gecko-dev/memory/build/rb.h

717 строки
29 KiB
C
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Portions of this file were originally under the following license:
*
* Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice(s), this list of conditions and the following disclaimer
* unmodified other than the allowable addition of one or more
* copyright notices.
* 2. Redistributions in binary form must reproduce the above copyright
* notice(s), this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*
* C++ template implementation of left-leaning red-black trees.
*
* Usage:
*
* #define SIZEOF_PTR ...
* #define SIZEOF_PTR_2POW ...
*
* #include <rb.h>
* ...
*
* All operations are done non-recursively. Parent pointers are not used, and
* color bits are stored in the least significant bit of right-child pointers,
* thus making node linkage as compact as is possible for red-black trees.
*
* The RedBlackTree template expects two type arguments: the type of the nodes,
* containing a RedBlackTreeNode, and a trait providing two methods:
* - a GetTreeNode method that returns a reference to the RedBlackTreeNode
* corresponding to a given node with the following signature:
* static RedBlackTreeNode<T>& GetTreeNode(T*)
* - a Compare function with the following signature:
* static int Compare(T* aNode, T* aOther)
* ^^^^^
* or aKey
*
* Interpretation of comparision function return values:
*
* -1 : aNode < aOther
* 0 : aNode == aOther
* 1 : aNode > aOther
*
* In all cases, the aNode or aKey argument is the first argument to the
* comparison function, which makes it possible to write comparison functions
* that treat the first argument specially.
*
******************************************************************************/
#ifndef RB_H_
#define RB_H_
enum NodeColor
{
Black = 0,
Red = 1,
};
/* Node structure. */
template <typename T>
class RedBlackTreeNode
{
T* mLeft;
/* The lowest bit is the color */
T* mRightAndColor;
public:
T* Left()
{
return mLeft;
}
void SetLeft(T* aValue)
{
mLeft = aValue;
}
T* Right()
{
return reinterpret_cast<T*>(
reinterpret_cast<uintptr_t>(mRightAndColor) & uintptr_t(~1));
}
void SetRight(T* aValue)
{
mRightAndColor = reinterpret_cast<T*>(
(reinterpret_cast<uintptr_t>(aValue) & uintptr_t(~1)) | Color());
}
NodeColor Color()
{
return static_cast<NodeColor>(reinterpret_cast<uintptr_t>(mRightAndColor) & 1);
}
bool IsBlack()
{
return Color() == NodeColor::Black;
}
bool IsRed()
{
return Color() == NodeColor::Red;
}
void SetColor(NodeColor aColor)
{
mRightAndColor = reinterpret_cast<T*>(
(reinterpret_cast<uintptr_t>(mRightAndColor) & uintptr_t(~1)) | aColor);
}
};
#define rbp_move_red_left(a_type, a_field, a_node, r_node) \
do { \
