliveryMode);
}
mClasses[aType].UpdateFromSensor(mSensors[i]);
if (mClasses[aType].mActivated &&
mSensors[i].mDeliveryMode == DefaultSensorsDeliveryMode(aType)) {
// The new sensor's type is enabled, so enable sensor.
mPollInterface->EnableSensor(aId, nullptr);
mPollInterface->SetPeriod(mSensors[i].mId, DefaultSensorPeriod(aType),
nullptr);
}
}
void SensorLostNotification(int32_t aId) override
{
auto i = FindSensorIndexById(aId);
if (i != -1) {
mSensors.RemoveElementAt(i);
}
}
void EventNotification(int32_t aId, const SensorsEvent& aEvent) override
{
auto i = FindSensorIndexById(aId);
if (i == -1) {
HAL_ERR("Sensor %d not registered", aId);
return;
}
SensorData sensorData;
auto rv = CreateSensorData(aEvent, mClasses[mSensors[i].mType],
sensorData);
if (NS_FAILED(rv)) {
return;
}
NotifySensorChange(sensorData);
}
private:
ssize_t FindSensorIndexById(int32_t aId) const
{
for (size_t i = 0; i < mSensors.Length(); ++i) {
if (mSensors[i].mId == aId) {
return i;
}
}
return -1;
}
uint64_t DefaultSensorPeriod(SensorsType aType) const
{
return aType == SENSORS_TYPE_ACCELEROMETER ? ACCELEROMETER_POLL_RATE
: DEFAULT_DEVICE_POLL_RATE;
}
SensorsDeliveryMode DefaultSensorsDeliveryMode(SensorsType aType) const
{
if (aType == SENSORS_TYPE_PROXIMITY ||
aType == SENSORS_TYPE_SIGNIFICANT_MOTION) {
return SENSORS_DELIVERY_MODE_IMMEDIATE;
}
return SENSORS_DELIVERY_MODE_BEST_EFFORT;
}
SensorType HardwareSensorToHalSensor(SensorsType aType) const
{
// FIXME: bug 802004, add proper support for the magnetic-field sensor.
switch (aType) {
case SENSORS_TYPE_ORIENTATION:
return SENSOR_ORIENTATION;
case SENSORS_TYPE_ACCELEROMETER:
return SENSOR_ACCELERATION;
case SENSORS_TYPE_PROXIMITY:
return SENSOR_PROXIMITY;
case SENSORS_TYPE_LIGHT:
return SENSOR_LIGHT;
case SENSORS_TYPE_GYROSCOPE:
return SENSOR_GYROSCOPE;
case SENSORS_TYPE_LINEAR_ACCELERATION:
return SENSOR_LINEAR_ACCELERATION;
case SENSORS_TYPE_ROTATION_VECTOR:
return SENSOR_ROTATION_VECTOR;
case SENSORS_TYPE_GAME_ROTATION_VECTOR:
return SENSOR_GAME_ROTATION_VECTOR;
default:
NS_NOTREACHED("Invalid sensors type");
}
return SENSOR_UNKNOWN;
}
SensorAccuracyType HardwareStatusToHalAccuracy(SensorsStatus aStatus) const
{
return static_cast<SensorAccuracyType>(aStatus - 1);
}
nsresult CreateSensorData(const SensorsEvent& aEvent,
const SensorsSensorClass& aSensorClass,
SensorData& aSensorData) const
{
AutoTArray<float, 4> sensorValues;
auto sensor = HardwareSensorToHalSensor(aEvent.mType);
if (sensor == SENSOR_UNKNOWN) {
return NS_ERROR_ILLEGAL_VALUE;
}
aSensorData.sensor() = sensor;
aSensorData.accuracy() = HardwareStatusToHalAccuracy(aEvent.mStatus);
aSensorData.timestamp() = aEvent.mTimestamp;
if (aSensorData.sensor() == SENSOR_ORIENTATION) {
// Bug 938035: transfer HAL data for orientation sensor to meet W3C spec
// ex: HAL report alpha=90 means East but alpha=90 means West in W3C spec
sensorValues.AppendElement(360.0 - radToDeg(aEvent.mData.mFloat[0]));
sensorValues.AppendElement(-radToDeg(aEvent.mData.mFloat[1]));
sensorValues.AppendElement(-radToDeg(aEvent.mData.mFloat[2]));
} else if (aSensorData.sensor() == SENSOR_ACCELERATION) {
sensorValues.AppendElement(aEvent.mData.mFloat[0]);
sensorValues.AppendElement(aEvent.mData.mFloat[1]);
sensorValues.AppendElement(aEvent.mData.mFloat[2]);
} else if (aSensorData.sensor() == SENSOR_PROXIMITY) {
sensorValues.AppendElement(aEvent.mData.mFloat[0]);
sensorValues.AppendElement(aSensorClass.mMinValue);
sensorValues.AppendElement(aSensorClass.mMaxValue);
} else if (aSensorData.sensor() == SENSOR_LINEAR_ACCELERATION) {
sensorValues.AppendElement(aEvent.mData.mFloat[0]);
sensorValues.AppendElement(aEvent.mData.mFloat[1]);
sensorValues.AppendElement(aEvent.mData.mFloat[2]);
} else if (aSensorData.sensor() == SENSOR_GYROSCOPE) {
