gecko-dev/content/media/ogg/nsOggReader.cpp

1677 строки
62 KiB
C++
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla code.
*
* The Initial Developer of the Original Code is the Mozilla Corporation.
* Portions created by the Initial Developer are Copyright (C) 2007
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Chris Double <chris.double@double.co.nz>
* Chris Pearce <chris@pearce.org.nz>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include "nsError.h"
#include "nsBuiltinDecoderStateMachine.h"
#include "nsBuiltinDecoder.h"
#include "nsOggReader.h"
#include "VideoUtils.h"
#include "theora/theoradec.h"
#include "nsTimeRanges.h"
using namespace mozilla;
// Un-comment to enable logging of seek bisections.
//#define SEEK_LOGGING
#ifdef PR_LOGGING
extern PRLogModuleInfo* gBuiltinDecoderLog;
#define LOG(type, msg) PR_LOG(gBuiltinDecoderLog, type, msg)
#ifdef SEEK_LOGGING
#define SEEK_LOG(type, msg) PR_LOG(gBuiltinDecoderLog, type, msg)
#else
#define SEEK_LOG(type, msg)
#endif
#else
#define LOG(type, msg)
#define SEEK_LOG(type, msg)
#endif
// If we don't have a Theora video stream, then during seeking, if a seek
// target is less than SEEK_DECODE_MARGIN ahead of the current playback
// position, we'll just decode forwards rather than performing a bisection
// search. If we have Theora video we use the maximum keyframe interval as
// this value, rather than SEEK_DECODE_MARGIN. This makes small seeks faster.
#define SEEK_DECODE_MARGIN 2000
// The number of milliseconds of "fuzz" we use in a bisection search over
// HTTP. When we're seeking with fuzz, we'll stop the search if a bisection
// lands between the seek target and SEEK_FUZZ_MS milliseconds before the
// seek target. This is becaue it's usually quicker to just keep downloading
// from an exisiting connection than to do another bisection inside that
// small range, which would open a new HTTP connetion.
#define SEEK_FUZZ_MS 500
enum PageSyncResult {
PAGE_SYNC_ERROR = 1,
PAGE_SYNC_END_OF_RANGE= 2,
PAGE_SYNC_OK = 3
};
// Reads a page from the media stream.
static PageSyncResult
PageSync(nsMediaStream* aStream,
ogg_sync_state* aState,
PRBool aCachedDataOnly,
PRInt64 aOffset,
PRInt64 aEndOffset,
ogg_page* aPage,
int& aSkippedBytes);
// Chunk size to read when reading Ogg files. Average Ogg page length
// is about 4300 bytes, so we read the file in chunks larger than that.
static const int PAGE_STEP = 8192;
nsOggReader::nsOggReader(nsBuiltinDecoder* aDecoder)
: nsBuiltinDecoderReader(aDecoder),
mTheoraState(nsnull),
mVorbisState(nsnull),
mSkeletonState(nsnull),
mVorbisSerial(0),
mTheoraSerial(0),
mPageOffset(0),
mTheoraGranulepos(-1),
mVorbisGranulepos(-1)
{
MOZ_COUNT_CTOR(nsOggReader);
}
nsOggReader::~nsOggReader()
{
ogg_sync_clear(&mOggState);
MOZ_COUNT_DTOR(nsOggReader);
}
nsresult nsOggReader::Init(nsBuiltinDecoderReader* aCloneDonor) {
PRBool init = mCodecStates.Init();
NS_ASSERTION(init, "Failed to initialize mCodecStates");
if (!init) {
return NS_ERROR_FAILURE;
}
int ret = ogg_sync_init(&mOggState);
NS_ENSURE_TRUE(ret == 0, NS_ERROR_FAILURE);
return NS_OK;
}
nsresult nsOggReader::ResetDecode()
{
nsresult res = NS_OK;
// Clear the Theora/Vorbis granulepos capture status, so that the next
// decode calls recaptures the granulepos.
mTheoraGranulepos = -1;
mVorbisGranulepos = -1;
if (NS_FAILED(nsBuiltinDecoderReader::ResetDecode())) {
res = NS_ERROR_FAILURE;
}
{
MonitorAutoEnter mon(mMonitor);
// Discard any previously buffered packets/pages.
ogg_sync_reset(&mOggState);
if (mVorbisState && NS_FAILED(mVorbisState->Reset())) {
res = NS_ERROR_FAILURE;
}
if (mTheoraState && NS_FAILED(mTheoraState->Reset())) {
res = NS_ERROR_FAILURE;
}
}
return res;
}
// Returns PR_TRUE when all bitstreams in aBitstreams array have finished
// reading their headers.
static PRBool DoneReadingHeaders(nsTArray<nsOggCodecState*>& aBitstreams) {
for (PRUint32 i = 0; i < aBitstreams .Length(); i++) {
if (!aBitstreams [i]->DoneReadingHeaders()) {
return PR_FALSE;
}
}
return PR_TRUE;
}
nsresult nsOggReader::ReadMetadata()
{
NS_ASSERTION(mDecoder->OnStateMachineThread(), "Should be on play state machine thread.");
MonitorAutoEnter mon(mMonitor);
// We read packets until all bitstreams have read all their header packets.
// We record the offset of the first non-header page so that we know
// what page to seek to when seeking to the media start.
ogg_page page;
PRInt64 pageOffset;
nsAutoTArray<nsOggCodecState*,4> bitstreams;
PRBool readAllBOS = PR_FALSE;
mDataOffset = 0;
while (PR_TRUE) {
if (readAllBOS && DoneReadingHeaders(bitstreams)) {
if (mDataOffset == 0) {
// We've previously found the start of the first non-header packet.
mDataOffset = mPageOffset;
}
break;
}
pageOffset = ReadOggPage(&page);
if (pageOffset == -1) {
// Some kind of error...
break;
}
int ret = 0;
int serial = ogg_page_serialno(&page);
nsOggCodecState* codecState = 0;
if (ogg_page_bos(&page)) {
NS_ASSERTION(!readAllBOS, "We shouldn't encounter another BOS page");
codecState = nsOggCodecState::Create(&page);
PRBool r = mCodecStates.Put(serial, codecState);
NS_ASSERTION(r, "Failed to insert into mCodecStates");
bitstreams.AppendElement(codecState);
mKnownStreams.AppendElement(serial);
if (codecState &&
codecState->GetType() == nsOggCodecState::TYPE_VORBIS &&
!mVorbisState)
{
// First Vorbis bitstream, we'll play this one. Subsequent Vorbis
// bitstreams will be ignored.
mVorbisState = static_cast<nsVorbisState*>(codecState);
}
if (codecState &&
codecState->GetType() == nsOggCodecState::TYPE_THEORA &&
!mTheoraState)
{
// First Theora bitstream, we'll play this one. Subsequent Theora
// bitstreams will be ignored.
mTheoraState = static_cast<nsTheoraState*>(codecState);
}
if (codecState &&
codecState->GetType() == nsOggCodecState::TYPE_SKELETON &&
!mSkeletonState)
{
mSkeletonState = static_cast<nsSkeletonState*>(codecState);
}
} else {
// We've encountered the a non Beginning Of Stream page. No more
// BOS pages can follow in this Ogg segment, so there will be no other
// bitstreams in the Ogg (unless it's invalid).
readAllBOS = PR_TRUE;
}
mCodecStates.Get(serial, &codecState);
NS_ENSURE_TRUE(codecState, NS_ERROR_FAILURE);
// Add a complete page to the bitstream
ret = ogg_stream_pagein(&codecState->mState, &page);
NS_ENSURE_TRUE(ret == 0, NS_ERROR_FAILURE);
// Process all available header packets in the stream.
ogg_packet packet;
if (codecState->DoneReadingHeaders() && mDataOffset == 0)
{
// Stream has read all header packets, but now there's more data in
// (presumably) a non-header page, we must have finished header packets.