a_type *rbp_mrl_t, *rbp_mrl_u; \
rbp_mrl_t = a_field(a_node).Left(); \
a_field(rbp_mrl_t).SetColor(NodeColor::Red); \
rbp_mrl_t = a_field(a_node).Right(); \
rbp_mrl_u = a_field(rbp_mrl_t).Left(); \
if (a_field(rbp_mrl_u).IsRed()) { \
rbp_mrl_u = RotateRight(rbp_mrl_t); \
a_field(a_node).SetRight(rbp_mrl_u); \
r_node = RotateLeft(a_node); \
rbp_mrl_t = a_field(a_node).Right(); \
if (a_field(rbp_mrl_t).IsRed()) { \
a_field(rbp_mrl_t).SetColor(NodeColor::Black); \
a_field(a_node).SetColor(NodeColor::Red); \
rbp_mrl_t = RotateLeft(a_node); \
a_field(r_node).SetLeft(rbp_mrl_t); \
} else { \
a_field(a_node).SetColor(NodeColor::Black); \
} \
} else { \
a_field(a_node).SetColor(NodeColor::Red); \
r_node = RotateLeft(a_node); \
} \
} while (0)
#define rbp_move_red_right(a_type, a_field, a_node, r_node) \
do { \
a_type* rbp_mrr_t; \
rbp_mrr_t = a_field(a_node).Left(); \
if (a_field(rbp_mrr_t).IsRed()) { \
a_type *rbp_mrr_u, *rbp_mrr_v; \
rbp_mrr_u = a_field(rbp_mrr_t).Right(); \
rbp_mrr_v = a_field(rbp_mrr_u).Left(); \
if (a_field(rbp_mrr_v).IsRed()) { \
a_field(rbp_mrr_u).SetColor(a_field(a_node).Color()); \
a_field(rbp_mrr_v).SetColor(NodeColor::Black); \
rbp_mrr_u = RotateLeft(rbp_mrr_t); \
a_field(a_node).SetLeft(rbp_mrr_u); \
r_node = RotateRight(a_node); \
rbp_mrr_t = RotateLeft(a_node); \
a_field(r_node).SetRight(rbp_mrr_t); \
} else { \
a_field(rbp_mrr_t).SetColor(a_field(a_node).Color()); \
a_field(rbp_mrr_u).SetColor(NodeColor::Red); \
r_node = RotateRight(a_node); \
rbp_mrr_t = RotateLeft(a_node); \
a_field(r_node).SetRight(rbp_mrr_t); \
} \
a_field(a_node).SetColor(NodeColor::Red); \
} else { \
a_field(rbp_mrr_t).SetColor(NodeColor::Red); \
rbp_mrr_t = a_field(rbp_mrr_t).Left(); \
if (a_field(rbp_mrr_t).IsRed()) { \
a_field(rbp_mrr_t).SetColor(NodeColor::Black); \
r_node = RotateRight(a_node); \
rbp_mrr_t = RotateLeft(a_node); \
a_field(r_node).SetRight(rbp_mrr_t); \
} else { \
r_node = RotateLeft(a_node); \
} \
} \
} while (0)
/* Tree structure. */
template<typename T, typename Trait>
struct RedBlackTree
{
T* rbt_root;
T rbt_nil;
void Init()
{
rbt_root = &rbt_nil;
Trait::GetTreeNode(&rbt_nil).SetLeft(&rbt_nil);
Trait::GetTreeNode(&rbt_nil).SetRight(&rbt_nil);
Trait::GetTreeNode(&rbt_nil).SetColor(NodeColor::Black);
}
T* First(T* aStart = nullptr)
{
T* ret;
for (ret = aStart ? aStart : rbt_root;
Trait::GetTreeNode(ret).Left() != &rbt_nil;
ret = Trait::GetTreeNode(ret).Left()) {
}
return (ret == &rbt_nil) ? nullptr : ret;
}
T* Last(T* aStart = nullptr)
{
T* ret;
for (ret = aStart ? aStart : rbt_root;
Trait::GetTreeNode(ret).Right() != &rbt_nil;
ret = Trait::GetTreeNode(ret).Right()) {
}
return (ret == &rbt_nil) ? nullptr : ret;
}
T* Next(T* aNode)
