зеркало из https://github.com/mozilla/gecko-dev.git
Bug 933257 - Part 2.1: Import fdlibm from FreeBSD (revision bcea9d50b15e4f0027a5dd526e0e2a612238471e). r=jwalden
This commit is contained in:
Родитель
fa373353b6
Коммит
17a8f8e6da
|
@ -11,7 +11,7 @@ The in-tree copy is updated by running
|
|||
sh update.sh
|
||||
from within the modules/fdlibm directory.
|
||||
|
||||
Current version: [commit 0000000000000000000000000000000000000000].
|
||||
Current version: [commit bcea9d50b15e4f0027a5dd526e0e2a612238471e].
|
||||
|
||||
patches 01-16 fixes files to be usable within mozilla-central tree.
|
||||
See https://bugzilla.mozilla.org/show_bug.cgi?id=933257
|
||||
|
|
|
@ -0,0 +1,106 @@
|
|||
|
||||
/* @(#)e_acos.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_acos(x)
|
||||
* Method :
|
||||
* acos(x) = pi/2 - asin(x)
|
||||
* acos(-x) = pi/2 + asin(x)
|
||||
* For |x|<=0.5
|
||||
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
|
||||
* For x>0.5
|
||||
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
||||
* = 2asin(sqrt((1-x)/2))
|
||||
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
|
||||
* = 2f + (2c + 2s*z*R(z))
|
||||
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
|
||||
* for f so that f+c ~ sqrt(z).
|
||||
* For x<-0.5
|
||||
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
|
||||
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
* Function needed: sqrt
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
||||
pio2_hi = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
|
||||
static volatile double
|
||||
pio2_lo = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
|
||||
static const double
|
||||
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
||||
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
||||
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
||||
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
||||
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
||||
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
||||
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
||||
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
||||
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
||||
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
|
||||
double
|
||||
__ieee754_acos(double x)
|
||||
{
|
||||
double z,p,q,r,w,s,c,df;
|
||||
int32_t hx,ix;
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x3ff00000) { /* |x| >= 1 */
|
||||
u_int32_t lx;
|
||||
GET_LOW_WORD(lx,x);
|
||||
if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
|
||||
if(hx>0) return 0.0; /* acos(1) = 0 */
|
||||
else return pi+2.0*pio2_lo; /* acos(-1)= pi */
|
||||
}
|
||||
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
|
||||
}
|
||||
if(ix<0x3fe00000) { /* |x| < 0.5 */
|
||||
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
|
||||
z = x*x;
|
||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
||||
r = p/q;
|
||||
return pio2_hi - (x - (pio2_lo-x*r));
|
||||
} else if (hx<0) { /* x < -0.5 */
|
||||
z = (one+x)*0.5;
|
||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
||||
s = sqrt(z);
|
||||
r = p/q;
|
||||
w = r*s-pio2_lo;
|
||||
return pi - 2.0*(s+w);
|
||||
} else { /* x > 0.5 */
|
||||
z = (one-x)*0.5;
|
||||
s = sqrt(z);
|
||||
df = s;
|
||||
SET_LOW_WORD(df,0);
|
||||
c = (z-df*df)/(s+df);
|
||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
||||
r = p/q;
|
||||
w = r*s+c;
|
||||
return 2.0*(df+w);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,63 @@
|
|||
|
||||
/* @(#)e_acosh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_acosh(x)
|
||||
* Method :
|
||||
* Based on
|
||||
* acosh(x) = log [ x + sqrt(x*x-1) ]
|
||||
* we have
|
||||
* acosh(x) := log(x)+ln2, if x is large; else
|
||||
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
|
||||
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
|
||||
*
|
||||
* Special cases:
|
||||
* acosh(x) is NaN with signal if x<1.
|
||||
* acosh(NaN) is NaN without signal.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
one = 1.0,
|
||||
ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
|
||||
|
||||
double
|
||||
__ieee754_acosh(double x)
|
||||
{
|
||||
double t;
|
||||
int32_t hx;
|
||||
u_int32_t lx;
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
if(hx<0x3ff00000) { /* x < 1 */
|
||||
return (x-x)/(x-x);
|
||||
} else if(hx >=0x41b00000) { /* x > 2**28 */
|
||||
if(hx >=0x7ff00000) { /* x is inf of NaN */
|
||||
return x+x;
|
||||
} else
|
||||
return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */
|
||||
} else if(((hx-0x3ff00000)|lx)==0) {
|
||||
return 0.0; /* acosh(1) = 0 */
|
||||
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */
|
||||
t=x*x;
|
||||
return __ieee754_log(2.0*x-one/(x+sqrt(t-one)));
|
||||
} else { /* 1<x<2 */
|
||||
t = x-one;
|
||||
return log1p(t+sqrt(2.0*t+t*t));
|
||||
}
|
||||
}
|
|
@ -0,0 +1,112 @@
|
|||
|
||||
/* @(#)e_asin.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_asin(x)
|
||||
* Method :
|
||||
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
|
||||
* we approximate asin(x) on [0,0.5] by
|
||||
* asin(x) = x + x*x^2*R(x^2)
|
||||
* where
|
||||
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
|
||||
* and its remez error is bounded by
|
||||
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
|
||||
*
|
||||
* For x in [0.5,1]
|
||||
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
|
||||
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
|
||||
* then for x>0.98
|
||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
||||
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
|
||||
* For x<=0.98, let pio4_hi = pio2_hi/2, then
|
||||
* f = hi part of s;
|
||||
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
|
||||
* and
|
||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
||||
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
|
||||
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
huge = 1.000e+300,
|
||||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
||||
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
|
||||
/* coefficient for R(x^2) */
|
||||
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
||||
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
||||
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
||||
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
||||
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
||||
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
||||
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
||||
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
||||
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
||||
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
|
||||
