gecko-dev/mfbt/Result.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

577 строки
19 KiB
C
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* A type suitable for returning either a value or an error from a function. */
#ifndef mozilla_Result_h
#define mozilla_Result_h
#include <type_traits>
#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Types.h"
#include "mozilla/Variant.h"
namespace mozilla {
/**
* Empty struct, indicating success for operations that have no return value.
* For example, if you declare another empty struct `struct OutOfMemory {};`,
* then `Result<Ok, OutOfMemory>` represents either success or OOM.
*/
struct Ok {};
template <typename E>
class GenericErrorResult;
template <typename V, typename E>
class Result;
namespace detail {
enum class PackingStrategy {
Variant,
NullIsOk,
LowBitTagIsError,
PackedVariant,
};
template <typename V, typename E, PackingStrategy Strategy>
class ResultImplementation;
template <typename V, typename E>
class ResultImplementation<V, E, PackingStrategy::Variant> {
mozilla::Variant<V, E> mStorage;
public:
ResultImplementation(ResultImplementation&&) = default;
ResultImplementation(const ResultImplementation&) = default;
ResultImplementation& operator=(const ResultImplementation&) = default;
ResultImplementation& operator=(ResultImplementation&&) = default;
explicit ResultImplementation(V&& aValue)
: mStorage(std::forward<V>(aValue)) {}
explicit ResultImplementation(const V& aValue) : mStorage(aValue) {}
explicit ResultImplementation(const E& aErrorValue) : mStorage(aErrorValue) {}
explicit ResultImplementation(E&& aErrorValue)
: mStorage(std::forward<E>(aErrorValue)) {}
bool isOk() const { return mStorage.template is<V>(); }
// The callers of these functions will assert isOk() has the proper value, so
// these functions (in all ResultImplementation specializations) don't need
// to do so.
V unwrap() { return std::move(mStorage.template as<V>()); }
const V& inspect() const { return mStorage.template as<V>(); }
E unwrapErr() { return std::move(mStorage.template as<E>()); }
const E& inspectErr() const { return mStorage.template as<E>(); }
};
/**
* mozilla::Variant doesn't like storing a reference. This is a specialization
* to store E as pointer if it's a reference.
*/
template <typename V, typename E>
class ResultImplementation<V, E&, PackingStrategy::Variant> {
mozilla::Variant<V, E*> mStorage;
public:
explicit ResultImplementation(V&& aValue)
: mStorage(std::forward<V>(aValue)) {}
explicit ResultImplementation(const V& aValue) : mStorage(aValue) {}
explicit ResultImplementation(E& aErrorValue) : mStorage(&aErrorValue) {}
bool isOk() const { return mStorage.template is<V>(); }
const V& inspect() const { return mStorage.template as<V>(); }
V unwrap() { return std::move(mStorage.template as<V>()); }
E& unwrapErr() { return *mStorage.template as<E*>(); }
const E& inspectErr() const { return *mStorage.template as<E*>(); }
};
/**
* Specialization for when the success type is Ok (or another empty class) and
* the error type is a reference.
*/
template <typename V, typename E>
class ResultImplementation<V, E&, PackingStrategy::NullIsOk> {
E* mErrorValue;
public:
explicit ResultImplementation(V) : mErrorValue(nullptr) {}
explicit ResultImplementation(E& aErrorValue) : mErrorValue(&aErrorValue) {}
bool isOk() const { return mErrorValue == nullptr; }
const V& inspect() const = delete;
V unwrap() { return V(); }
const E& inspectErr() const { return *mErrorValue; }
E& unwrapErr() { return *mErrorValue; }
};
/**
* Specialization for when the success type is Ok (or another empty class) and
* the error type is a value type which can never have the value 0 (as
* determined by UnusedZero<>).
*/
template <typename V, typename E>
class ResultImplementation<V, E, PackingStrategy::NullIsOk> {
static constexpr E NullValue = E(0);
E mErrorValue;
public:
explicit ResultImplementation(V) : mErrorValue(NullValue) {}
explicit ResultImplementation(E aErrorValue) : mErrorValue(aErrorValue) {
MOZ_ASSERT(aErrorValue != NullValue);
}
bool isOk() const { return mErrorValue == NullValue; }
const V& inspect() const = delete;
V unwrap() { return V(); }
const E& inspectErr() const { return mErrorValue; }
E unwrapErr() { return std::move(mErrorValue); }
};
/**
* Specialization for when alignment permits using the least significant bit as
* a tag bit.