{
T* ret;
if (Trait::GetTreeNode(aNode).Right() != &rbt_nil) {
ret = First(Trait::GetTreeNode(aNode).Right());
} else {
T* rbp_n_t = rbt_root;
MOZ_ASSERT(rbp_n_t != &rbt_nil);
ret = &rbt_nil;
while (true) {
int rbp_n_cmp = Trait::Compare(aNode, rbp_n_t);
if (rbp_n_cmp < 0) {
ret = rbp_n_t;
rbp_n_t = Trait::GetTreeNode(rbp_n_t).Left();
} else if (rbp_n_cmp > 0) {
rbp_n_t = Trait::GetTreeNode(rbp_n_t).Right();
} else {
break;
}
MOZ_ASSERT(rbp_n_t != &rbt_nil);
}
}
return (ret == &rbt_nil) ? nullptr : ret;
}
T* Prev(T* aNode)
{
T* ret;
if (Trait::GetTreeNode(aNode).Left() != &rbt_nil) {
ret = Last(Trait::GetTreeNode(aNode).Left());
} else {
T* rbp_p_t = rbt_root;
MOZ_ASSERT(rbp_p_t != &rbt_nil);
ret = &rbt_nil;
while (true) {
int rbp_p_cmp = Trait::Compare(aNode, rbp_p_t);
if (rbp_p_cmp < 0) {
rbp_p_t = Trait::GetTreeNode(rbp_p_t).Left();
} else if (rbp_p_cmp > 0) {
ret = rbp_p_t;
rbp_p_t = Trait::GetTreeNode(rbp_p_t).Right();
} else {
break;
}
MOZ_ASSERT(rbp_p_t != &rbt_nil);
}
}
return (ret == &rbt_nil) ? nullptr : ret;
}
T* Search(T* aKey)
{
T* ret = rbt_root;
int rbp_se_cmp;
while (ret != &rbt_nil && (rbp_se_cmp = Trait::Compare(aKey, ret)) != 0) {
if (rbp_se_cmp < 0) {
ret = Trait::GetTreeNode(ret).Left();
} else {
ret = Trait::GetTreeNode(ret).Right();
}
}
return (ret == &rbt_nil) ? nullptr : ret;
}
/* Find a match if it exists. Otherwise, find the next greater node, if one
* exists */
T* SearchOrNext(T* aKey)
{
T* ret = nullptr;
T* rbp_ns_t = rbt_root;
while (rbp_ns_t != &rbt_nil) {
int rbp_ns_cmp = Trait::Compare(aKey, rbp_ns_t);
if (rbp_ns_cmp < 0) {
ret = rbp_ns_t;
rbp_ns_t = Trait::GetTreeNode(rbp_ns_t).Left();
} else if (rbp_ns_cmp > 0) {
rbp_ns_t = Trait::GetTreeNode(rbp_ns_t).Right();
} else {
ret = rbp_ns_t;
break;
}
}
return ret;
}
void Insert(T* aNode)
{
T rbp_i_s;
T *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u;
int rbp_i_cmp = 0;
rbp_i_g = &rbt_nil;
Trait::GetTreeNode(&rbp_i_s).SetLeft(rbt_root);
Trait::GetTreeNode(&rbp_i_s).SetRight(&rbt_nil);
Trait::GetTreeNode(&rbp_i_s).SetColor(NodeColor::Black);
rbp_i_p = &rbp_i_s;
rbp_i_c = rbt_root;
/* Iteratively search down the tree for the insertion point,
* splitting 4-nodes as they are encountered. At the end of each
* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down
* the tree, assuming a sufficiently deep tree. */
while (rbp_i_c != &rbt_nil) {
rbp_i_t = Trait::GetTreeNode(rbp_i_c).Left();
rbp_i_u = Trait::GetTreeNode(rbp_i_t).Left();
if (Trait::GetTreeNode(rbp_i_t).IsRed() &&
Trait::GetTreeNode(rbp_i_u).IsRed()) {
/* rbp_i_c is the top of a logical 4-node, so split it.
* This iteration does not move down the tree, due to the
* disruptiveness of node splitting.