// This can happen in incorrectly chopped streams.
mDataOffset = pageOffset;
continue;
}
while (!codecState->DoneReadingHeaders() &&
(ret = ogg_stream_packetout(&codecState->mState, &packet)) != 0)
{
if (ret == -1) {
// Sync lost, we've probably encountered the continuation of a packet
// in a chopped video.
continue;
}
// A packet is available. If it is not a header packet we'll break.
// If it is a header packet, process it as normal.
codecState->DecodeHeader(&packet);
}
if (ogg_stream_packetpeek(&codecState->mState, &packet) != 0 &&
mDataOffset == 0)
{
// We're finished reading headers for this bitstream, but there's still
// packets in the bitstream to read. The bitstream is probably poorly
// muxed, and includes the last header packet on a page with non-header
// packets. We need to ensure that this is the media start page offset.
mDataOffset = pageOffset;
}
}
// Deactivate any non-primary bitstreams.
for (PRUint32 i = 0; i < bitstreams.Length(); i++) {
nsOggCodecState* s = bitstreams[i];
if (s != mVorbisState && s != mTheoraState && s != mSkeletonState) {
s->Deactivate();
}
}
// Initialize the first Theora and Vorbis bitstreams. According to the
// Theora spec these can be considered the 'primary' bitstreams for playback.
// Extract the metadata needed from these streams.
// Set a default callback period for if we have no video data
if (mTheoraState && mTheoraState->Init()) {
gfxIntSize sz(mTheoraState->mInfo.pic_width,
mTheoraState->mInfo.pic_height);
mDecoder->SetVideoData(sz, mTheoraState->mPixelAspectRatio, nsnull);
}
if (mVorbisState) {
mVorbisState->Init();
}
if (!HasAudio() && !HasVideo() && mSkeletonState) {
// We have a skeleton track, but no audio or video, may as well disable
// the skeleton, we can't do anything useful with this media.
mSkeletonState->Deactivate();
}
mInfo.mHasAudio = HasAudio();
mInfo.mHasVideo = HasVideo();
if (HasAudio()) {
mInfo.mAudioRate = mVorbisState->mInfo.rate;
mInfo.mAudioChannels = mVorbisState->mInfo.channels;
}
if (HasVideo()) {
mInfo.mPixelAspectRatio = mTheoraState->mPixelAspectRatio;
mInfo.mPicture = nsIntRect(mTheoraState->mInfo.pic_x,
mTheoraState->mInfo.pic_y,
mTheoraState->mInfo.pic_width,
mTheoraState->mInfo.pic_height);
mInfo.mFrame = nsIntSize(mTheoraState->mInfo.frame_width,
mTheoraState->mInfo.frame_height);
mInfo.mDisplay = nsIntSize(mInfo.mPicture.width,
mInfo.mPicture.height);
}
mInfo.mDataOffset = mDataOffset;
if (mSkeletonState && mSkeletonState->HasIndex()) {
// Extract the duration info out of the index, so we don't need to seek to
// the end of stream to get it.
nsAutoTArray<PRUint32, 2> tracks;
if (HasVideo()) {
tracks.AppendElement(mTheoraState->mSerial);
}
if (HasAudio()) {
tracks.AppendElement(mVorbisState->mSerial);
}
PRInt64 duration = 0;
if (NS_SUCCEEDED(mSkeletonState->GetDuration(tracks, duration))) {
MonitorAutoExit exitReaderMon(mMonitor);
MonitorAutoEnter decoderMon(mDecoder->GetMonitor());
mDecoder->GetStateMachine()->SetDuration(duration);
LOG(PR_LOG_DEBUG, ("Got duration from Skeleton index %lld", duration));
}
}
// Copy Vorbis and Theora info data for time computations on other threads.
if (mVorbisState) {
memcpy(&mVorbisInfo, &mVorbisState->mInfo, sizeof(mVorbisInfo));
mVorbisInfo.codec_setup = NULL;
mVorbisSerial = mVorbisState->mSerial;
}
if (mTheoraState) {
memcpy(&mTheoraInfo, &mTheoraState->mInfo, sizeof(mTheoraInfo));
mTheoraSerial = mTheoraState->mSerial;
}
LOG(PR_LOG_DEBUG, ("Done loading headers, data offset %lld", mDataOffset));
return NS_OK;
}
nsresult nsOggReader::DecodeVorbis(nsTArray<nsAutoPtr<SoundData> >& aChunks,
ogg_packet* aPacket)
{
// Successfully read a packet.
if (vorbis_synthesis(&mVorbisState->mBlock, aPacket) != 0) {
return NS_ERROR_FAILURE;
}
if (vorbis_synthesis_blockin(&mVorbisState->mDsp,
&mVorbisState->mBlock) != 0)
{
return NS_ERROR_FAILURE;
}
VorbisPCMValue** pcm = 0;
PRInt32 samples = 0;
PRUint32 channels = mVorbisState->mInfo.channels;
while ((samples = vorbis_synthesis_pcmout(&mVorbisState->mDsp, &pcm)) > 0) {
SoundDataValue* buffer = new SoundDataValue[samples * channels];
for (PRUint32 j = 0; j < channels; ++j) {
VorbisPCMValue* channel = pcm[j];
for (PRUint32 i = 0; i < PRUint32(samples); ++i) {
buffer[i*channels + j] = MOZ_CONVERT_VORBIS_SAMPLE(channel[i]);
}
}
PRInt64 duration = mVorbisState->Time((PRInt64)samples);
PRInt64 startTime = (mVorbisGranulepos != -1) ?
mVorbisState->Time(mVorbisGranulepos) : -1;
SoundData* s = new SoundData(mPageOffset,
startTime,
duration,
samples,
buffer,
channels);
if (mVorbisGranulepos != -1) {
mVorbisGranulepos += samples;
}
if (!aChunks.AppendElement(s)) {
delete s;
}
if (vorbis_synthesis_read(&mVorbisState->mDsp, samples) != 0) {
return NS_ERROR_FAILURE;
}
}
return NS_OK;
}
PRBool nsOggReader::DecodeAudioData()
{
MonitorAutoEnter mon(mMonitor);
NS_ASSERTION(mDecoder->OnStateMachineThread() || mDecoder->OnDecodeThread(),
"Should be on playback or decode thread.");
NS_ASSERTION(mVorbisState!=0, "Need Vorbis state to decode audio");
ogg_packet packet;
packet.granulepos = -1;
PRBool endOfStream = PR_FALSE;
nsAutoTArray<nsAutoPtr<SoundData>, 64> chunks;
if (mVorbisGranulepos == -1) {
// Not captured Vorbis granulepos, read up until we get a granulepos, and
// back propagate the granulepos.
// We buffer the packets' pcm samples until we reach a packet with a granulepos.
// This will be the last packet in a page. Then using that granulepos to
// calculate the packet's end time, we calculate all the packets' start times by
// subtracting their durations.
// Ensure we've got Vorbis packets; read one more Vorbis page if necessary.
while (packet.granulepos <= 0 && !endOfStream) {
if (!ReadOggPacket(mVorbisState, &packet)) {
endOfStream = PR_TRUE;
break;
}
if (packet.e_o_s != 0) {
// This packet marks the logical end of the Vorbis bitstream. It may
// still contain sound samples, so we must still decode it.
endOfStream = PR_TRUE;
}
if (NS_FAILED(DecodeVorbis(chunks, &packet))) {
NS_WARNING("Failed to decode Vorbis packet");
}
}
if (packet.granulepos > 0) {
// Successfully read up to a non -1 granulepos.
// Calculate the timestamps of the sound samples.