double
|
||||
__ieee754_asin(double x)
|
||||
{
|
||||
double t=0.0,w,p,q,c,r,s;
|
||||
int32_t hx,ix;
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>= 0x3ff00000) { /* |x|>= 1 */
|
||||
u_int32_t lx;
|
||||
GET_LOW_WORD(lx,x);
|
||||
if(((ix-0x3ff00000)|lx)==0)
|
||||
/* asin(1)=+-pi/2 with inexact */
|
||||
return x*pio2_hi+x*pio2_lo;
|
||||
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
|
||||
} else if (ix<0x3fe00000) { /* |x|<0.5 */
|
||||
if(ix<0x3e500000) { /* if |x| < 2**-26 */
|
||||
if(huge+x>one) return x;/* return x with inexact if x!=0*/
|
||||
}
|
||||
t = x*x;
|
||||
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
||||
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
||||
w = p/q;
|
||||
return x+x*w;
|
||||
}
|
||||
/* 1> |x|>= 0.5 */
|
||||
w = one-fabs(x);
|
||||
t = w*0.5;
|
||||
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
||||
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
||||
s = sqrt(t);
|
||||
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
|
||||
w = p/q;
|
||||
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
|
||||
} else {
|
||||
w = s;
|
||||
SET_LOW_WORD(w,0);
|
||||
c = (t-w*w)/(s+w);
|
||||
r = p/q;
|
||||
p = 2.0*s*r-(pio2_lo-2.0*c);
|
||||
q = pio4_hi-2.0*w;
|
||||
t = pio4_hi-(p-q);
|
||||
}
|
||||
if(hx>0) return t; else return -t;
|
||||
}
|
|
@ -0,0 +1,124 @@
|
|||
|
||||
/* @(#)e_atan2.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_atan2(y,x)
|
||||
* Method :
|
||||
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
|
||||
* 2. Reduce x to positive by (if x and y are unexceptional):
|
||||
* ARG (x+iy) = arctan(y/x) ... if x > 0,
|
||||
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
|
||||
*
|
||||
* Special cases:
|
||||
*
|
||||
* ATAN2((anything), NaN ) is NaN;
|
||||
* ATAN2(NAN , (anything) ) is NaN;
|
||||
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
|
||||
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
|
||||
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
|
||||
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
|
||||
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
|
||||
* ATAN2(+-INF,+INF ) is +-pi/4 ;
|
||||
* ATAN2(+-INF,-INF ) is +-3pi/4;
|
||||
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static volatile double
|
||||
tiny = 1.0e-300;
|
||||
static const double
|
||||
zero = 0.0,
|
||||
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
|
||||
pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
pi = 3.1415926535897931160E+00; /* 0x400921FB, 0x54442D18 */
|
||||
static volatile double
|
||||
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
|
||||
|
||||
double
|
||||
__ieee754_atan2(double y, double x)
|
||||
{
|
||||
double z;
|
||||
int32_t k,m,hx,hy,ix,iy;
|
||||
u_int32_t lx,ly;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
EXTRACT_WORDS(hy,ly,y);
|
||||
iy = hy&0x7fffffff;
|
||||
if(((ix|((lx|-lx)>>31))>0x7ff00000)||
|
||||
((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */
|
||||
return x+y;
|
||||
if((hx-0x3ff00000|lx)==0) return atan(y); /* x=1.0 */
|
||||
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
|
||||
|
||||
/* when y = 0 */
|
||||
if((iy|ly)==0) {
|
||||
switch(m) {
|
||||
case 0:
|
||||
case 1: return y; /* atan(+-0,+anything)=+-0 */
|
||||
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
|
||||
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
|
||||
}
|
||||
}
|
||||
/* when x = 0 */
|
||||
if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
|
||||
|
||||
/* when x is INF */
|
||||
if(ix==0x7ff00000) {
|
||||
if(iy==0x7ff00000) {
|
||||
switch(m) {
|
||||
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
|
||||
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
|
||||
case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
|
||||
case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
|
||||
}
|
||||
} else {
|
||||
switch(m) {
|
||||
case 0: return zero ; /* atan(+...,+INF) */
|
||||
case 1: return -zero ; /* atan(-...,+INF) */
|
||||
case 2: return pi+tiny ; /* atan(+...,-INF) */
|
||||
case 3: return -pi-tiny ; /* atan(-...,-INF) */
|
||||
}
|
||||
}
|
||||
}
|
||||
/* when y is INF */
|
||||
if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
|
||||
|
||||
/* compute y/x */
|
||||
k = (iy-ix)>>20;
|
||||
if(k > 60) { /* |y/x| > 2**60 */
|
||||
z=pi_o_2+0.5*pi_lo;
|
||||
m&=1;
|
||||
}
|
||||
else if(hx<0&&k<-60) z=0.0; /* 0 > |y|/x > -2**-60 */
|
||||
else z=atan(fabs(y/x)); /* safe to do y/x */
|
||||
switch (m) {
|
||||
case 0: return z ; /* atan(+,+) */
|
||||
case 1: return -z ; /* atan(-,+) */
|
||||
case 2: return pi-(z-pi_lo);/* atan(+,-) */
|
||||
default: /* case 3 */
|
||||
return (z-pi_lo)-pi;/* atan(-,-) */
|
||||
}
|
||||
}
|
|
@ -0,0 +1,63 @@
|
|||
|
||||
/* @(#)e_atanh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_atanh(x)
|
||||
* Method :
|
||||
* 1.Reduced x to positive by atanh(-x) = -atanh(x)
|
||||
* 2.For x>=0.5
|
||||
* 1 2x x
|
||||
* atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
|
||||
* 2 1 - x 1 - x
|
||||
*
|
||||
* For x<0.5
|
||||
* atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
|
||||
*
|
||||
* Special cases:
|
||||
* atanh(x) is NaN if |x| > 1 with signal;
|
||||
* atanh(NaN) is that NaN with no signal;
|
||||
* atanh(+-1) is +-INF with signal.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double one = 1.0, huge = 1e300;
|
||||
static const double zero = 0.0;
|
||||
|
||||
double
|
||||
__ieee754_atanh(double x)
|
||||
{
|
||||
double t;
|
||||
int32_t hx,ix;
|
||||
u_int32_t lx;
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */
|
||||
return (x-x)/(x-x);
|
||||
if(ix==0x3ff00000)
|
||||
return x/zero;
|
||||
if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */
|
||||
SET_HIGH_WORD(x,ix);
|
||||
if(ix<0x3fe00000) { /* x < 0.5 */
|
||||
t = x+x;
|
||||
t = 0.5*log1p(t+t*x/(one-x));
|
||||
} else
|
||||
t = 0.5*log1p((x+x)/(one-x));
|
||||
if(hx>=0) return t; else return -t;
|
||||
}
|
|
@ -0,0 +1,80 @@
|
|||
|
||||
/* @(#)e_cosh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_cosh(x)
|
||||
* Method :
|
||||
* mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
|
||||
* 1. Replace x by |x| (cosh(x) = cosh(-x)).
|
||||
* 2.
|
||||
* [ exp(x) - 1 ]^2
|
||||
* 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
|
||||
* 2*exp(x)
|
||||
*
|
||||
* exp(x) + 1/exp(x)
|
||||
* ln2/2 <= x <= 22 : cosh(x) := -------------------
|
||||
* 2
|
||||
* 22 <= x <= lnovft : cosh(x) := exp(x)/2
|
||||
* lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
|
||||
* ln2ovft < x : cosh(x) := huge*huge (overflow)
|
||||
*
|
||||
* Special cases:
|
||||
* cosh(x) is |x| if x is +INF, -INF, or NaN.