sensorValues.AppendElement(radToDeg(aEvent.mData.mFloat[0]));
sensorValues.AppendElement(radToDeg(aEvent.mData.mFloat[1]));
sensorValues.AppendElement(radToDeg(aEvent.mData.mFloat[2]));
} else if (aSensorData.sensor() == SENSOR_LIGHT) {
sensorValues.AppendElement(aEvent.mData.mFloat[0]);
} else if (aSensorData.sensor() == SENSOR_ROTATION_VECTOR) {
sensorValues.AppendElement(aEvent.mData.mFloat[0]);
sensorValues.AppendElement(aEvent.mData.mFloat[1]);
sensorValues.AppendElement(aEvent.mData.mFloat[2]);
sensorValues.AppendElement(aEvent.mData.mFloat[3]);
} else if (aSensorData.sensor() == SENSOR_GAME_ROTATION_VECTOR) {
sensorValues.AppendElement(aEvent.mData.mFloat[0]);
sensorValues.AppendElement(aEvent.mData.mFloat[1]);
sensorValues.AppendElement(aEvent.mData.mFloat[2]);
sensorValues.AppendElement(aEvent.mData.mFloat[3]);
}
aSensorData.values() = sensorValues;
return NS_OK;
}
GonkSensorsPollInterface* mPollInterface;
nsTArray<SensorsSensor> mSensors;
SensorsSensorClass mClasses[SENSORS_NUM_TYPES];
};
static StaticAutoPtr<SensorsPollNotificationHandler> sPollNotificationHandler;
/**
* This is the notifiaction handler for the Sensors interface. If the backend
* crashes, we can restart it from here.
*/
class SensorsNotificationHandler final : public GonkSensorsNotificationHandler
{
public:
SensorsNotificationHandler(GonkSensorsInterface* aInterface)
: mInterface(aInterface)
{
MOZ_ASSERT(mInterface);
mInterface->SetNotificationHandler(this);
}
void BackendErrorNotification(bool aCrashed) override
{
// XXX: Bug 1206056: restart sensorsd
}
private:
GonkSensorsInterface* mInterface;
};
static StaticAutoPtr<SensorsNotificationHandler> sNotificationHandler;
/**
* |SensorsRegisterModuleResultHandler| implements the result-handler
* callback for registering the Poll service and activating the first
* sensors. If an error occures during the process, the result handler
* disconnects and closes the backend.
*/
class SensorsRegisterModuleResultHandler final
: public GonkSensorsRegistryResultHandler
{
public:
SensorsRegisterModuleResultHandler(
uint32_t* aSensorsTypeActivated,
GonkSensorsInterface* aInterface)
: mSensorsTypeActivated(aSensorsTypeActivated)
, mInterface(aInterface)
{
MOZ_ASSERT(mSensorsTypeActivated);
MOZ_ASSERT(mInterface);
}
void OnError(SensorsError aError) override
{
GonkSensorsRegistryResultHandler::OnError(aError); // print error message
Disconnect(); // Registering failed, so close the connection completely
}
void RegisterModule(uint32_t aProtocolVersion) override
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(!sPollNotificationHandler);
// Init, step 3: set notification handler for poll service and vice versa
auto pollInterface = mInterface->GetSensorsPollInterface();
if (!pollInterface) {
Disconnect();
return;
}
if (NS_FAILED(pollInterface->SetProtocolVersion(aProtocolVersion))) {
Disconnect();
return;
}
sPollNotificationHandler =
new SensorsPollNotificationHandler(pollInterface);
// Init, step 4: activate sensors
for (int i = 0; i < SENSORS_NUM_TYPES; ++i) {
while (mSensorsTypeActivated[i]) {
sPollNotificationHandler->EnableSensorsByType(
static_cast<SensorsType>(i));
--mSensorsTypeActivated[i];
}
}
}
public:
void Disconnect()
{
class DisconnectResultHandler final : public GonkSensorsResultHandler
{
public:
void OnError(SensorsError aError)
{
GonkSensorsResultHandler::OnError(aError); // print error message
sNotificationHandler = nullptr;
}
void Disconnect() override
{
sNotificationHandler = nullptr;
}
};
mInterface->Disconnect(new DisconnectResultHandler());
}
private:
uint32_t* mSensorsTypeActivated;
GonkSensorsInterface* mInterface;
};
/**
* |SensorsConnectResultHandler| implements the result-handler
* callback for starting the Sensors backend.