PRInt64 granulepos = packet.granulepos; // Represents end time of last sample.
mVorbisGranulepos = packet.granulepos;
for (int i = chunks.Length() - 1; i >= 0; --i) {
SoundData* s = chunks[i];
PRInt64 startGranule = granulepos - s->mSamples;
s->mTime = mVorbisState->Time(startGranule);
granulepos = startGranule;
}
}
} else {
// We have already captured the granulepos. The next packet's granulepos
// is its number of samples, plus the previous granulepos.
if (!ReadOggPacket(mVorbisState, &packet)) {
endOfStream = PR_TRUE;
} else {
// Successfully read a packet from the file. Decode it.
endOfStream = packet.e_o_s != 0;
// Try to decode any packet we've read.
if (NS_FAILED(DecodeVorbis(chunks, &packet))) {
NS_WARNING("Failed to decode Vorbis packet");
}
if (packet.granulepos != -1 && packet.granulepos != mVorbisGranulepos) {
// If the packet's granulepos doesn't match our running sample total,
// it's likely the bitstream has been damaged somehow, or perhaps
// oggz-chopped. Just assume the packet's granulepos is correct...
mVorbisGranulepos = packet.granulepos;
}
}
}
// We've successfully decoded some sound chunks. Push them onto the audio
// queue.
for (PRUint32 i = 0; i < chunks.Length(); ++i) {
mAudioQueue.Push(chunks[i].forget());
}
if (endOfStream) {
// We've encountered an end of bitstream packet, or we've hit the end of
// file while trying to decode, so inform the audio queue that there'll
// be no more samples.
mAudioQueue.Finish();
return PR_FALSE;
}
return PR_TRUE;
}
// Returns 1 if the Theora info struct is decoding a media of Theora
// verion (maj,min,sub) or later, otherwise returns 0.
static int
TheoraVersion(th_info* info,
unsigned char maj,
unsigned char min,
unsigned char sub)
{
ogg_uint32_t ver = (maj << 16) + (min << 8) + sub;
ogg_uint32_t th_ver = (info->version_major << 16) +
(info->version_minor << 8) +
info->version_subminor;
return (th_ver >= ver) ? 1 : 0;
}
#ifdef DEBUG
// Ensures that all the VideoData in aFrames array are stored in increasing
// order by timestamp. Used in assertions in debug builds.
static PRBool
AllFrameTimesIncrease(nsTArray<nsAutoPtr<VideoData> >& aFrames)
{
PRInt64 prevTime = -1;
PRInt64 prevGranulepos = -1;
for (PRUint32 i = 0; i < aFrames.Length(); i++) {
VideoData* f = aFrames[i];
if (f->mTime < prevTime) {
return PR_FALSE;
}
prevTime = f->mTime;
prevGranulepos = f->mTimecode;
}
return PR_TRUE;
}
#endif
nsresult nsOggReader::DecodeTheora(nsTArray<nsAutoPtr<VideoData> >& aFrames,
ogg_packet* aPacket)
{
int ret = th_decode_packetin(mTheoraState->mCtx, aPacket, 0);
if (ret != 0 && ret != TH_DUPFRAME) {
return NS_ERROR_FAILURE;
}
PRInt64 time = (aPacket->granulepos != -1)
? mTheoraState->StartTime(aPacket->granulepos) : -1;
PRInt64 endTime = time != -1 ? time + mTheoraState->mFrameDuration : -1;
if (ret == TH_DUPFRAME) {
VideoData* v = VideoData::CreateDuplicate(mPageOffset,
time,
endTime,
aPacket->granulepos);
if (!aFrames.AppendElement(v)) {
delete v;
}
} else if (ret == 0) {
th_ycbcr_buffer buffer;
ret = th_decode_ycbcr_out(mTheoraState->mCtx, buffer);
NS_ASSERTION(ret == 0, "th_decode_ycbcr_out failed");
PRBool isKeyframe = th_packet_iskeyframe(aPacket) == 1;
VideoData::YCbCrBuffer b;
for (PRUint32 i=0; i < 3; ++i) {
b.mPlanes[i].mData = buffer[i].data;
b.mPlanes[i].mHeight = buffer[i].height;
b.mPlanes[i].mWidth = buffer[i].width;
b.mPlanes[i].mStride = buffer[i].stride;
}
VideoData *v = VideoData::Create(mInfo,
mDecoder->GetImageContainer(),
mPageOffset,
time,
endTime,
b,
isKeyframe,
aPacket->granulepos);
if (!v) {
// There may be other reasons for this error, but for
// simplicity just assume the worst case: out of memory.
NS_WARNING("Failed to allocate memory for video frame");
return NS_ERROR_OUT_OF_MEMORY;
}
if (!aFrames.AppendElement(v)) {
delete v;
}
}
return NS_OK;
}
PRBool nsOggReader::DecodeVideoFrame(PRBool &aKeyframeSkip,
PRInt64 aTimeThreshold)
{
MonitorAutoEnter mon(mMonitor);
NS_ASSERTION(mDecoder->OnStateMachineThread() || mDecoder->OnDecodeThread(),
"Should be on state machine or AV thread.");
// We chose to keep track of the Theora granulepos ourselves, rather than
// rely on th_decode_packetin() to do it for us. This is because
// th_decode_packetin() simply works by incrementing a counter every time
// it's called, so if we drop frames and don't call it, subsequent granulepos
// will be wrong. Whenever we read a packet which has a granulepos, we use
// its granulepos, otherwise we increment the previous packet's granulepos.
nsAutoTArray<nsAutoPtr<VideoData>, 8> frames;
ogg_packet packet;
PRBool endOfStream = PR_FALSE;
if (mTheoraGranulepos == -1) {
// We've not read a Theora packet with a granulepos, so we don't know what
// timestamp to assign to Theora frames we decode. This will only happen
// the first time we read, or after a seek. We must read and buffer up to
// the first Theora packet with a granulepos, and back-propagate its
// granulepos to calculate the buffered frames' granulepos.
do {
if (!ReadOggPacket(mTheoraState, &packet)) {
// Failed to read another page, must be the end of file. We can't have
// already encountered an end of bitstream packet, else we wouldn't be
// here, so this bitstream must be missing its end of stream packet, or
// is otherwise corrupt (oggz-chop can output files like this). Inform
// the queue that there will be no more frames.
mVideoQueue.Finish();
return PR_FALSE;
}
if (packet.granulepos > 0) {
// We've found a packet with a granulepos, we can now determine the
// buffered packet's timestamps, as well as the timestamps for any
// packets we read subsequently.
mTheoraGranulepos = packet.granulepos;
}
if (DecodeTheora(frames, &packet) == NS_ERROR_OUT_OF_MEMORY) {
NS_WARNING("Theora decode memory allocation failure!");
return PR_FALSE;
}
} while (packet.granulepos <= 0 && !endOfStream);
if (packet.granulepos > 0) {
// We have captured a granulepos. Backpropagate the granulepos
// to determine buffered packets' timestamps.
PRInt64 succGranulepos = packet.granulepos;
int version_3_2_1 = TheoraVersion(&mTheoraState->mInfo,3,2,1);
int shift = mTheoraState->mInfo.keyframe_granule_shift;
for (int i = frames.Length() - 2; i >= 0; --i) {
PRInt64 granulepos = succGranulepos;
if (frames[i]->mKeyframe) {
// This frame is a keyframe. It's granulepos is the previous granule
// number minus 1, shifted by granuleshift.
ogg_int64_t frame_index = th_granule_frame(mTheoraState->mCtx,
granulepos);
granulepos = (frame_index + version_3_2_1 - 1) << shift;
// Theora 3.2.1+ granulepos store frame number [1..N], so granulepos
// should be > 0.
// Theora 3.2.0 granulepos store the frame index [0..(N-1)], so
// granulepos should be >= 0.