*
* Rotate right. */
rbp_i_t = RotateRight(rbp_i_c);
/* Pass red links up one level. */
rbp_i_u = Trait::GetTreeNode(rbp_i_t).Left();
Trait::GetTreeNode(rbp_i_u).SetColor(NodeColor::Black);
if (Trait::GetTreeNode(rbp_i_p).Left() == rbp_i_c) {
Trait::GetTreeNode(rbp_i_p).SetLeft(rbp_i_t);
rbp_i_c = rbp_i_t;
} else {
/* rbp_i_c was the right child of rbp_i_p, so rotate
* left in order to maintain the left-leaning invariant. */
MOZ_ASSERT(Trait::GetTreeNode(rbp_i_p).Right() == rbp_i_c);
Trait::GetTreeNode(rbp_i_p).SetRight(rbp_i_t);
rbp_i_u = LeanLeft(rbp_i_p);
if (Trait::GetTreeNode(rbp_i_g).Left() == rbp_i_p) {
Trait::GetTreeNode(rbp_i_g).SetLeft(rbp_i_u);
} else {
MOZ_ASSERT(Trait::GetTreeNode(rbp_i_g).Right() == rbp_i_p);
Trait::GetTreeNode(rbp_i_g).SetRight(rbp_i_u);
}
rbp_i_p = rbp_i_u;
rbp_i_cmp = Trait::Compare(aNode, rbp_i_p);
if (rbp_i_cmp < 0) {
rbp_i_c = Trait::GetTreeNode(rbp_i_p).Left();
} else {
MOZ_ASSERT(rbp_i_cmp > 0);
rbp_i_c = Trait::GetTreeNode(rbp_i_p).Right();
}
continue;
}
}
rbp_i_g = rbp_i_p;
rbp_i_p = rbp_i_c;
rbp_i_cmp = Trait::Compare(aNode, rbp_i_c);
if (rbp_i_cmp < 0) {
rbp_i_c = Trait::GetTreeNode(rbp_i_c).Left();
} else {
MOZ_ASSERT(rbp_i_cmp > 0);
rbp_i_c = Trait::GetTreeNode(rbp_i_c).Right();
}
}
/* rbp_i_p now refers to the node under which to insert. */
Trait::GetTreeNode(aNode).SetLeft(&rbt_nil);
Trait::GetTreeNode(aNode).SetRight(&rbt_nil);
Trait::GetTreeNode(aNode).SetColor(NodeColor::Red);
if (rbp_i_cmp > 0) {
Trait::GetTreeNode(rbp_i_p).SetRight(aNode);
rbp_i_t = LeanLeft(rbp_i_p);
if (Trait::GetTreeNode(rbp_i_g).Left() == rbp_i_p) {
Trait::GetTreeNode(rbp_i_g).SetLeft(rbp_i_t);
} else if (Trait::GetTreeNode(rbp_i_g).Right() == rbp_i_p) {
Trait::GetTreeNode(rbp_i_g).SetRight(rbp_i_t);
}
} else {
Trait::GetTreeNode(rbp_i_p).SetLeft(aNode);
}
/* Update the root and make sure that it is black. */
rbt_root = Trait::GetTreeNode(&rbp_i_s).Left();
Trait::GetTreeNode(rbt_root).SetColor(NodeColor::Black);
}
void Remove(T* aNode)
{
T rbp_r_s;
T *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u;
int rbp_r_cmp;
Trait::GetTreeNode(&rbp_r_s).SetLeft(rbt_root);
Trait::GetTreeNode(&rbp_r_s).SetRight(&rbt_nil);
Trait::GetTreeNode(&rbp_r_s).SetColor(NodeColor::Black);
rbp_r_p = &rbp_r_s;
rbp_r_c = rbt_root;
rbp_r_xp = &rbt_nil;
/* Iterate down the tree, but always transform 2-nodes to 3- or
* 4-nodes in order to maintain the invariant that the current
* node is not a 2-node. This allows simple deletion once a leaf
* is reached. Handle the root specially though, since there may
* be no way to convert it from a 2-node to a 3-node. */
rbp_r_cmp = Trait::Compare(aNode, rbp_r_c);
if (rbp_r_cmp < 0) {
rbp_r_t = Trait::GetTreeNode(rbp_r_c).Left();
rbp_r_u = Trait::GetTreeNode(rbp_r_t).Left();
if (Trait::GetTreeNode(rbp_r_t).IsBlack() &&
Trait::GetTreeNode(rbp_r_u).IsBlack()) {
/* Apply standard transform to prepare for left move. */