*/
class SensorsConnectResultHandler final : public GonkSensorsResultHandler
{
public:
SensorsConnectResultHandler(
uint32_t* aSensorsTypeActivated,
GonkSensorsInterface* aInterface)
: mSensorsTypeActivated(aSensorsTypeActivated)
, mInterface(aInterface)
{
MOZ_ASSERT(mSensorsTypeActivated);
MOZ_ASSERT(mInterface);
}
void OnError(SensorsError aError) override
{
GonkSensorsResultHandler::OnError(aError); // print error message
sNotificationHandler = nullptr;
}
void Connect() override
{
MOZ_ASSERT(NS_IsMainThread());
// Init, step 2: register poll service
auto registryInterface = mInterface->GetSensorsRegistryInterface();
if (!registryInterface) {
return;
}
registryInterface->RegisterModule(
GonkSensorsPollModule::SERVICE_ID,
new SensorsRegisterModuleResultHandler(mSensorsTypeActivated,
mInterface));
}
private:
uint32_t* mSensorsTypeActivated;
GonkSensorsInterface* mInterface;
};
static uint32_t sSensorsTypeActivated[SENSORS_NUM_TYPES];
static const SensorsType sSensorsType[] = {
[SENSOR_ORIENTATION] = SENSORS_TYPE_ORIENTATION,
[SENSOR_ACCELERATION] = SENSORS_TYPE_ACCELEROMETER,
[SENSOR_PROXIMITY] = SENSORS_TYPE_PROXIMITY,
[SENSOR_LINEAR_ACCELERATION] = SENSORS_TYPE_LINEAR_ACCELERATION,
[SENSOR_GYROSCOPE] = SENSORS_TYPE_GYROSCOPE,
[SENSOR_LIGHT] = SENSORS_TYPE_LIGHT,
[SENSOR_ROTATION_VECTOR] = SENSORS_TYPE_ROTATION_VECTOR,
[SENSOR_GAME_ROTATION_VECTOR] = SENSORS_TYPE_GAME_ROTATION_VECTOR
};
void
EnableSensorNotificationsDaemon(SensorType aSensor)
{
if ((aSensor < 0) ||
(aSensor > static_cast<ssize_t>(MOZ_ARRAY_LENGTH(sSensorsType)))) {
HAL_ERR("Sensor type %d not known", aSensor);
return; // Unsupported sensor type
}
auto interface = GonkSensorsInterface::GetInstance();
if (!interface) {
return;
}
if (sPollNotificationHandler) {
// Everythings already up and running; enable sensor type.
sPollNotificationHandler->EnableSensorsByType(sSensorsType[aSensor]);
return;
}
++SaturateOpUint32(sSensorsTypeActivated[sSensorsType[aSensor]]);
if (sNotificationHandler) {
// We are in the middle of a pending start up; nothing else to do.
return;
}
// Start up
MOZ_ASSERT(!sPollNotificationHandler);
MOZ_ASSERT(!sNotificationHandler);
sNotificationHandler = new SensorsNotificationHandler(interface);
// Init, step 1: connect to Sensors backend
interface->Connect(
sNotificationHandler,
new SensorsConnectResultHandler(sSensorsTypeActivated, interface));
}
void
DisableSensorNotificationsDaemon(SensorType aSensor)
{
if ((aSensor < 0) ||
(aSensor > static_cast<ssize_t>(MOZ_ARRAY_LENGTH(sSensorsType)))) {
HAL_ERR("Sensor type %d not known", aSensor);
return; // Unsupported sensor type
}
if (sPollNotificationHandler) {
// Everthings up and running; disable sensors type
sPollNotificationHandler->DisableSensorsByType(sSensorsType[aSensor]);
return;
}
// We might be in the middle of a startup; decrement type's ref-counter.
--SaturateOpUint32(sSensorsTypeActivated[sSensorsType[aSensor]]);
// TODO: stop sensorsd if all sensors are disabled
}
//
// Public interface
//
// TODO: Remove in-Gecko sensors code. Until all devices' base
// images come with sensorsd installed, we have to support the
// in-Gecko implementation as well. So we test for the existance
// of the binary. If it's there, we use it. Otherwise we run the
// old code.
static bool
HasDaemon()
{
static bool tested;
static bool hasDaemon;
if (MOZ_UNLIKELY(!tested)) {
hasDaemon = !access("/system/bin/sensorsd", X_OK);
tested = true;
}
return hasDaemon;
}
void
EnableSensorNotifications(SensorType aSensor)
{
if (HasDaemon()) {
EnableSensorNotificationsDaemon(aSensor);
} else {
EnableSensorNotificationsInternal(aSensor);
}
}
void
DisableSensorNotifications(SensorType aSensor)
{
if (HasDaemon()) {
DisableSensorNotificationsDaemon(aSensor);
} else {
DisableSensorNotificationsInternal(aSensor);
}
}
} // hal_impl
} // mozilla