NS_ASSERTION((version_3_2_1 && granulepos > 0) ||
granulepos >= 0, "Should have positive granulepos");
} else {
// Packet is not a keyframe. It's granulepos depends on its successor
// packet...
if (frames[i+1]->mKeyframe) {
// The successor frame is a keyframe, so we can't just subtract 1
// from the "keyframe offset" part of its granulepos, as it
// doesn't have one! So fake it, take the keyframe offset as the
// max possible keyframe offset. This means the granulepos (probably)
// overshoots and claims that it depends on a frame before its actual
// keyframe but at least its granule number will be correct, so the
// times we calculate from this granulepos will also be correct.
ogg_int64_t frameno = th_granule_frame(mTheoraState->mCtx,
granulepos);
ogg_int64_t max_offset = NS_MIN((frameno - 1),
(ogg_int64_t)(1 << shift) - 1);
ogg_int64_t granule = frameno +
TheoraVersion(&mTheoraState->mInfo,3,2,1) -
1 - max_offset;
NS_ASSERTION(granule > 0, "Must have positive granulepos");
granulepos = (granule << shift) + max_offset;
} else {
// Neither previous nor this frame are keyframes, so we can just
// decrement the previous granulepos to calculate this frames
// granulepos.
--granulepos;
}
}
// Check that the frame's granule number (it's frame number) is
// one less than the successor frame.
NS_ASSERTION(th_granule_frame(mTheoraState->mCtx, succGranulepos) ==
th_granule_frame(mTheoraState->mCtx, granulepos) + 1,
"Granulepos calculation is incorrect!");
frames[i]->mTime = mTheoraState->StartTime(granulepos);
frames[i]->mEndTime = frames[i]->mTime + mTheoraState->mFrameDuration;
NS_ASSERTION(frames[i]->mEndTime >= frames[i]->mTime, "Frame must start before it ends.");
frames[i]->mTimecode = granulepos;
succGranulepos = granulepos;
NS_ASSERTION(frames[i]->mTime < frames[i+1]->mTime, "Times should increase");
}
NS_ASSERTION(AllFrameTimesIncrease(frames), "All frames must have granulepos");
}
} else {
NS_ASSERTION(mTheoraGranulepos > 0, "We must Theora granulepos!");
if (!ReadOggPacket(mTheoraState, &packet)) {
// Failed to read from file, so EOF or other premature failure.
// Inform the queue that there will be no more frames.
mVideoQueue.Finish();
return PR_FALSE;
}
endOfStream = packet.e_o_s != 0;
// Maintain the Theora granulepos. We must do this even if we drop frames,
// otherwise our clock will be wrong after we've skipped frames.
if (packet.granulepos != -1) {
// Incoming packet has a granulepos, use that as it's granulepos.
mTheoraGranulepos = packet.granulepos;
} else {
// Increment the previous Theora granulepos.
PRInt64 granulepos = 0;
int shift = mTheoraState->mInfo.keyframe_granule_shift;
// Theora 3.2.1+ bitstreams granulepos store frame number; [1..N]
// Theora 3.2.0 bitstreams store the frame index; [0..(N-1)]
if (!th_packet_iskeyframe(&packet)) {
granulepos = mTheoraGranulepos + 1;
} else {
ogg_int64_t frameindex = th_granule_frame(mTheoraState->mCtx,
mTheoraGranulepos);
ogg_int64_t granule = frameindex +
TheoraVersion(&mTheoraState->mInfo,3,2,1) + 1;
NS_ASSERTION(granule > 0, "Must have positive granulepos");
granulepos = granule << shift;
}
NS_ASSERTION(th_granule_frame(mTheoraState->mCtx, mTheoraGranulepos) + 1 ==
th_granule_frame(mTheoraState->mCtx, granulepos),
"Frame number must increment by 1");
packet.granulepos = mTheoraGranulepos = granulepos;
}
PRInt64 time = mTheoraState->StartTime(mTheoraGranulepos);
NS_ASSERTION(packet.granulepos != -1, "Must know packet granulepos");
if (!aKeyframeSkip ||
(th_packet_iskeyframe(&packet) == 1 && time >= aTimeThreshold))
{
if (DecodeTheora(frames, &packet) == NS_ERROR_OUT_OF_MEMORY) {
NS_WARNING("Theora decode memory allocation failure");
return PR_FALSE;
}
}
}
// Push decoded data into the video frame queue.
for (PRUint32 i = 0; i < frames.Length(); i++) {
nsAutoPtr<VideoData> data(frames[i].forget());
if (aKeyframeSkip && data->mKeyframe) {
aKeyframeSkip = PR_FALSE;
}
if (!aKeyframeSkip) {
mVideoQueue.Push(data.forget());
}
}
if (endOfStream) {
// We've encountered an end of bitstream packet. Inform the queue that
// there will be no more frames.
mVideoQueue.Finish();
}
return !endOfStream;
}
PRInt64 nsOggReader::ReadOggPage(ogg_page* aPage)
{
NS_ASSERTION(mDecoder->OnStateMachineThread() || mDecoder->OnDecodeThread(),
"Should be on play state machine or decode thread.");
mMonitor.AssertCurrentThreadIn();
int ret = 0;
while((ret = ogg_sync_pageseek(&mOggState, aPage)) <= 0) {
if (ret < 0) {
// Lost page sync, have to skip up to next page.
mPageOffset += -ret;
continue;
}
// Returns a buffer that can be written too
// with the given size. This buffer is stored
// in the ogg synchronisation structure.
char* buffer = ogg_sync_buffer(&mOggState, 4096);
NS_ASSERTION(buffer, "ogg_sync_buffer failed");
// Read from the stream into the buffer
PRUint32 bytesRead = 0;
nsresult rv = mDecoder->GetCurrentStream()->Read(buffer, 4096, &bytesRead);
if (NS_FAILED(rv) || (bytesRead == 0 && ret == 0)) {
// End of file.
return -1;
}
mDecoder->NotifyBytesConsumed(bytesRead);
// Update the synchronisation layer with the number
// of bytes written to the buffer
ret = ogg_sync_wrote(&mOggState, bytesRead);
NS_ENSURE_TRUE(ret == 0, -1);
}
PRInt64 offset = mPageOffset;
mPageOffset += aPage->header_len + aPage->body_len;
return offset;
}
PRBool nsOggReader::ReadOggPacket(nsOggCodecState* aCodecState,
ogg_packet* aPacket)
{
NS_ASSERTION(mDecoder->OnStateMachineThread() || mDecoder->OnDecodeThread(),
"Should be on play state machine or decode thread.");
mMonitor.AssertCurrentThreadIn();
if (!aCodecState || !aCodecState->mActive) {
return PR_FALSE;
}
int ret = 0;
while ((ret = ogg_stream_packetout(&aCodecState->mState, aPacket)) != 1) {
ogg_page page;
if (aCodecState->PageInFromBuffer()) {
// The codec state has inserted a previously buffered page into its
// ogg_stream_state, no need to read a page from the channel.
continue;
}
// The codec state does not have any buffered pages, so try to read another
// page from the channel.
if (ReadOggPage(&page) == -1) {
return PR_FALSE;
}
PRUint32 serial = ogg_page_serialno(&page);
nsOggCodecState* codecState = nsnull;
mCodecStates.Get(serial, &codecState);
if (serial == aCodecState->mSerial) {
// This page is from our target bitstream, insert it into the
// codec state's ogg_stream_state so we can read a packet.
ret = ogg_stream_pagein(&codecState->mState, &page);
NS_ENSURE_TRUE(ret == 0, PR_FALSE);
} else if (codecState && codecState->mActive) {
// Page is for another active bitstream, add the page to its codec
// state's buffer for later consumption when that stream next tries
// to read a packet.
codecState->AddToBuffer(&page);
}
}
return PR_TRUE;
}
// Returns an ogg page's checksum.
static ogg_uint32_t
GetChecksum(ogg_page* page)
{
if (page == 0 || page->header == 0 || page->header_len < 25) {
return 0;
}
const unsigned char* p = page->header + 22;
PRUint32 c = p[0] +
(p[1] << 8) +
(p[2] << 16) +
(p[3] << 24);
return c;
}
VideoData* nsOggReader::FindStartTime(PRInt64 aOffset,
PRInt64& aOutStartTime)
{
NS_ASSERTION(mDecoder->OnStateMachineThread(),
"Should be on state machine thread.");
nsMediaStream* stream = mDecoder->GetCurrentStream();
NS_ENSURE_TRUE(stream != nsnull, nsnull);
nsresult res = stream->Seek(nsISeekableStream::NS_SEEK_SET, aOffset);
NS_ENSURE_SUCCESS(res, nsnull);
return nsBuiltinDecoderReader::FindStartTime(aOffset, aOutStartTime);
}
PRInt64 nsOggReader::FindEndTime(PRInt64 aEndOffset)
{
MonitorAutoEnter mon(mMonitor);
NS_ASSERTION(mDecoder->OnStateMachineThread(),
"Should be on state machine thread.");
PRInt64 endTime = FindEndTime(aEndOffset, PR_FALSE, &mOggState);
// Reset read head to start of media data.