|
||||
* only cosh(0)=1 is exact for finite x.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double one = 1.0, half=0.5, huge = 1.0e300;
|
||||
|
||||
double
|
||||
__ieee754_cosh(double x)
|
||||
{
|
||||
double t,w;
|
||||
int32_t ix;
|
||||
|
||||
/* High word of |x|. */
|
||||
GET_HIGH_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix>=0x7ff00000) return x*x;
|
||||
|
||||
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
|
||||
if(ix<0x3fd62e43) {
|
||||
t = expm1(fabs(x));
|
||||
w = one+t;
|
||||
if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */
|
||||
return one+(t*t)/(w+w);
|
||||
}
|
||||
|
||||
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
|
||||
if (ix < 0x40360000) {
|
||||
t = __ieee754_exp(fabs(x));
|
||||
return half*t+half/t;
|
||||
}
|
||||
|
||||
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */
|
||||
if (ix < 0x40862E42) return half*__ieee754_exp(fabs(x));
|
||||
|
||||
/* |x| in [log(maxdouble), overflowthresold] */
|
||||
if (ix<=0x408633CE)
|
||||
return __ldexp_exp(fabs(x), -1);
|
||||
|
||||
/* |x| > overflowthresold, cosh(x) overflow */
|
||||
return huge*huge;
|
||||
}
|
|
@ -0,0 +1,162 @@
|
|||
|
||||
/* @(#)e_exp.c 1.6 04/04/22 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_exp(x)
|
||||
* Returns the exponential of x.
|
||||
*
|
||||
* Method
|
||||
* 1. Argument reduction:
|
||||
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
||||
* Given x, find r and integer k such that
|
||||
*
|
||||
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
||||
*
|
||||
* Here r will be represented as r = hi-lo for better
|
||||
* accuracy.
|
||||
*
|
||||
* 2. Approximation of exp(r) by a special rational function on
|
||||
* the interval [0,0.34658]:
|
||||
* Write
|
||||
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
||||
* We use a special Remes algorithm on [0,0.34658] to generate
|
||||
* a polynomial of degree 5 to approximate R. The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-59. In
|
||||
* other words,
|
||||
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
||||
* (where z=r*r, and the values of P1 to P5 are listed below)
|
||||
* and
|
||||
* | 5 | -59
|
||||
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
||||
* | |
|
||||
* The computation of exp(r) thus becomes
|
||||
* 2*r
|
||||
* exp(r) = 1 + -------
|
||||
* R - r
|
||||
* r*R1(r)
|
||||
* = 1 + r + ----------- (for better accuracy)
|
||||
* 2 - R1(r)
|
||||
* where
|
||||
* 2 4 10
|
||||
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
||||
*
|
||||
* 3. Scale back to obtain exp(x):
|
||||
* From step 1, we have
|
||||
* exp(x) = 2^k * exp(r)
|
||||
*
|
||||
* Special cases:
|
||||
* exp(INF) is INF, exp(NaN) is NaN;
|
||||
* exp(-INF) is 0, and
|
||||
* for finite argument, only exp(0)=1 is exact.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Misc. info.
|
||||
* For IEEE double
|
||||
* if x > 7.09782712893383973096e+02 then exp(x) overflow
|
||||
* if x < -7.45133219101941108420e+02 then exp(x) underflow
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
one = 1.0,
|
||||
halF[2] = {0.5,-0.5,},
|
||||
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
||||
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
|
||||
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
||||
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
|
||||
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
||||
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
|
||||
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
|
||||
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
||||
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
||||
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
||||
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
||||
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
||||
|
||||
static volatile double
|
||||
huge = 1.0e+300,
|
||||
twom1000= 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0*/
|
||||
|
||||
double
|
||||
__ieee754_exp(double x) /* default IEEE double exp */
|
||||
{
|
||||
double y,hi=0.0,lo=0.0,c,t,twopk;
|
||||
int32_t k=0,xsb;
|
||||
u_int32_t hx;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
xsb = (hx>>31)&1; /* sign bit of x */
|
||||
hx &= 0x7fffffff; /* high word of |x| */
|
||||
|
||||
/* filter out non-finite argument */
|
||||
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
||||
if(hx>=0x7ff00000) {
|
||||
u_int32_t lx;
|
||||
GET_LOW_WORD(lx,x);
|
||||
if(((hx&0xfffff)|lx)!=0)
|
||||
return x+x; /* NaN */
|
||||
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
|
||||
}
|
||||
if(x > o_threshold) return huge*huge; /* overflow */
|
||||
if(x < u_threshold) return twom1000*twom1000; /* underflow */
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
||||
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
|
||||
} else {
|
||||
k = (int)(invln2*x+halF[xsb]);
|
||||
t = k;
|
||||
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
|
||||
lo = t*ln2LO[0];
|
||||
}
|
||||
STRICT_ASSIGN(double, x, hi - lo);
|
||||
}
|
||||
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
|
||||
if(huge+x>one) return one+x;/* trigger inexact */
|
||||
}
|
||||
else k = 0;
|
||||
|
||||
/* x is now in primary range */
|
||||
t = x*x;
|
||||
if(k >= -1021)
|
||||
INSERT_WORDS(twopk,0x3ff00000+(k<<20), 0);
|
||||
else
|
||||
INSERT_WORDS(twopk,0x3ff00000+((k+1000)<<20), 0);
|
||||
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
||||
if(k==0) return one-((x*c)/(c-2.0)-x);
|
||||
else y = one-((lo-(x*c)/(2.0-c))-hi);
|
||||
if(k >= -1021) {
|
||||
if (k==1024) {
|
||||
double const_0x1p1023 = pow(2, 1023);
|
||||
return y*2.0*const_0x1p1023;
|
||||
}
|
||||
return y*twopk;
|
||||
} else {
|
||||
return y*twopk*twom1000;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,126 @@
|
|||
|
||||
/* @(#)e_hypot.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_hypot(x,y)
|
||||
*
|
||||
* Method :
|
||||
* If (assume round-to-nearest) z=x*x+y*y
|
||||
* has error less than sqrt(2)/2 ulp, than
|
||||
* sqrt(z) has error less than 1 ulp (exercise).
|
||||
*
|
||||
* So, compute sqrt(x*x+y*y) with some care as
|
||||
* follows to get the error below 1 ulp:
|
||||
*
|
||||
* Assume x>y>0;
|
||||
* (if possible, set rounding to round-to-nearest)
|
||||
* 1. if x > 2y use
|
||||
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
|
||||
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else
|
||||
* 2. if x <= 2y use
|
||||
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
|
||||
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
|
||||
* y1= y with lower 32 bits chopped, y2 = y-y1.
|
||||
*
|
||||
* NOTE: scaling may be necessary if some argument is too
|
||||
* large or too tiny
|
||||
*
|
||||
* Special cases:
|
||||
* hypot(x,y) is INF if x or y is +INF or -INF; else
|
||||
* hypot(x,y) is NAN if x or y is NAN.