rbp_move_red_left(T, Trait::GetTreeNode, rbp_r_c, rbp_r_t);
Trait::GetTreeNode(rbp_r_t).SetColor(NodeColor::Black);
Trait::GetTreeNode(rbp_r_p).SetLeft(rbp_r_t);
rbp_r_c = rbp_r_t;
} else {
/* Move left. */
rbp_r_p = rbp_r_c;
rbp_r_c = Trait::GetTreeNode(rbp_r_c).Left();
}
} else {
if (rbp_r_cmp == 0) {
MOZ_ASSERT(aNode == rbp_r_c);
if (Trait::GetTreeNode(rbp_r_c).Right() == &rbt_nil) {
/* Delete root node (which is also a leaf node). */
if (Trait::GetTreeNode(rbp_r_c).Left() != &rbt_nil) {
rbp_r_t = LeanRight(rbp_r_c);
Trait::GetTreeNode(rbp_r_t).SetRight(&rbt_nil);
} else {
rbp_r_t = &rbt_nil;
}
Trait::GetTreeNode(rbp_r_p).SetLeft(rbp_r_t);
} else {
/* This is the node we want to delete, but we will
* instead swap it with its successor and delete the
* successor. Record enough information to do the
* swap later. rbp_r_xp is the aNode's parent. */
rbp_r_xp = rbp_r_p;
rbp_r_cmp = 1; /* Note that deletion is incomplete. */
}
}
if (rbp_r_cmp == 1) {
if (Trait::GetTreeNode(
Trait::GetTreeNode(Trait::GetTreeNode(rbp_r_c).Right()).Left())
.IsBlack()) {
rbp_r_t = Trait::GetTreeNode(rbp_r_c).Left();
if (Trait::GetTreeNode(rbp_r_t).IsRed()) {
/* Standard transform. */
rbp_move_red_right(T, Trait::GetTreeNode, rbp_r_c, rbp_r_t);
} else {
/* Root-specific transform. */
Trait::GetTreeNode(rbp_r_c).SetColor(NodeColor::Red);
rbp_r_u = Trait::GetTreeNode(rbp_r_t).Left();
if (Trait::GetTreeNode(rbp_r_u).IsRed()) {
Trait::GetTreeNode(rbp_r_u).SetColor(NodeColor::Black);
rbp_r_t = RotateRight(rbp_r_c);
rbp_r_u = RotateLeft(rbp_r_c);
Trait::GetTreeNode(rbp_r_t).SetRight(rbp_r_u);
} else {
Trait::GetTreeNode(rbp_r_t).SetColor(NodeColor::Red);
rbp_r_t = RotateLeft(rbp_r_c);
}
}
Trait::GetTreeNode(rbp_r_p).SetLeft(rbp_r_t);
rbp_r_c = rbp_r_t;
} else {
/* Move right. */
rbp_r_p = rbp_r_c;
rbp_r_c = Trait::GetTreeNode(rbp_r_c).Right();
}
}
}
if (rbp_r_cmp != 0) {
while (true) {
MOZ_ASSERT(rbp_r_p != &rbt_nil);
rbp_r_cmp = Trait::Compare(aNode, rbp_r_c);
if (rbp_r_cmp < 0) {
rbp_r_t = Trait::GetTreeNode(rbp_r_c).Left();
if (rbp_r_t == &rbt_nil) {
/* rbp_r_c now refers to the successor node to
* relocate, and rbp_r_xp/aNode refer to the
* context for the relocation. */
if (Trait::GetTreeNode(rbp_r_xp).Left() == (aNode)) {
Trait::GetTreeNode(rbp_r_xp).SetLeft(rbp_r_c);
} else {
MOZ_ASSERT(Trait::GetTreeNode(rbp_r_xp).Right() == (aNode));
Trait::GetTreeNode(rbp_r_xp).SetRight(rbp_r_c);
}
Trait::GetTreeNode(rbp_r_c).SetLeft(
Trait::GetTreeNode(aNode).Left());
Trait::GetTreeNode(rbp_r_c).SetRight(
Trait::GetTreeNode(aNode).Right());
Trait::GetTreeNode(rbp_r_c).SetColor(
Trait::GetTreeNode(aNode).Color());
if (Trait::GetTreeNode(rbp_r_p).Left() == rbp_r_c) {
Trait::GetTreeNode(rbp_r_p).SetLeft(&rbt_nil);
} else {
MOZ_ASSERT(Trait::GetTreeNode(rbp_r_p).Right() == rbp_r_c);
Trait::GetTreeNode(rbp_r_p).SetRight(&rbt_nil);
}
break;
}