NS_ASSERTION(mDataOffset > 0,
"Should have offset of first non-header page");
nsMediaStream* stream = mDecoder->GetCurrentStream();
NS_ENSURE_TRUE(stream != nsnull, -1);
nsresult res = stream->Seek(nsISeekableStream::NS_SEEK_SET, mDataOffset);
NS_ENSURE_SUCCESS(res, -1);
return endTime;
}
PRInt64 nsOggReader::FindEndTime(PRInt64 aEndOffset,
PRBool aCachedDataOnly,
ogg_sync_state* aState)
{
nsMediaStream* stream = mDecoder->GetCurrentStream();
ogg_sync_reset(aState);
// We need to find the last page which ends before aEndOffset that
// has a granulepos that we can convert to a timestamp. We do this by
// backing off from aEndOffset until we encounter a page on which we can
// interpret the granulepos. If while backing off we encounter a page which
// we've previously encountered before, we'll either backoff again if we
// haven't found an end time yet, or return the last end time found.
const int step = 5000;
PRInt64 readStartOffset = aEndOffset;
PRInt64 readHead = aEndOffset;
PRInt64 endTime = -1;
PRUint32 checksumAfterSeek = 0;
PRUint32 prevChecksumAfterSeek = 0;
PRBool mustBackOff = PR_FALSE;
while (PR_TRUE) {
ogg_page page;
int ret = ogg_sync_pageseek(aState, &page);
if (ret == 0) {
// We need more data if we've not encountered a page we've seen before,
// or we've read to the end of file.
if (mustBackOff || readHead == aEndOffset) {
if (endTime != -1 || readStartOffset == 0) {
// We have encountered a page before, or we're at the end of file.
break;
}
mustBackOff = PR_FALSE;
prevChecksumAfterSeek = checksumAfterSeek;
checksumAfterSeek = 0;
ogg_sync_reset(aState);
readStartOffset = NS_MAX(static_cast<PRInt64>(0), readStartOffset - step);
readHead = readStartOffset;
}
PRInt64 limit = NS_MIN(static_cast<PRInt64>(PR_UINT32_MAX),
aEndOffset - readHead);
limit = NS_MAX(static_cast<PRInt64>(0), limit);
limit = NS_MIN(limit, static_cast<PRInt64>(step));
PRUint32 bytesToRead = static_cast<PRUint32>(limit);
PRUint32 bytesRead = 0;
char* buffer = ogg_sync_buffer(aState, bytesToRead);
NS_ASSERTION(buffer, "Must have buffer");
nsresult res;
if (aCachedDataOnly) {
res = stream->ReadFromCache(buffer, readHead, bytesToRead);
NS_ENSURE_SUCCESS(res,res);
bytesRead = bytesToRead;
} else {
NS_ASSERTION(readHead < aEndOffset,
"Stream pos must be before range end");
res = stream->Seek(nsISeekableStream::NS_SEEK_SET, readHead);
NS_ENSURE_SUCCESS(res,res);
res = stream->Read(buffer, bytesToRead, &bytesRead);
NS_ENSURE_SUCCESS(res,res);
}
readHead += bytesRead;
// Update the synchronisation layer with the number
// of bytes written to the buffer
ret = ogg_sync_wrote(aState, bytesRead);
if (ret != 0) {
endTime = -1;
break;
}
continue;
}
if (ret < 0 || ogg_page_granulepos(&page) < 0) {
continue;
}
PRUint32 checksum = GetChecksum(&page);
if (checksumAfterSeek == 0) {
// This is the first page we've decoded after a backoff/seek. Remember
// the page checksum. If we backoff further and encounter this page
// again, we'll know that we won't find a page with an end time after
// this one, so we'll know to back off again.
checksumAfterSeek = checksum;
}
if (checksum == prevChecksumAfterSeek) {
// This page has the same checksum as the first page we encountered
// after the last backoff/seek. Since we've already scanned after this
// page and failed to find an end time, we may as well backoff again and
// try to find an end time from an earlier page.
mustBackOff = PR_TRUE;
continue;
}
PRInt64 granulepos = ogg_page_granulepos(&page);
int serial = ogg_page_serialno(&page);
nsOggCodecState* codecState = nsnull;
mCodecStates.Get(serial, &codecState);
if (!codecState) {
// This page is from a bitstream which we haven't encountered yet.
// It's probably from a new "link" in a "chained" ogg. Don't
// bother even trying to find a duration...
endTime = -1;
break;
}
PRInt64 t = codecState->Time(granulepos);
if (t != -1) {
endTime = t;
}
}
ogg_sync_reset(aState);
return endTime;
}
nsOggReader::IndexedSeekResult nsOggReader::RollbackIndexedSeek(PRInt64 aOffset)
{
mSkeletonState->Deactivate();
nsMediaStream* stream = mDecoder->GetCurrentStream();
NS_ENSURE_TRUE(stream != nsnull, SEEK_FATAL_ERROR);
nsresult res = stream->Seek(nsISeekableStream::NS_SEEK_SET, aOffset);
NS_ENSURE_SUCCESS(res, SEEK_FATAL_ERROR);
return SEEK_INDEX_FAIL;
}
nsOggReader::IndexedSeekResult nsOggReader::SeekToKeyframeUsingIndex(PRInt64 aTarget)
{
nsMediaStream* stream = mDecoder->GetCurrentStream();
NS_ENSURE_TRUE(stream != nsnull, SEEK_FATAL_ERROR);
if (!HasSkeleton() || !mSkeletonState->HasIndex()) {
return SEEK_INDEX_FAIL;
}
// We have an index from the Skeleton track, try to use it to seek.
nsAutoTArray<PRUint32, 2> tracks;
if (HasVideo()) {
tracks.AppendElement(mTheoraState->mSerial);
}
if (HasAudio()) {
tracks.AppendElement(mVorbisState->mSerial);
}
nsSkeletonState::nsSeekTarget keyframe;
if (NS_FAILED(mSkeletonState->IndexedSeekTarget(aTarget,
tracks,
keyframe)))
{
// Could not locate a keypoint for the target in the index.
return SEEK_INDEX_FAIL;
}
// Remember original stream read cursor position so we can rollback on failure.