|
||||
*
|
||||
* Accuracy:
|
||||
* hypot(x,y) returns sqrt(x^2+y^2) with error less
|
||||
* than 1 ulps (units in the last place)
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
double
|
||||
__ieee754_hypot(double x, double y)
|
||||
{
|
||||
double a,b,t1,t2,y1,y2,w;
|
||||
int32_t j,k,ha,hb;
|
||||
|
||||
GET_HIGH_WORD(ha,x);
|
||||
ha &= 0x7fffffff;
|
||||
GET_HIGH_WORD(hb,y);
|
||||
hb &= 0x7fffffff;
|
||||
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
|
||||
a = fabs(a);
|
||||
b = fabs(b);
|
||||
if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
|
||||
k=0;
|
||||
if(ha > 0x5f300000) { /* a>2**500 */
|
||||
if(ha >= 0x7ff00000) { /* Inf or NaN */
|
||||
u_int32_t low;
|
||||
/* Use original arg order iff result is NaN; quieten sNaNs. */
|
||||
w = fabs(x+0.0)-fabs(y+0.0);
|
||||
GET_LOW_WORD(low,a);
|
||||
if(((ha&0xfffff)|low)==0) w = a;
|
||||
GET_LOW_WORD(low,b);
|
||||
if(((hb^0x7ff00000)|low)==0) w = b;
|
||||
return w;
|
||||
}
|
||||
/* scale a and b by 2**-600 */
|
||||
ha -= 0x25800000; hb -= 0x25800000; k += 600;
|
||||
SET_HIGH_WORD(a,ha);
|
||||
SET_HIGH_WORD(b,hb);
|
||||
}
|
||||
if(hb < 0x20b00000) { /* b < 2**-500 */
|
||||
if(hb <= 0x000fffff) { /* subnormal b or 0 */
|
||||
u_int32_t low;
|
||||
GET_LOW_WORD(low,b);
|
||||
if((hb|low)==0) return a;
|
||||
t1=0;
|
||||
SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
|
||||
b *= t1;
|
||||
a *= t1;
|
||||
k -= 1022;
|
||||
} else { /* scale a and b by 2^600 */
|
||||
ha += 0x25800000; /* a *= 2^600 */
|
||||
hb += 0x25800000; /* b *= 2^600 */
|
||||
k -= 600;
|
||||
SET_HIGH_WORD(a,ha);
|
||||
SET_HIGH_WORD(b,hb);
|
||||
}
|
||||
}
|
||||
/* medium size a and b */
|
||||
w = a-b;
|
||||
if (w>b) {
|
||||
t1 = 0;
|
||||
SET_HIGH_WORD(t1,ha);
|
||||
t2 = a-t1;
|
||||
w = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
|
||||
} else {
|
||||
a = a+a;
|
||||
y1 = 0;
|
||||
SET_HIGH_WORD(y1,hb);
|
||||
y2 = b - y1;
|
||||
t1 = 0;
|
||||
SET_HIGH_WORD(t1,ha+0x00100000);
|
||||
t2 = a - t1;
|
||||
w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
|
||||
}
|
||||
if(k!=0) {
|
||||
u_int32_t high;
|
||||
t1 = 1.0;
|
||||
GET_HIGH_WORD(high,t1);
|
||||
SET_HIGH_WORD(t1,high+(k<<20));
|
||||
return t1*w;
|
||||
} else return w;
|
||||
}
|
|
@ -0,0 +1,142 @@
|
|||
|
||||
/* @(#)e_log.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_log(x)
|
||||
* Return the logrithm of x
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* 2. Approximation of log(1+f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Reme algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
||||
* (the values of Lg1 to Lg7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
* by
|
||||
* log(1+f) = f - s*(f - R) (if f is not too large)
|
||||
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
||||
*
|
||||
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
||||
* log(+INF) is +INF; log(0) is -INF with signal;
|
||||
* log(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
||||
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
||||
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||||
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||||
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||||
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
static const double zero = 0.0;
|
||||
static volatile double vzero = 0.0;
|
||||
|
||||
double
|
||||
__ieee754_log(double x)
|
||||
{
|
||||
double hfsq,f,s,z,R,w,t1,t2,dk;
|
||||
int32_t k,hx,i,j;
|
||||
u_int32_t lx;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
|
||||
k=0;
|
||||
if (hx < 0x00100000) { /* x < 2**-1022 */
|
||||
if (((hx&0x7fffffff)|lx)==0)
|
||||
return -two54/vzero; /* log(+-0)=-inf */
|
||||
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
|
||||
k -= 54; x *= two54; /* subnormal number, scale up x */
|
||||
GET_HIGH_WORD(hx,x);
|
||||
}
|
||||
if (hx >= 0x7ff00000) return x+x;
|
||||
k += (hx>>20)-1023;
|
||||
hx &= 0x000fffff;
|
||||
i = (hx+0x95f64)&0x100000;
|
||||
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
|
||||
k += (i>>20);
|
||||
f = x-1.0;
|
||||
if((0x000fffff&(2+hx))<3) { /* -2**-20 <= f < 2**-20 */
|
||||
if(f==zero) {
|
||||
if(k==0) {
|
||||
return zero;
|
||||
} else {
|
||||
dk=(double)k;
|
||||
return dk*ln2_hi+dk*ln2_lo;
|
||||
}
|
||||
}
|
||||
R = f*f*(0.5-0.33333333333333333*f);
|
||||
if(k==0) return f-R; else {dk=(double)k;
|
||||
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
|
||||
}
|
||||
s = f/(2.0+f);
|
||||
dk = (double)k;
|
||||
z = s*s;
|
||||
i = hx-0x6147a;
|
||||
w = z*z;
|
||||
j = 0x6b851-hx;
|
||||
t1= w*(Lg2+w*(Lg4+w*Lg6));
|
||||
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
||||
i |= j;
|
||||
R = t2+t1;
|
||||
if(i>0) {
|
||||
hfsq=0.5*f*f;
|
||||
if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
||||
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
|
||||
} else {
|
||||
if(k==0) return f-s*(f-R); else
|
||||
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,89 @@
|
|||
|
||||
/* @(#)e_log10.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* Return the base 10 logarithm of x. See e_log.c and k_log.h for most
|
||||
* comments.