*/
template <typename V, typename E>
class ResultImplementation<V*, E&, PackingStrategy::LowBitTagIsError> {
uintptr_t mBits;
public:
explicit ResultImplementation(V* aValue)
: mBits(reinterpret_cast<uintptr_t>(aValue)) {
MOZ_ASSERT((uintptr_t(aValue) % MOZ_ALIGNOF(V)) == 0,
"Result value pointers must not be misaligned");
}
explicit ResultImplementation(E& aErrorValue)
: mBits(reinterpret_cast<uintptr_t>(&aErrorValue) | 1) {
MOZ_ASSERT((uintptr_t(&aErrorValue) % MOZ_ALIGNOF(E)) == 0,
"Result errors must not be misaligned");
}
bool isOk() const { return (mBits & 1) == 0; }
V* inspect() const { return reinterpret_cast<V*>(mBits); }
V* unwrap() { return inspect(); }
E& inspectErr() const { return *reinterpret_cast<E*>(mBits ^ 1); }
E& unwrapErr() { return inspectErr(); }
};
// Return true if any of the struct can fit in a word.
template <typename V, typename E>
struct IsPackableVariant {
struct VEbool {
V v;
E e;
bool ok;
};
struct EVbool {
E e;
V v;
bool ok;
};
using Impl =
std::conditional_t<sizeof(VEbool) <= sizeof(EVbool), VEbool, EVbool>;
static const bool value = sizeof(Impl) <= sizeof(uintptr_t);
};
/**
* Specialization for when both type are not using all the bytes, in order to
* use one byte as a tag.
*/
template <typename V, typename E>
class ResultImplementation<V, E, PackingStrategy::PackedVariant> {
using Impl = typename IsPackableVariant<V, E>::Impl;
Impl data;
public:
explicit ResultImplementation(V aValue) {
data.v = std::move(aValue);
data.ok = true;
}
explicit ResultImplementation(E aErrorValue) {
data.e = std::move(aErrorValue);
data.ok = false;
}
bool isOk() const { return data.ok; }
const V& inspect() const { return data.v; }
V unwrap() { return std::move(data.v); }
const E& inspectErr() const { return data.e; }
E unwrapErr() { return std::move(data.e); }
};
// To use nullptr as a special value, we need the counter part to exclude zero
// from its range of valid representations.
//
// By default assume that zero can be represented.
template <typename T>
struct UnusedZero {
static const bool value = false;
};
// References can't be null.
template <typename T>
struct UnusedZero<T&> {
static const bool value = true;
};
// A bit of help figuring out which of the above specializations to use.
//
// We begin by safely assuming types don't have a spare bit.
template <typename T>
struct HasFreeLSB {
static const bool value = false;
};
// As an incomplete type, void* does not have a spare bit.
template <>
struct HasFreeLSB<void*> {
static const bool value = false;
};
// The lowest bit of a properly-aligned pointer is always zero if the pointee
// type is greater than byte-aligned. That bit is free to use if it's masked
// out of such pointers before they're dereferenced.
template <typename T>
struct HasFreeLSB<T*> {
static const bool value = (alignof(T) & 1) == 0;
};
// We store references as pointers, so they have a free bit if a pointer would
// have one.
template <typename T>
struct HasFreeLSB<T&> {
static const bool value = HasFreeLSB<T*>::value;
};
// Select one of the previous result implementation based on the properties of
// the V and E types.
template <typename V, typename E>
struct SelectResultImpl {
static const PackingStrategy value =
(std::is_empty_v<V> && UnusedZero<E>::value)
? PackingStrategy::NullIsOk
: (detail::HasFreeLSB<V>::value && detail::HasFreeLSB<E>::value)
? PackingStrategy::LowBitTagIsError
: (std::is_default_constructible_v<V> &&
std::is_default_constructible_v<E> &&
IsPackableVariant<V, E>::value)
? PackingStrategy::PackedVariant
: PackingStrategy::Variant;
using Type = detail::ResultImplementation<V, E, value>;
};
template <typename T>
struct IsResult : std::false_type {};
template <typename V, typename E>
struct IsResult<Result<V, E>> : std::true_type {};
} // namespace detail
template <typename V, typename E>
auto ToResult(Result<V, E>&& aValue)
-> decltype(std::forward<Result<V, E>>(aValue)) {
return std::forward<Result<V, E>>(aValue);
}
/**
* Result<V, E> represents the outcome of an operation that can either succeed
* or fail. It contains either a success value of type V or an error value of
* type E.
*
* All Result methods are const, so results are basically immutable.
* This is just like Variant<V, E> but with a slightly different API, and the
* following cases are optimized so Result can be stored more efficiently:
*
* - If the success type is Ok (or another empty class) and the error type is a
* reference, Result<V, E&> is guaranteed to be pointer-sized and all zero
* bits on success. Do not change this representation! There is JIT code that
* depends on it.