PRInt64 tell = stream->Tell();
// Seek to the keypoint returned by the index.
if (keyframe.mKeyPoint.mOffset > stream->GetLength() ||
keyframe.mKeyPoint.mOffset < 0)
{
// Index must be invalid.
return RollbackIndexedSeek(tell);
}
LOG(PR_LOG_DEBUG, ("Seeking using index to keyframe at offset %lld\n",
keyframe.mKeyPoint.mOffset));
nsresult res = stream->Seek(nsISeekableStream::NS_SEEK_SET,
keyframe.mKeyPoint.mOffset);
NS_ENSURE_SUCCESS(res, SEEK_FATAL_ERROR);
mPageOffset = keyframe.mKeyPoint.mOffset;
// We've moved the read set, so reset decode.
res = ResetDecode();
NS_ENSURE_SUCCESS(res, SEEK_FATAL_ERROR);
// Check that the page the index thinks is exactly here is actually exactly
// here. If not, the index is invalid.
ogg_page page;
int skippedBytes = 0;
PageSyncResult syncres = PageSync(stream,
&mOggState,
PR_FALSE,
mPageOffset,
stream->GetLength(),
&page,
skippedBytes);
NS_ENSURE_TRUE(syncres != PAGE_SYNC_ERROR, SEEK_FATAL_ERROR);
if (syncres != PAGE_SYNC_OK || skippedBytes != 0) {
LOG(PR_LOG_DEBUG, ("Indexed-seek failure: Ogg Skeleton Index is invalid "
"or sync error after seek"));
return RollbackIndexedSeek(tell);
}
PRUint32 serial = ogg_page_serialno(&page);
if (serial != keyframe.mSerial) {
// Serialno of page at offset isn't what the index told us to expect.
// Assume the index is invalid.
return RollbackIndexedSeek(tell);
}
nsOggCodecState* codecState = nsnull;
mCodecStates.Get(serial, &codecState);
if (codecState &&
codecState->mActive &&
ogg_stream_pagein(&codecState->mState, &page) != 0)
{
// Couldn't insert page into the ogg stream, or somehow the stream
// is no longer active.
return RollbackIndexedSeek(tell);
}
mPageOffset = keyframe.mKeyPoint.mOffset + page.header_len + page.body_len;
return SEEK_OK;
}
nsresult nsOggReader::SeekInBufferedRange(PRInt64 aTarget,
PRInt64 aStartTime,
PRInt64 aEndTime,
const nsTArray<ByteRange>& aRanges,
const ByteRange& aRange)
{
LOG(PR_LOG_DEBUG, ("%p Seeking in buffered data to %lldms using bisection search", mDecoder, aTarget));
// We know the exact byte range in which the target must lie. It must
// be buffered in the media cache. Seek there.
nsresult res = SeekBisection(aTarget, aRange, 0);
if (NS_FAILED(res) || !HasVideo()) {
return res;
}
// We have an active Theora bitstream. Decode the next Theora frame, and
// extract its keyframe's time.
PRBool eof;
do {
PRBool skip = PR_FALSE;
eof = !DecodeVideoFrame(skip, 0);
{
MonitorAutoExit exitReaderMon(mMonitor);
MonitorAutoEnter decoderMon(mDecoder->GetMonitor());
if (mDecoder->GetDecodeState() == nsBuiltinDecoderStateMachine::DECODER_STATE_SHUTDOWN) {
return NS_ERROR_FAILURE;
}
}
} while (!eof &&
mVideoQueue.GetSize() == 0);
VideoData* video = mVideoQueue.PeekFront();
if (video && !video->mKeyframe) {
// First decoded frame isn't a keyframe, seek back to previous keyframe,
// otherwise we'll get visual artifacts.
NS_ASSERTION(video->mTimecode != -1, "Must have a granulepos");
int shift = mTheoraState->mInfo.keyframe_granule_shift;
PRInt64 keyframeGranulepos = (video->mTimecode >> shift) << shift;
PRInt64 keyframeTime = mTheoraState->StartTime(keyframeGranulepos);
SEEK_LOG(PR_LOG_DEBUG, ("Keyframe for %lld is at %lld, seeking back to it",
video->mTime, keyframeTime));
ByteRange k = GetSeekRange(aRanges,
keyframeTime,
aStartTime,
aEndTime,
PR_FALSE);
res = SeekBisection(keyframeTime, k, SEEK_FUZZ_MS);
NS_ASSERTION(mTheoraGranulepos == -1, "SeekBisection must reset Theora decode");
NS_ASSERTION(mVorbisGranulepos == -1, "SeekBisection must reset Vorbis decode");
}
return res;
}
PRBool nsOggReader::CanDecodeToTarget(PRInt64 aTarget,
PRInt64 aCurrentTime)
{
// We can decode to the target if the target is no further than the
// maximum keyframe offset ahead of the current playback position, if
// we have video, or SEEK_DECODE_MARGIN if we don't have video.
PRInt64 margin = HasVideo() ? mTheoraState->MaxKeyframeOffset() : SEEK_DECODE_MARGIN;
return aTarget >= aCurrentTime &&
aTarget - aCurrentTime < margin;
}
nsresult nsOggReader::SeekInUnbuffered(PRInt64 aTarget,
PRInt64 aStartTime,
PRInt64 aEndTime,
const nsTArray<ByteRange>& aRanges)
{
LOG(PR_LOG_DEBUG, ("%p Seeking in unbuffered data to %lldms using bisection search", mDecoder, aTarget));
// If we've got an active Theora bitstream, determine the maximum possible
// time in ms which a keyframe could be before a given interframe. We
// subtract this from our seek target, seek to the new target, and then
// will decode forward to the original seek target. We should encounter a
// keyframe in that interval. This prevents us from needing to run two
// bisections; one for the seek target frame, and another to find its
// keyframe. It's usually faster to just download this extra data, rather
// tham perform two bisections to find the seek target's keyframe. We
// don't do this offsetting when seeking in a buffered range,
// as the extra decoding causes a noticeable speed hit when all the data
// is buffered (compared to just doing a bisection to exactly find the
// keyframe).
PRInt64 keyframeOffsetMs = 0;
if (HasVideo() && mTheoraState) {
keyframeOffsetMs = mTheoraState->MaxKeyframeOffset();
}
PRInt64 seekTarget = NS_MAX(aStartTime, aTarget - keyframeOffsetMs);
// Minimize the bisection search space using the known timestamps from the
// buffered ranges.
ByteRange k = GetSeekRange(aRanges, seekTarget, aStartTime, aEndTime, PR_FALSE);
nsresult res = SeekBisection(seekTarget, k, SEEK_FUZZ_MS);
NS_ASSERTION(mTheoraGranulepos == -1, "SeekBisection must reset Theora decode");
NS_ASSERTION(mVorbisGranulepos == -1, "SeekBisection must reset Vorbis decode");
return res;
}
nsresult nsOggReader::Seek(PRInt64 aTarget,
PRInt64 aStartTime,
PRInt64 aEndTime,
PRInt64 aCurrentTime)
{
MonitorAutoEnter mon(mMonitor);
NS_ASSERTION(mDecoder->OnStateMachineThread(),
"Should be on state machine thread.");
LOG(PR_LOG_DEBUG, ("%p About to seek to %lldms", mDecoder, aTarget));
nsresult res;
nsMediaStream* stream = mDecoder->GetCurrentStream();
NS_ENSURE_TRUE(stream != nsnull, NS_ERROR_FAILURE);
if (aTarget == aStartTime) {
// We've seeked to the media start. Just seek to the offset of the first
// content page.
res = stream->Seek(nsISeekableStream::NS_SEEK_SET, mDataOffset);
NS_ENSURE_SUCCESS(res,res);
mPageOffset = mDataOffset;
res = ResetDecode();
NS_ENSURE_SUCCESS(res,res);
NS_ASSERTION(aStartTime != -1, "mStartTime should be known");
{
MonitorAutoExit exitReaderMon(mMonitor);
MonitorAutoEnter decoderMon(mDecoder->GetMonitor());
mDecoder->UpdatePlaybackPosition(aStartTime);
}
} else if (CanDecodeToTarget(aTarget, aCurrentTime)) {
LOG(PR_LOG_DEBUG, ("%p Seek target (%lld) is close to current time (%lld), "
"will just decode to it", mDecoder, aCurrentTime, aTarget));
} else {
IndexedSeekResult sres = SeekToKeyframeUsingIndex(aTarget);
NS_ENSURE_TRUE(sres != SEEK_FATAL_ERROR, NS_ERROR_FAILURE);
if (sres == SEEK_INDEX_FAIL) {
// No index or other non-fatal index-related failure. Try to seek
// using a bisection search. Determine the already downloaded data
// in the media cache, so we can try to seek in the cached data first.
nsAutoTArray<ByteRange, 16> ranges;
res = GetBufferedBytes(ranges);
NS_ENSURE_SUCCESS(res,res);
// Figure out if the seek target lies in a buffered range.