|
||||
*
|
||||
* log10(x) = (f - 0.5*f*f + k_log1p(f)) / ln10 + k * log10(2)
|
||||
* in not-quite-routine extra precision.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
#include "k_log.h"
|
||||
|
||||
static const double
|
||||
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
|
||||
ivln10hi = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */
|
||||
ivln10lo = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */
|
||||
log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
|
||||
log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
|
||||
|
||||
static const double zero = 0.0;
|
||||
static volatile double vzero = 0.0;
|
||||
|
||||
double
|
||||
__ieee754_log10(double x)
|
||||
{
|
||||
double f,hfsq,hi,lo,r,val_hi,val_lo,w,y,y2;
|
||||
int32_t i,k,hx;
|
||||
u_int32_t lx;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
|
||||
k=0;
|
||||
if (hx < 0x00100000) { /* x < 2**-1022 */
|
||||
if (((hx&0x7fffffff)|lx)==0)
|
||||
return -two54/vzero; /* log(+-0)=-inf */
|
||||
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
|
||||
k -= 54; x *= two54; /* subnormal number, scale up x */
|
||||
GET_HIGH_WORD(hx,x);
|
||||
}
|
||||
if (hx >= 0x7ff00000) return x+x;
|
||||
if (hx == 0x3ff00000 && lx == 0)
|
||||
return zero; /* log(1) = +0 */
|
||||
k += (hx>>20)-1023;
|
||||
hx &= 0x000fffff;
|
||||
i = (hx+0x95f64)&0x100000;
|
||||
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
|
||||
k += (i>>20);
|
||||
y = (double)k;
|
||||
f = x - 1.0;
|
||||
hfsq = 0.5*f*f;
|
||||
r = k_log1p(f);
|
||||
|
||||
/* See e_log2.c for most details. */
|
||||
hi = f - hfsq;
|
||||
SET_LOW_WORD(hi,0);
|
||||
lo = (f - hi) - hfsq + r;
|
||||
val_hi = hi*ivln10hi;
|
||||
y2 = y*log10_2hi;
|
||||
val_lo = y*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi;
|
||||
|
||||
/*
|
||||
* Extra precision in for adding y*log10_2hi is not strictly needed
|
||||
* since there is no very large cancellation near x = sqrt(2) or
|
||||
* x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
|
||||
* with some parallelism and it reduces the error for many args.
|
||||
*/
|
||||
w = y2 + val_hi;
|
||||
val_lo += (y2 - w) + val_hi;
|
||||
val_hi = w;
|
||||
|
||||
return val_lo + val_hi;
|
||||
}
|
|
@ -0,0 +1,112 @@
|
|||
|
||||
/* @(#)e_log10.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* Return the base 2 logarithm of x. See e_log.c and k_log.h for most
|
||||
* comments.
|
||||
*
|
||||
* This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel,
|
||||
* then does the combining and scaling steps
|
||||
* log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k
|
||||
* in not-quite-routine extra precision.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
#include "k_log.h"
|
||||
|
||||
static const double
|
||||
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
|
||||
ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
|
||||
ivln2lo = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
|
||||
|
||||
static const double zero = 0.0;
|
||||
static volatile double vzero = 0.0;
|
||||
|
||||
double
|
||||
__ieee754_log2(double x)
|
||||
{
|
||||
double f,hfsq,hi,lo,r,val_hi,val_lo,w,y;
|
||||
int32_t i,k,hx;
|
||||
u_int32_t lx;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
|
||||
k=0;
|
||||
if (hx < 0x00100000) { /* x < 2**-1022 */
|
||||
if (((hx&0x7fffffff)|lx)==0)
|
||||
return -two54/vzero; /* log(+-0)=-inf */
|
||||
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
|
||||
k -= 54; x *= two54; /* subnormal number, scale up x */
|
||||
GET_HIGH_WORD(hx,x);
|
||||
}
|
||||
if (hx >= 0x7ff00000) return x+x;
|
||||
if (hx == 0x3ff00000 && lx == 0)
|
||||
return zero; /* log(1) = +0 */
|
||||
k += (hx>>20)-1023;
|
||||
hx &= 0x000fffff;
|
||||
i = (hx+0x95f64)&0x100000;
|
||||
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
|
||||
k += (i>>20);
|
||||
y = (double)k;
|
||||
f = x - 1.0;
|
||||
hfsq = 0.5*f*f;
|
||||
r = k_log1p(f);
|
||||
|
||||
/*
|
||||
* f-hfsq must (for args near 1) be evaluated in extra precision
|
||||
* to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
|
||||
* This is fairly efficient since f-hfsq only depends on f, so can
|
||||
* be evaluated in parallel with R. Not combining hfsq with R also
|
||||
* keeps R small (though not as small as a true `lo' term would be),
|
||||
* so that extra precision is not needed for terms involving R.
|
||||
*
|
||||
* Compiler bugs involving extra precision used to break Dekker's
|
||||
* theorem for spitting f-hfsq as hi+lo, unless double_t was used
|
||||
* or the multi-precision calculations were avoided when double_t
|
||||
* has extra precision. These problems are now automatically
|
||||
* avoided as a side effect of the optimization of combining the
|
||||
* Dekker splitting step with the clear-low-bits step.
|
||||
*
|
||||
* y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
|
||||
* precision to avoid a very large cancellation when x is very near
|
||||
* these values. Unlike the above cancellations, this problem is
|
||||
* specific to base 2. It is strange that adding +-1 is so much
|
||||
* harder than adding +-ln2 or +-log10_2.
|
||||
*
|
||||
* This uses Dekker's theorem to normalize y+val_hi, so the
|
||||
* compiler bugs are back in some configurations, sigh. And I
|
||||
* don't want to used double_t to avoid them, since that gives a
|
||||
* pessimization and the support for avoiding the pessimization
|
||||
* is not yet available.
|
||||
*
|
||||
* The multi-precision calculations for the multiplications are
|
||||
* routine.
|
||||
*/
|
||||
hi = f - hfsq;
|
||||
SET_LOW_WORD(hi,0);
|
||||
lo = (f - hi) - hfsq + r;
|
||||
val_hi = hi*ivln2hi;
|
||||
val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
|
||||
|
||||
/* spadd(val_hi, val_lo, y), except for not using double_t: */
|
||||
w = y + val_hi;
|
||||
val_lo += (y - w) + val_hi;
|
||||
val_hi = w;
|
||||
|
||||
return val_lo + val_hi;
|
||||
}
|
|
@ -0,0 +1,305 @@
|
|||
/* @(#)e_pow.c 1.5 04/04/22 SMI */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_pow(x,y) return x**y
|
||||
*
|
||||
* n
|
||||
* Method: Let x = 2 * (1+f)
|
||||
* 1. Compute and return log2(x) in two pieces:
|
||||
* log2(x) = w1 + w2,
|
||||
* where w1 has 53-24 = 29 bit trailing zeros.
|
||||
* 2. Perform y*log2(x) = n+y' by simulating multi-precision
|
||||
* arithmetic, where |y'|<=0.5.