*
* - If the success type is a pointer type and the error type is a reference
* type, and the least significant bit is unused for both types when stored
* as a pointer (due to alignment rules), Result<V*, E&> is guaranteed to be
* pointer-sized. In this case, we use the lowest bit as tag bit: 0 to
* indicate the Result's bits are a V, 1 to indicate the Result's bits (with
* the 1 masked out) encode an E*.
*
* The purpose of Result is to reduce the screwups caused by using `false` or
* `nullptr` to indicate errors.
* What screwups? See <https://bugzilla.mozilla.org/show_bug.cgi?id=912928> for
* a partial list.
*/
template <typename V, typename E>
class MOZ_MUST_USE_TYPE Result final {
using Impl = typename detail::SelectResultImpl<V, E>::Type;
Impl mImpl;
public:
using ok_type = V;
using err_type = E;
/** Create a success result. */
MOZ_IMPLICIT Result(V&& aValue) : mImpl(std::forward<V>(aValue)) {
MOZ_ASSERT(isOk());
}
/** Create a success result. */
MOZ_IMPLICIT Result(const V& aValue) : mImpl(aValue) { MOZ_ASSERT(isOk()); }
/** Create an error result. */
explicit Result(E aErrorValue) : mImpl(std::forward<E>(aErrorValue)) {
MOZ_ASSERT(isErr());
}
/**
* Implementation detail of MOZ_TRY().
* Create an error result from another error result.
*/
template <typename E2>
MOZ_IMPLICIT Result(GenericErrorResult<E2>&& aErrorResult)
: mImpl(std::forward<E2>(aErrorResult.mErrorValue)) {
static_assert(std::is_convertible_v<E2, E>, "E2 must be convertible to E");
MOZ_ASSERT(isErr());
}
/**
* Implementation detail of MOZ_TRY().
* Create an error result from another error result.
*/
template <typename E2>
MOZ_IMPLICIT Result(const GenericErrorResult<E2>& aErrorResult)
: mImpl(aErrorResult.mErrorValue) {
static_assert(std::is_convertible_v<E2, E>, "E2 must be convertible to E");
MOZ_ASSERT(isErr());
}
Result(const Result&) = default;
Result(Result&&) = default;
Result& operator=(const Result&) = default;
Result& operator=(Result&&) = default;
/** True if this Result is a success result. */
bool isOk() const { return mImpl.isOk(); }
/** True if this Result is an error result. */
bool isErr() const { return !mImpl.isOk(); }
/** Take the success value from this Result, which must be a success result.
*/
V unwrap() {
MOZ_ASSERT(isOk());
return mImpl.unwrap();
}
/**
* Take the success value from this Result, which must be a success result.
* If it is an error result, then return the aValue.
*/
V unwrapOr(V aValue) {
return MOZ_LIKELY(isOk()) ? mImpl.unwrap() : std::move(aValue);
}
/** Take the error value from this Result, which must be an error result. */
E unwrapErr() {
MOZ_ASSERT(isErr());
return mImpl.unwrapErr();
}
/** See the success value from this Result, which must be a success result. */
const V& inspect() const { return mImpl.inspect(); }
/** See the error value from this Result, which must be an error result. */
const E& inspectErr() const {
MOZ_ASSERT(isErr());
return mImpl.inspectErr();
}
/** Propagate the error value from this Result, which must be an error result.
*
* This can be used to propagate an error from a function call to the caller
* with a different value type, but the same error type:
*
* Result<T1, E> Func1() {
* Result<T2, E> res = Func2();
* if (res.isErr()) { return res.propagateErr(); }
* }
*/
GenericErrorResult<E> propagateErr() {
MOZ_ASSERT(isErr());
return GenericErrorResult<E>{mImpl.unwrapErr()};
}
/**
* Map a function V -> W over this result's success variant. If this result is
* an error, do not invoke the function and propagate the error.
*
* Mapping over success values invokes the function to produce a new success
* value:
*
* // Map Result<int, E> to another Result<int, E>
* Result<int, E> res(5);
* Result<int, E> res2 = res.map([](int x) { return x * x; });
* MOZ_ASSERT(res2.unwrap() == 25);
*
* // Map Result<const char*, E> to Result<size_t, E>
* Result<const char*, E> res("hello, map!");
* Result<size_t, E> res2 = res.map(strlen);
* MOZ_ASSERT(res2.unwrap() == 11);
*
* Mapping over an error does not invoke the function and propagates the
* error:
*
* Result<V, int> res(5);
* MOZ_ASSERT(res.isErr());
* Result<W, int> res2 = res.map([](V v) { ... });
* MOZ_ASSERT(res2.isErr());
* MOZ_ASSERT(res2.unwrapErr() == 5);
*/
template <typename F>
auto map(F f) -> Result<decltype(f(*((V*)nullptr))), E> {
using RetResult = Result<decltype(f(*((V*)nullptr))), E>;
return MOZ_LIKELY(isOk()) ? RetResult(f(unwrap())) : RetResult(unwrapErr());
}
/**
* Map a function V -> W over this result's error variant. If this result is
* a success, do not invoke the function and move the success over.