ByteRange r = GetSeekRange(ranges, aTarget, aStartTime, aEndTime, PR_TRUE);
if (!r.IsNull()) {
// We know the buffered range in which the seek target lies, do a
// bisection search in that buffered range.
res = SeekInBufferedRange(aTarget, aStartTime, aEndTime, ranges, r);
NS_ENSURE_SUCCESS(res,res);
} else {
// The target doesn't lie in a buffered range. Perform a bisection
// search over the whole media, using the known buffered ranges to
// reduce the search space.
res = SeekInUnbuffered(aTarget, aStartTime, aEndTime, ranges);
NS_ENSURE_SUCCESS(res,res);
2010-08-18 05:48:34 +04:00
}
}
}
// The decode position must now be either close to the seek target, or
// we've seeked to before the keyframe before the seek target. Decode
// forward to the seek target frame.
return DecodeToTarget(aTarget);
}
// Reads a page from the media stream.
static PageSyncResult
PageSync(nsMediaStream* aStream,
ogg_sync_state* aState,
PRBool aCachedDataOnly,
PRInt64 aOffset,
PRInt64 aEndOffset,
ogg_page* aPage,
int& aSkippedBytes)
{
aSkippedBytes = 0;
// Sync to the next page.
int ret = 0;
PRUint32 bytesRead = 0;
PRInt64 readHead = aOffset;
while (ret <= 0) {
ret = ogg_sync_pageseek(aState, aPage);
if (ret == 0) {
char* buffer = ogg_sync_buffer(aState, PAGE_STEP);
NS_ASSERTION(buffer, "Must have a buffer");
// Read from the file into the buffer
PRInt64 bytesToRead = NS_MIN(static_cast<PRInt64>(PAGE_STEP),
aEndOffset - readHead);
if (bytesToRead <= 0) {
return PAGE_SYNC_END_OF_RANGE;
}
nsresult rv = NS_OK;
if (aCachedDataOnly) {
rv = aStream->ReadFromCache(buffer, readHead, bytesToRead);
NS_ENSURE_SUCCESS(rv,PAGE_SYNC_ERROR);
bytesRead = bytesToRead;
} else {
rv = aStream->Seek(nsISeekableStream::NS_SEEK_SET, readHead);
NS_ENSURE_SUCCESS(rv,PAGE_SYNC_ERROR);
rv = aStream->Read(buffer,
static_cast<PRUint32>(bytesToRead),
&bytesRead);
NS_ENSURE_SUCCESS(rv,PAGE_SYNC_ERROR);
}
if (bytesRead == 0 && NS_SUCCEEDED(rv)) {
// End of file.
return PAGE_SYNC_END_OF_RANGE;
}
readHead += bytesRead;
// Update the synchronisation layer with the number
// of bytes written to the buffer
ret = ogg_sync_wrote(aState, bytesRead);
NS_ENSURE_TRUE(ret == 0, PAGE_SYNC_ERROR);
continue;
}
if (ret < 0) {
NS_ASSERTION(aSkippedBytes >= 0, "Offset >= 0");
aSkippedBytes += -ret;
NS_ASSERTION(aSkippedBytes >= 0, "Offset >= 0");
continue;
}
}
return PAGE_SYNC_OK;
}
nsresult nsOggReader::SeekBisection(PRInt64 aTarget,
const ByteRange& aRange,
PRUint32 aFuzz)
{
NS_ASSERTION(mDecoder->OnStateMachineThread(),
"Should be on state machine thread.");
nsresult res;
nsMediaStream* stream = mDecoder->GetCurrentStream();
if (aTarget == aRange.mTimeStart) {
if (NS_FAILED(ResetDecode())) {
return NS_ERROR_FAILURE;
}
res = stream->Seek(nsISeekableStream::NS_SEEK_SET, mDataOffset);
NS_ENSURE_SUCCESS(res,res);
mPageOffset = mDataOffset;
return NS_OK;
}
// Bisection search, find start offset of last page with end time less than
// the seek target.
ogg_int64_t startOffset = aRange.mOffsetStart;
ogg_int64_t startTime = aRange.mTimeStart;
ogg_int64_t startLength = 0;
ogg_int64_t endOffset = aRange.mOffsetEnd;
ogg_int64_t endTime = aRange.mTimeEnd;
ogg_int64_t seekTarget = aTarget;
PRInt64 seekLowerBound = NS_MAX(static_cast<PRInt64>(0), aTarget - aFuzz);
int hops = 0;
ogg_int64_t previousGuess = -1;
int backsteps = 1;
const int maxBackStep = 10;
NS_ASSERTION(static_cast<PRUint64>(PAGE_STEP) * pow(2.0, maxBackStep) < PR_INT32_MAX,
"Backstep calculation must not overflow");
while (PR_TRUE) {
ogg_int64_t duration = 0;
double target = 0;
ogg_int64_t interval = 0;
ogg_int64_t guess = 0;
ogg_page page;
int skippedBytes = 0;
ogg_int64_t pageOffset = 0;
ogg_int64_t pageLength = 0;
int backoff = 0;
ogg_int64_t granuleTime = -1;
PRInt64 oldPageOffset = 0;
// Guess where we should bisect to, based on the bit rate and the time
// remaining in the interval.
while (PR_TRUE) {
// Discard any previously buffered packets/pages.
if (NS_FAILED(ResetDecode())) {
return NS_ERROR_FAILURE;
}
// Guess bisection point.
duration = endTime - startTime;
target = (double)(seekTarget - startTime) / (double)duration;
interval = endOffset - startOffset - startLength;
guess = startOffset + startLength +
(ogg_int64_t)((double)interval * target) - backoff;
guess = NS_MIN(guess, endOffset - PAGE_STEP);
guess = NS_MAX(guess, startOffset + startLength);
if (interval == 0 || guess == previousGuess) {
interval = 0;
// Our interval is empty, we've found the optimal seek point, as the
// start page is before the seek target, and the end page after the
// seek target.
break;
}
NS_ASSERTION(guess >= startOffset + startLength, "Guess must be after range start");
NS_ASSERTION(guess < endOffset, "Guess must be before range end");
NS_ASSERTION(guess != previousGuess, "Guess should be differnt to previous");
previousGuess = guess;
SEEK_LOG(PR_LOG_DEBUG, ("Seek loop offset_start=%lld start_end=%lld "
"offset_guess=%lld offset_end=%lld interval=%lld "
"target=%lf time_start=%lld time_end=%lld",
startOffset, (startOffset+startLength), guess,
endOffset, interval, target, startTime, endTime));
hops++;
// Locate the next page after our seek guess, and then figure out the
// granule time of the audio and video bitstreams there. We can then
// make a bisection decision based on our location in the media.
PageSyncResult res = PageSync(stream,
&mOggState,
PR_FALSE,
guess,
endOffset,
&page,
skippedBytes);
NS_ENSURE_TRUE(res != PAGE_SYNC_ERROR, NS_ERROR_FAILURE);
// We've located a page of length |ret| at |guess + skippedBytes|.
// Remember where the page is located.
pageOffset = guess + skippedBytes;
pageLength = page.header_len + page.body_len;
mPageOffset = pageOffset + pageLength;
if (mPageOffset == endOffset || res == PAGE_SYNC_END_OF_RANGE) {
// Our guess was too close to the end, we've ended up reading the end
// page. Backoff exponentially from the end point, in case the last
// page/frame/sample is huge.
backsteps = NS_MIN(backsteps + 1, maxBackStep);
backoff = PAGE_STEP * pow(2.0, backsteps);
continue;
}
NS_ASSERTION(mPageOffset < endOffset, "Page read cursor should be inside range");
// Read pages until we can determine the granule time of the audio and
// video bitstream.
ogg_int64_t audioTime = -1;
ogg_int64_t videoTime = -1;
int ret;
oldPageOffset = mPageOffset;
while ((mVorbisState && audioTime == -1) ||
(mTheoraState && videoTime == -1)) {
// Add the page to its codec state, determine its granule time.