|
||||
* 3. Return x**y = 2**n*exp(y'*log2)
|
||||
*
|
||||
* Special cases:
|
||||
* 1. (anything) ** 0 is 1
|
||||
* 2. (anything) ** 1 is itself
|
||||
* 3. (anything) ** NAN is NAN except 1 ** NAN = 1
|
||||
* 4. NAN ** (anything except 0) is NAN
|
||||
* 5. +-(|x| > 1) ** +INF is +INF
|
||||
* 6. +-(|x| > 1) ** -INF is +0
|
||||
* 7. +-(|x| < 1) ** +INF is +0
|
||||
* 8. +-(|x| < 1) ** -INF is +INF
|
||||
* 9. +-1 ** +-INF is 1
|
||||
* 10. +0 ** (+anything except 0, NAN) is +0
|
||||
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
||||
* 12. +0 ** (-anything except 0, NAN) is +INF
|
||||
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
||||
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
||||
* 15. +INF ** (+anything except 0,NAN) is +INF
|
||||
* 16. +INF ** (-anything except 0,NAN) is +0
|
||||
* 17. -INF ** (anything) = -0 ** (-anything)
|
||||
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
||||
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
||||
*
|
||||
* Accuracy:
|
||||
* pow(x,y) returns x**y nearly rounded. In particular
|
||||
* pow(integer,integer)
|
||||
* always returns the correct integer provided it is
|
||||
* representable.
|
||||
*
|
||||
* Constants :
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
bp[] = {1.0, 1.5,},
|
||||
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
|
||||
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
|
||||
zero = 0.0,
|
||||
one = 1.0,
|
||||
two = 2.0,
|
||||
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
|
||||
huge = 1.0e300,
|
||||
tiny = 1.0e-300,
|
||||
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
||||
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
|
||||
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
|
||||
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
|
||||
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
|
||||
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
|
||||
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
|
||||
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
||||
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
||||
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
||||
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
||||
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
|
||||
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
||||
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
|
||||
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
|
||||
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
|
||||
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
|
||||
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
|
||||
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
|
||||
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
|
||||
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
|
||||
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
||||
|
||||
double
|
||||
__ieee754_pow(double x, double y)
|
||||
{
|
||||
double z,ax,z_h,z_l,p_h,p_l;
|
||||
double y1,t1,t2,r,s,t,u,v,w;
|
||||
int32_t i,j,k,yisint,n;
|
||||
int32_t hx,hy,ix,iy;
|
||||
u_int32_t lx,ly;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
EXTRACT_WORDS(hy,ly,y);
|
||||
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
|
||||
|
||||
/* y==zero: x**0 = 1 */
|
||||
if((iy|ly)==0) return one;
|
||||
|
||||
/* x==1: 1**y = 1, even if y is NaN */
|
||||
if (hx==0x3ff00000 && lx == 0) return one;
|
||||
|
||||
/* y!=zero: result is NaN if either arg is NaN */
|
||||
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
|
||||
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
|
||||
return (x+0.0)+(y+0.0);
|
||||
|
||||
/* determine if y is an odd int when x < 0
|
||||
* yisint = 0 ... y is not an integer
|
||||
* yisint = 1 ... y is an odd int
|
||||
* yisint = 2 ... y is an even int
|
||||
*/
|
||||
yisint = 0;
|
||||
if(hx<0) {
|
||||
if(iy>=0x43400000) yisint = 2; /* even integer y */
|
||||
else if(iy>=0x3ff00000) {
|
||||
k = (iy>>20)-0x3ff; /* exponent */
|
||||
if(k>20) {
|
||||
j = ly>>(52-k);
|
||||
if((j<<(52-k))==ly) yisint = 2-(j&1);
|
||||
} else if(ly==0) {
|
||||
j = iy>>(20-k);
|
||||
if((j<<(20-k))==iy) yisint = 2-(j&1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* special value of y */
|
||||
if(ly==0) {
|
||||
if (iy==0x7ff00000) { /* y is +-inf */
|
||||
if(((ix-0x3ff00000)|lx)==0)
|
||||
return one; /* (-1)**+-inf is 1 */
|
||||
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
|
||||
return (hy>=0)? y: zero;
|
||||
else /* (|x|<1)**-,+inf = inf,0 */
|
||||
return (hy<0)?-y: zero;
|
||||
}
|
||||
if(iy==0x3ff00000) { /* y is +-1 */
|
||||
if(hy<0) return one/x; else return x;
|
||||
}
|
||||
if(hy==0x40000000) return x*x; /* y is 2 */
|
||||
if(hy==0x3fe00000) { /* y is 0.5 */
|
||||
if(hx>=0) /* x >= +0 */
|
||||
return sqrt(x);
|
||||
}
|
||||
}
|
||||
|
||||
ax = fabs(x);
|
||||
/* special value of x */
|
||||
if(lx==0) {
|
||||
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
|
||||
z = ax; /*x is +-0,+-inf,+-1*/
|
||||
if(hy<0) z = one/z; /* z = (1/|x|) */
|
||||
if(hx<0) {
|
||||
if(((ix-0x3ff00000)|yisint)==0) {
|
||||
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
||||
} else if(yisint==1)
|
||||
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
||||
}
|
||||
return z;
|
||||
}
|
||||
}
|
||||
|
||||
/* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be
|
||||
n = (hx>>31)+1;
|
||||
but ANSI C says a right shift of a signed negative quantity is
|
||||
implementation defined. */
|
||||
n = ((u_int32_t)hx>>31)-1;
|
||||
|
||||
/* (x<0)**(non-int) is NaN */
|
||||
if((n|yisint)==0) return (x-x)/(x-x);
|
||||
|
||||
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
||||
if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
|
||||
|
||||
/* |y| is huge */
|
||||
if(iy>0x41e00000) { /* if |y| > 2**31 */
|
||||