*
* Mapping over error values invokes the function to produce a new error
* value:
*
* // Map Result<V, int> to another Result<V, int>
* Result<V, int> res(5);
* Result<V, int> res2 = res.mapErr([](int x) { return x * x; });
* MOZ_ASSERT(res2.unwrapErr() == 25);
*
* // Map Result<V, const char*> to Result<V, size_t>
* Result<V, const char*> res("hello, map!");
* Result<size_t, E> res2 = res.mapErr(strlen);
* MOZ_ASSERT(res2.unwrapErr() == 11);
*
* Mapping over a success does not invoke the function and copies the error:
*
* Result<int, V> res(5);
* MOZ_ASSERT(res.isOk());
* Result<int, W> res2 = res.mapErr([](V v) { ... });
* MOZ_ASSERT(res2.isOk());
* MOZ_ASSERT(res2.unwrap() == 5);
*/
template <typename F>
auto mapErr(F f) -> Result<V, std::result_of_t<F(E)>> {
using RetResult = Result<V, std::result_of_t<F(E)>>;
return isOk() ? RetResult(unwrap()) : RetResult(f(unwrapErr()));
}
/**
* Given a function V -> Result<W, E>, apply it to this result's success value
* and return its result. If this result is an error value, it is propagated.
*
* This is sometimes called "flatMap" or ">>=" in other contexts.
*
* `andThen`ing over success values invokes the function to produce a new
* result:
*
* Result<const char*, Error> res("hello, andThen!");
* Result<HtmlFreeString, Error> res2 = res.andThen([](const char* s) {
* return containsHtmlTag(s)
* ? Result<HtmlFreeString, Error>(Error("Invalid: contains HTML"))
* : Result<HtmlFreeString, Error>(HtmlFreeString(s));
* }
* });
* MOZ_ASSERT(res2.isOk());
* MOZ_ASSERT(res2.unwrap() == HtmlFreeString("hello, andThen!");
*
* `andThen`ing over error results does not invoke the function, and just
* propagates the error result:
*
* Result<int, const char*> res("some error");
* auto res2 = res.andThen([](int x) { ... });
* MOZ_ASSERT(res2.isErr());
* MOZ_ASSERT(res.unwrapErr() == res2.unwrapErr());
*/
template <typename F, typename = std::enable_if_t<detail::IsResult<
decltype((*((F*)nullptr))(*((V*)nullptr)))>::value>>
auto andThen(F f) -> decltype(f(*((V*)nullptr))) {
return MOZ_LIKELY(isOk()) ? f(unwrap()) : propagateErr();
}
};
/**
* A type that auto-converts to an error Result. This is like a Result without
* a success type. It's the best return type for functions that always return
* an error--functions designed to build and populate error objects. It's also
* useful in error-handling macros; see MOZ_TRY for an example.
*/
template <typename E>
class MOZ_MUST_USE_TYPE GenericErrorResult {
E mErrorValue;
template <typename V, typename E2>
friend class Result;
public:
explicit GenericErrorResult(E&& aErrorValue)
: mErrorValue(std::forward<E>(aErrorValue)) {}
};
template <typename E>
inline GenericErrorResult<E> Err(E&& aErrorValue) {
return GenericErrorResult<E>(std::forward<E>(aErrorValue));
}
} // namespace mozilla
/**
* MOZ_TRY(expr) is the C++ equivalent of Rust's `try!(expr);`. First, it
* evaluates expr, which must produce a Result value. On success, it
* discards the result altogether. On error, it immediately returns an error
* Result from the enclosing function.
*/
#define MOZ_TRY(expr) \
do { \
auto mozTryTempResult_ = ::mozilla::ToResult(expr); \
if (MOZ_UNLIKELY(mozTryTempResult_.isErr())) { \
return mozTryTempResult_.propagateErr(); \
} \
} while (0)
/**
* MOZ_TRY_VAR(target, expr) is the C++ equivalent of Rust's `target =
* try!(expr);`. First, it evaluates expr, which must produce a Result value. On
* success, the result's success value is assigned to target. On error,
* immediately returns the error result. |target| must evaluate to a reference
* without any side effects.
*/
#define MOZ_TRY_VAR(target, expr) \
do { \
auto mozTryVarTempResult_ = (expr); \
if (MOZ_UNLIKELY(mozTryVarTempResult_.isErr())) { \
return mozTryVarTempResult_.propagateErr(); \
} \
(target) = mozTryVarTempResult_.unwrap(); \
} while (0)
#endif // mozilla_Result_h