PRUint32 serial = ogg_page_serialno(&page);
nsOggCodecState* codecState = nsnull;
mCodecStates.Get(serial, &codecState);
if (codecState && codecState->mActive) {
ret = ogg_stream_pagein(&codecState->mState, &page);
NS_ENSURE_TRUE(ret == 0, NS_ERROR_FAILURE);
}
ogg_int64_t granulepos = ogg_page_granulepos(&page);
if (HasAudio() &&
granulepos != -1 &&
serial == mVorbisState->mSerial &&
audioTime == -1) {
audioTime = mVorbisState->Time(granulepos);
}
if (HasVideo() &&
granulepos != -1 &&
serial == mTheoraState->mSerial &&
videoTime == -1) {
videoTime = mTheoraState->StartTime(granulepos);
}
mPageOffset += page.header_len + page.body_len;
if (ReadOggPage(&page) == -1) {
break;
}
}
if ((HasAudio() && audioTime == -1) ||
(HasVideo() && videoTime == -1))
{
backsteps = NS_MIN(backsteps + 1, maxBackStep);
backoff = PAGE_STEP * pow(2.0, backsteps);
continue;
}
// We've found appropriate time stamps here. Proceed to bisect
// the search space.
granuleTime = NS_MAX(audioTime, videoTime);
NS_ASSERTION(granuleTime > 0, "Must get a granuletime");
break;
}
if (interval == 0) {
// Seek termination condition; we've found the page boundary of the
// last page before the target, and the first page after the target.
SEEK_LOG(PR_LOG_DEBUG, ("Seek loop (interval == 0) break"));
NS_ASSERTION(startTime < aTarget, "Start time must always be less than target");
res = stream->Seek(nsISeekableStream::NS_SEEK_SET, startOffset);
NS_ENSURE_SUCCESS(res,res);
mPageOffset = startOffset;
if (NS_FAILED(ResetDecode())) {
return NS_ERROR_FAILURE;
}
break;
}
SEEK_LOG(PR_LOG_DEBUG, ("Time at offset %lld is %lldms", guess, granuleTime));
if (granuleTime < seekTarget && granuleTime > seekLowerBound) {
// We're within the fuzzy region in which we want to terminate the search.
res = stream->Seek(nsISeekableStream::NS_SEEK_SET, oldPageOffset);
NS_ENSURE_SUCCESS(res,res);
mPageOffset = oldPageOffset;
if (NS_FAILED(ResetDecode())) {
return NS_ERROR_FAILURE;
}
break;
}
if (granuleTime >= seekTarget) {
// We've landed after the seek target.
NS_ASSERTION(pageOffset < endOffset, "offset_end must decrease");
endOffset = pageOffset;
endTime = granuleTime;
} else if (granuleTime < seekTarget) {
// Landed before seek target.
NS_ASSERTION(pageOffset > startOffset, "offset_start must increase");
startOffset = pageOffset;
startLength = pageLength;
startTime = granuleTime;
}
NS_ASSERTION(startTime < seekTarget, "Must be before seek target");
NS_ASSERTION(endTime >= seekTarget, "End must be after seek target");
}
SEEK_LOG(PR_LOG_DEBUG, ("Seek complete in %d bisections.", hops));
return NS_OK;
}
nsresult nsOggReader::GetBuffered(nsTimeRanges* aBuffered, PRInt64 aStartTime)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
// HasAudio and HasVideo are not used here as they take a lock and cause
// a deadlock. Accessing mInfo doesn't require a lock - it doesn't change
// after metadata is read and GetBuffered isn't called before metadata is
// read.
if (!mInfo.mHasVideo && !mInfo.mHasAudio) {
// No need to search through the file if there are no audio or video tracks
return NS_OK;
}
nsMediaStream* stream = mDecoder->GetCurrentStream();
// Traverse across the buffered byte ranges, determining the time ranges
// they contain. nsMediaStream::GetNextCachedData(offset) returns -1 when
// offset is after the end of the media stream, or there's no more cached
// data after the offset. This loop will run until we've checked every
// buffered range in the media, in increasing order of offset.
ogg_sync_state state;
ogg_sync_init(&state);
PRInt64 startOffset = stream->GetNextCachedData(mDataOffset);
while (startOffset >= 0) {
PRInt64 endOffset = stream->GetCachedDataEnd(startOffset);
NS_ASSERTION(startOffset < endOffset, "Buffered range must end after its start");
// Bytes [startOffset..endOffset] are cached.
// Find the start time of the range.
PRInt64 startTime = -1;
if (startOffset == mDataOffset) {
// Because the granulepos time is actually the end time of the page,
// we special-case (startOffset == mDataOffset) so that the first
// buffered range always appears to be buffered from [t=0...] rather
// than from the end-time of the first page.
startTime = aStartTime;
}
// Read pages until we find one with a granulepos which we can convert
// into a timestamp to use as the time of the start of the buffered range.
ogg_sync_reset(&state);
while (startTime == -1) {
ogg_page page;
PRInt32 discard;
PageSyncResult res = PageSync(stream,
&state,
PR_TRUE,
startOffset,
endOffset,
&page,
discard);
if (res == PAGE_SYNC_ERROR) {
// If we don't clear the sync state before exit we'll leak.
ogg_sync_clear(&state);
return NS_ERROR_FAILURE;
} else if (res == PAGE_SYNC_END_OF_RANGE) {
// Hit the end of range without reading a page, give up trying to
// find a start time for this buffered range, skip onto the next one.
break;
}
PRInt64 granulepos = ogg_page_granulepos(&page);
if (granulepos == -1) {
// Page doesn't have an end time, advance to the next page
// until we find one.
startOffset += page.header_len + page.body_len;
continue;
}
PRUint32 serial = ogg_page_serialno(&page);
if (serial == mVorbisSerial) {
startTime = nsVorbisState::Time(&mVorbisInfo, granulepos) - aStartTime;
NS_ASSERTION(startTime > 0, "Must have positive start time");
}
else if (serial == mTheoraSerial) {
startTime = nsTheoraState::Time(&mTheoraInfo, granulepos) - aStartTime;
NS_ASSERTION(startTime > 0, "Must have positive start time");
}
else if (IsKnownStream(serial)) {
// Stream is not the theora or vorbis stream we're playing,
// but is one that we have header data for.
startOffset += page.header_len + page.body_len;
continue;
}
else {
// Page is for a stream we don't know about (possibly a chained
// ogg), return an error.
return PAGE_SYNC_ERROR;
}
}
if (startTime != -1) {
// We were able to find a start time for that range, see if we can
// find an end time.
PRInt64 endTime = FindEndTime(endOffset, PR_TRUE, &state);
if (endTime != -1) {
endTime -= aStartTime;
aBuffered->Add(static_cast<double>(startTime) / 1000.0,
static_cast<double>(endTime) / 1000.0);
}
}
startOffset = stream->GetNextCachedData(endOffset);
NS_ASSERTION(startOffset == -1 || startOffset > endOffset,
"Must have advanced to start of next range, or hit end of stream");
}
// If we don't clear the sync state before exit we'll leak.
ogg_sync_clear(&state);
return NS_OK;
}
PRBool nsOggReader::IsKnownStream(PRUint32 aSerial)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
for (PRUint32 i = 0; i < mKnownStreams.Length(); i++) {
PRUint32 serial = mKnownStreams[i];
if (serial == aSerial) {
return PR_TRUE;
}
}
return PR_FALSE;
}