rbp_r_u = Trait::GetTreeNode(rbp_r_t).Left();
if (Trait::GetTreeNode(rbp_r_t).IsBlack() &&
Trait::GetTreeNode(rbp_r_u).IsBlack()) {
rbp_move_red_left(T, Trait::GetTreeNode, rbp_r_c, rbp_r_t);
if (Trait::GetTreeNode(rbp_r_p).Left() == rbp_r_c) {
Trait::GetTreeNode(rbp_r_p).SetLeft(rbp_r_t);
} else {
Trait::GetTreeNode(rbp_r_p).SetRight(rbp_r_t);
}
rbp_r_c = rbp_r_t;
} else {
rbp_r_p = rbp_r_c;
rbp_r_c = Trait::GetTreeNode(rbp_r_c).Left();
}
} else {
/* Check whether to delete this node (it has to be
* the correct node and a leaf node). */
if (rbp_r_cmp == 0) {
MOZ_ASSERT(aNode == rbp_r_c);
if (Trait::GetTreeNode(rbp_r_c).Right() == &rbt_nil) {
/* Delete leaf node. */
if (Trait::GetTreeNode(rbp_r_c).Left() != &rbt_nil) {
rbp_r_t = LeanRight(rbp_r_c);
Trait::GetTreeNode(rbp_r_t).SetRight(&rbt_nil);
} else {
rbp_r_t = &rbt_nil;
}
if (Trait::GetTreeNode(rbp_r_p).Left() == rbp_r_c) {
Trait::GetTreeNode(rbp_r_p).SetLeft(rbp_r_t);
} else {
Trait::GetTreeNode(rbp_r_p).SetRight(rbp_r_t);
}
break;
} else {
/* This is the node we want to delete, but we
* will instead swap it with its successor
* and delete the successor. Record enough
* information to do the swap later.
* rbp_r_xp is aNode's parent. */
rbp_r_xp = rbp_r_p;
}
}
rbp_r_t = Trait::GetTreeNode(rbp_r_c).Right();
rbp_r_u = Trait::GetTreeNode(rbp_r_t).Left();
if (Trait::GetTreeNode(rbp_r_u).IsBlack()) {
rbp_move_red_right(T, Trait::GetTreeNode, rbp_r_c, rbp_r_t);
if (Trait::GetTreeNode(rbp_r_p).Left() == rbp_r_c) {
Trait::GetTreeNode(rbp_r_p).SetLeft(rbp_r_t);
} else {
Trait::GetTreeNode(rbp_r_p).SetRight(rbp_r_t);
}
rbp_r_c = rbp_r_t;
} else {
rbp_r_p = rbp_r_c;
rbp_r_c = Trait::GetTreeNode(rbp_r_c).Right();
}
}
}
}
/* Update root. */
rbt_root = Trait::GetTreeNode(&rbp_r_s).Left();
}
private:
T* RotateLeft(T* aNode)
{
T* node = Trait::GetTreeNode(aNode).Right();
Trait::GetTreeNode(aNode).SetRight(Trait::GetTreeNode(node).Left());
Trait::GetTreeNode(node).SetLeft(aNode);
return node;
}
T* RotateRight(T* aNode)
{
T* node = Trait::GetTreeNode(aNode).Left();
Trait::GetTreeNode(aNode).SetLeft(Trait::GetTreeNode(node).Right());
Trait::GetTreeNode(node).SetRight(aNode);
return node;
}
T* LeanLeft(T* aNode)
{
T* node = RotateLeft(aNode);
NodeColor color = Trait::GetTreeNode(aNode).Color();
Trait::GetTreeNode(node).SetColor(color);
Trait::GetTreeNode(aNode).SetColor(NodeColor::Red);
return node;
}
T* LeanRight(T* aNode)
{
T* node = RotateRight(aNode);
NodeColor color = Trait::GetTreeNode(aNode).Color();
Trait::GetTreeNode(node).SetColor(color);
Trait::GetTreeNode(aNode).SetColor(NodeColor::Red);
return node;
}
};
/*
* The iterators simulate recursion via an array of pointers that store the
* current path. This is critical to performance, since a series of calls to
* rb_{next,prev}() would require time proportional to (n lg n), whereas this
* implementation only requires time proportional to (n).