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
|
||||
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
|
||||
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
|
||||
}
|
||||
/* over/underflow if x is not close to one */
|
||||
if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
|
||||
if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
|
||||
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
||||
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
||||
t = ax-one; /* t has 20 trailing zeros */
|
||||
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
|
||||
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
|
||||
v = t*ivln2_l-w*ivln2;
|
||||
t1 = u+v;
|
||||
SET_LOW_WORD(t1,0);
|
||||
t2 = v-(t1-u);
|
||||
} else {
|
||||
double ss,s2,s_h,s_l,t_h,t_l;
|
||||
n = 0;
|
||||
/* take care subnormal number */
|
||||
if(ix<0x00100000)
|
||||
{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
|
||||
n += ((ix)>>20)-0x3ff;
|
||||
j = ix&0x000fffff;
|
||||
/* determine interval */
|
||||
ix = j|0x3ff00000; /* normalize ix */
|
||||
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
|
||||
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
|
||||
else {k=0;n+=1;ix -= 0x00100000;}
|
||||
SET_HIGH_WORD(ax,ix);
|
||||
|
||||
/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
||||
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
||||
v = one/(ax+bp[k]);
|
||||
ss = u*v;
|
||||
s_h = ss;
|
||||
SET_LOW_WORD(s_h,0);
|
||||
/* t_h=ax+bp[k] High */
|
||||
t_h = zero;
|
||||
SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
|
||||
t_l = ax - (t_h-bp[k]);
|
||||
s_l = v*((u-s_h*t_h)-s_h*t_l);
|
||||
/* compute log(ax) */
|
||||
s2 = ss*ss;
|
||||
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
|
||||
r += s_l*(s_h+ss);
|
||||
s2 = s_h*s_h;
|
||||
t_h = 3.0+s2+r;
|
||||
SET_LOW_WORD(t_h,0);
|
||||
t_l = r-((t_h-3.0)-s2);
|
||||
/* u+v = ss*(1+...) */
|
||||
u = s_h*t_h;
|
||||
v = s_l*t_h+t_l*ss;
|
||||
/* 2/(3log2)*(ss+...) */
|
||||
p_h = u+v;
|
||||
SET_LOW_WORD(p_h,0);
|
||||
p_l = v-(p_h-u);
|
||||
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
||||
z_l = cp_l*p_h+p_l*cp+dp_l[k];
|
||||
/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
||||
t = (double)n;
|
||||
t1 = (((z_h+z_l)+dp_h[k])+t);
|
||||
SET_LOW_WORD(t1,0);
|
||||
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
|
||||
}
|
||||
|
||||
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
||||
y1 = y;
|
||||
SET_LOW_WORD(y1,0);
|
||||
p_l = (y-y1)*t1+y*t2;
|
||||
p_h = y1*t1;
|
||||
z = p_l+p_h;
|
||||
EXTRACT_WORDS(j,i,z);
|
||||
if (j>=0x40900000) { /* z >= 1024 */
|
||||
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
|
||||
return s*huge*huge; /* overflow */
|
||||
else {
|
||||
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
|
||||
}
|
||||
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
|
||||
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
|
||||
return s*tiny*tiny; /* underflow */
|
||||
else {
|
||||
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
|
||||
}
|
||||
}
|
||||
/*
|
||||
* compute 2**(p_h+p_l)
|
||||
*/
|
||||
i = j&0x7fffffff;
|
||||
k = (i>>20)-0x3ff;
|
||||
n = 0;
|
||||
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
|
||||
n = j+(0x00100000>>(k+1));
|
||||
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
|
||||
t = zero;
|
||||
SET_HIGH_WORD(t,n&~(0x000fffff>>k));
|
||||
n = ((n&0x000fffff)|0x00100000)>>(20-k);
|
||||
if(j<0) n = -n;
|
||||
p_h -= t;
|
||||
}
|
||||
t = p_l+p_h;
|
||||
SET_LOW_WORD(t,0);
|
||||
u = t*lg2_h;
|
||||
v = (p_l-(t-p_h))*lg2+t*lg2_l;
|
||||
z = u+v;
|
||||
w = v-(z-u);
|
||||
t = z*z;
|
||||
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
||||
r = (z*t1)/(t1-two)-(w+z*w);
|
||||
z = one-(r-z);
|
||||
GET_HIGH_WORD(j,z);
|
||||
j += (n<<20);
|
||||
if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
|
||||
else SET_HIGH_WORD(z,j);
|
||||
return s*z;
|
||||
}
|
|
@ -0,0 +1,187 @@
|
|||
|
||||
/* @(#)e_rem_pio2.c 1.4 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_rem_pio2(x,y)
|
||||
*
|
||||
* return the remainder of x rem pi/2 in y[0]+y[1]
|
||||
* use __kernel_rem_pio2()
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "mozilla/Attributes.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/*
|
||||
* invpio2: 53 bits of 2/pi
|
||||
* pio2_1: first 33 bit of pi/2
|
||||
* pio2_1t: pi/2 - pio2_1
|
||||
* pio2_2: second 33 bit of pi/2
|
||||
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
||||
* pio2_3: third 33 bit of pi/2
|
||||
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
||||
*/
|
||||
|
||||
static const double
|
||||
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
||||
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
||||
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
|
||||
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
|
||||
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
|
||||
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
|
||||
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
|
||||
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
||||
|
||||
#ifdef INLINE_REM_PIO2
|
||||
static MOZ_ALWAYS_INLINE
|
||||
#endif
|
||||
int
|
||||
__ieee754_rem_pio2(double x, double *y)
|
||||
{
|
||||
double z,w,t,r,fn;
|
||||
double tx[3],ty[2];
|
||||
int32_t e0,i,j,nx,n,ix,hx;
|
||||
u_int32_t low;
|
||||
|
||||
GET_HIGH_WORD(hx,x); /* high word of x */
|
||||
ix = hx&0x7fffffff;
|
||||
#if 0 /* Must be handled in caller. */
|
||||
if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
|
||||
{y[0] = x; y[1] = 0; return 0;}
|
||||
#endif
|
||||
if (ix <= 0x400f6a7a) { /* |x| ~<= 5pi/4 */
|
||||
if ((ix & 0xfffff) == 0x921fb) /* |x| ~= pi/2 or 2pi/2 */
|
||||
goto medium; /* cancellation -- use medium case */
|
||||
if (ix <= 0x4002d97c) { /* |x| ~<= 3pi/4 */
|
||||