*
* Since the iterators cache a path down the tree, any tree modification may
* cause the cached path to become invalid. In order to continue iteration,
* use something like the following sequence:
*
* {
* a_type *node, *tnode;
*
* rb_foreach_begin(a_type, a_field, a_tree, node) {
* ...
* rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
* rb_remove(a_type, a_field, a_cmp, a_tree, node);
* ...
* } rb_foreach_end(a_type, a_field, a_tree, node)
* }
*
* Note that this idiom is not advised if every iteration modifies the tree,
* since in that case there is no algorithmic complexity improvement over a
* series of rb_{next,prev}() calls, thus making the setup overhead wasted
* effort.
*/
/*
* Size the path arrays such that they are always large enough, even if a
* tree consumes all of memory. Since each node must contain a minimum of
* two pointers, there can never be more nodes than:
*
* 1 << ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))
*
* Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
* is:
*
* (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
*
* This works out to a maximum depth of 87 and 180 for 32- and 64-bit
* systems, respectively (approximately 348 and 1440 bytes, respectively).
*/
#define rbp_f_height (3 * ((SIZEOF_PTR << 3) - (SIZEOF_PTR_2POW + 1)))
#define rb_foreach_begin(a_type, a_field, a_tree, a_var) \
{ \
{ \
/* Initialize the path to contain the left spine. */ \
a_type* rbp_f_path[rbp_f_height]; \
a_type* rbp_f_node; \
bool rbp_f_synced = false; \
unsigned rbp_f_depth = 0; \
if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
rbp_f_depth++; \
while ((rbp_f_node = a_field(rbp_f_path[rbp_f_depth - 1]).Left()) != \
&(a_tree)->rbt_nil) { \
rbp_f_path[rbp_f_depth] = rbp_f_node; \
rbp_f_depth++; \
} \
} \
/* While the path is non-empty, iterate. */ \
while (rbp_f_depth > 0) { \
(a_var) = rbp_f_path[rbp_f_depth - 1];
#define rb_foreach_end(a_type, a_field, a_tree, a_var) \
if (rbp_f_synced) { \
rbp_f_synced = false; \
continue; \
} \
/* Find the successor. */ \
if ((rbp_f_node = a_field(rbp_f_path[rbp_f_depth - 1]).Right()) != \
&(a_tree)->rbt_nil) { \
/* The successor is the left-most node in the right */ \
/* subtree. */ \
rbp_f_path[rbp_f_depth] = rbp_f_node; \
rbp_f_depth++; \
while ((rbp_f_node = a_field(rbp_f_path[rbp_f_depth - 1]).Left()) != \
&(a_tree)->rbt_nil) { \
rbp_f_path[rbp_f_depth] = rbp_f_node; \
rbp_f_depth++; \
} \
} else { \
/* The successor is above the current node. Unwind */ \
/* until a left-leaning edge is removed from the */ \
/* path, or the path is empty. */ \
for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \
if (a_field(rbp_f_path[rbp_f_depth - 1]).Left() == \
rbp_f_path[rbp_f_depth]) { \
break; \
} \
} \
} \
} \
} \
}
#endif /* RB_H_ */