if (hx > 0) {
|
||||
z = x - pio2_1; /* one round good to 85 bits */
|
||||
y[0] = z - pio2_1t;
|
||||
y[1] = (z-y[0])-pio2_1t;
|
||||
return 1;
|
||||
} else {
|
||||
z = x + pio2_1;
|
||||
y[0] = z + pio2_1t;
|
||||
y[1] = (z-y[0])+pio2_1t;
|
||||
return -1;
|
||||
}
|
||||
} else {
|
||||
if (hx > 0) {
|
||||
z = x - 2*pio2_1;
|
||||
y[0] = z - 2*pio2_1t;
|
||||
y[1] = (z-y[0])-2*pio2_1t;
|
||||
return 2;
|
||||
} else {
|
||||
z = x + 2*pio2_1;
|
||||
y[0] = z + 2*pio2_1t;
|
||||
y[1] = (z-y[0])+2*pio2_1t;
|
||||
return -2;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (ix <= 0x401c463b) { /* |x| ~<= 9pi/4 */
|
||||
if (ix <= 0x4015fdbc) { /* |x| ~<= 7pi/4 */
|
||||
if (ix == 0x4012d97c) /* |x| ~= 3pi/2 */
|
||||
goto medium;
|
||||
if (hx > 0) {
|
||||
z = x - 3*pio2_1;
|
||||
y[0] = z - 3*pio2_1t;
|
||||
y[1] = (z-y[0])-3*pio2_1t;
|
||||
return 3;
|
||||
} else {
|
||||
z = x + 3*pio2_1;
|
||||
y[0] = z + 3*pio2_1t;
|
||||
y[1] = (z-y[0])+3*pio2_1t;
|
||||
return -3;
|
||||
}
|
||||
} else {
|
||||
if (ix == 0x401921fb) /* |x| ~= 4pi/2 */
|
||||
goto medium;
|
||||
if (hx > 0) {
|
||||
z = x - 4*pio2_1;
|
||||
y[0] = z - 4*pio2_1t;
|
||||
y[1] = (z-y[0])-4*pio2_1t;
|
||||
return 4;
|
||||
} else {
|
||||
z = x + 4*pio2_1;
|
||||
y[0] = z + 4*pio2_1t;
|
||||
y[1] = (z-y[0])+4*pio2_1t;
|
||||
return -4;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(ix<0x413921fb) { /* |x| ~< 2^20*(pi/2), medium size */
|
||||
medium:
|
||||
/* Use a specialized rint() to get fn. Assume round-to-nearest. */
|
||||
double const_0x1_8p52 = pow(2, 52) + pow(2, 51);
|
||||
STRICT_ASSIGN(double,fn,x*invpio2+const_0x1_8p52);
|
||||
fn = fn-const_0x1_8p52;
|
||||
#ifdef HAVE_EFFICIENT_IRINT
|
||||
n = irint(fn);
|
||||
#else
|
||||
n = (int32_t)fn;
|
||||
#endif
|
||||
r = x-fn*pio2_1;
|
||||
w = fn*pio2_1t; /* 1st round good to 85 bit */
|
||||
{
|
||||
u_int32_t high;
|
||||
j = ix>>20;
|
||||
y[0] = r-w;
|
||||
GET_HIGH_WORD(high,y[0]);
|
||||
i = j-((high>>20)&0x7ff);
|
||||
if(i>16) { /* 2nd iteration needed, good to 118 */
|
||||
t = r;
|
||||
w = fn*pio2_2;
|
||||
r = t-w;
|
||||
w = fn*pio2_2t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
GET_HIGH_WORD(high,y[0]);
|
||||
i = j-((high>>20)&0x7ff);
|
||||
if(i>49) { /* 3rd iteration need, 151 bits acc */
|
||||
t = r; /* will cover all possible cases */
|
||||
w = fn*pio2_3;
|
||||
r = t-w;
|
||||
w = fn*pio2_3t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
}
|
||||
}
|
||||
}
|
||||
y[1] = (r-y[0])-w;
|
||||
return n;
|
||||
}
|
||||
/*
|
||||
* all other (large) arguments
|
||||
*/
|
||||
if(ix>=0x7ff00000) { /* x is inf or NaN */
|
||||
y[0]=y[1]=x-x; return 0;
|
||||
}
|
||||
/* set z = scalbn(|x|,ilogb(x)-23) */
|
||||
GET_LOW_WORD(low,x);
|
||||
e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */
|
||||
INSERT_WORDS(z, ix - ((int32_t)(e0<<20)), low);
|
||||
for(i=0;i<2;i++) {
|
||||
tx[i] = (double)((int32_t)(z));
|
||||
z = (z-tx[i])*two24;
|
||||
}
|
||||
tx[2] = z;
|
||||
nx = 3;
|
||||
while(tx[nx-1]==zero) nx--; /* skip zero term */
|
||||
n = __kernel_rem_pio2(tx,ty,e0,nx,1);
|
||||
if(hx<0) {y[0] = -ty[0]; y[1] = -ty[1]; return -n;}
|
||||
y[0] = ty[0]; y[1] = ty[1]; return n;
|
||||
}
|
|
@ -0,0 +1,74 @@
|
|||
|
||||
/* @(#)e_sinh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_sinh(x)
|
||||
* Method :
|
||||
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
|
||||
* 1. Replace x by |x| (sinh(-x) = -sinh(x)).
|
||||
* 2.
|
||||
* E + E/(E+1)
|
||||
* 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
|
||||
* 2
|
||||
*
|
||||
* 22 <= x <= lnovft : sinh(x) := exp(x)/2
|
||||
* lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
|
||||
* ln2ovft < x : sinh(x) := x*shuge (overflow)
|
||||
*
|
||||
* Special cases:
|
||||
* sinh(x) is |x| if x is +INF, -INF, or NaN.
|
||||
* only sinh(0)=0 is exact for finite x.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double one = 1.0, shuge = 1.0e307;
|
||||
|
||||
double
|
||||
__ieee754_sinh(double x)
|
||||
{
|
||||
double t,h;
|
||||
int32_t ix,jx;
|
||||
|
||||
/* High word of |x|. */
|
||||
GET_HIGH_WORD(jx,x);
|
||||
ix = jx&0x7fffffff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix>=0x7ff00000) return x+x;
|
||||
|
||||
h = 0.5;
|
||||
if (jx<0) h = -h;
|
||||
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
|
||||
if (ix < 0x40360000) { /* |x|<22 */
|
||||
if (ix<0x3e300000) /* |x|<2**-28 */
|
||||
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
|
||||
t = expm1(fabs(x));
|
||||
if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one));
|
||||
return h*(t+t/(t+one));
|
||||
}
|
||||
|
||||
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
|
||||
if (ix < 0x40862E42) return h*__ieee754_exp(fabs(x));
|
||||
|
||||
/* |x| in [log(maxdouble), overflowthresold] */
|
||||
if (ix<=0x408633CE)
|
||||
return h*2.0*__ldexp_exp(fabs(x), -1);
|
||||
|
||||
/* |x| > overflowthresold, sinh(x) overflow */
|
||||
return x*shuge;
|
||||
}
|
|
@ -0,0 +1,446 @@
|
|||
|
||||
/* @(#)e_sqrt.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __ieee754_sqrt(x)
|
||||
* Return correctly rounded sqrt.
|
||||
* ------------------------------------------
|
||||
* | Use the hardware sqrt if you have one |
|
||||
* ------------------------------------------
|
||||
* Method:
|
||||
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
||||
* 1. Normalization
|
||||
* Scale x to y in [1,4) with even powers of 2:
|
||||
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
||||
* sqrt(x) = 2^k * sqrt(y)
|
||||
* 2. Bit by bit computation
|
||||
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
||||
* i 0
|
||||
* i+1 2
|
||||
* s = 2*q , and y = 2 * ( y - q ). (1)
|
||||
* i i i i
|
||||
*
|
||||
* To compute q from q , one checks whether
|
||||
* i+1 i
|
||||
*
|
||||
* -(i+1) 2
|
||||
* (q + 2 ) <= y. (2)
|
||||
* i
|
||||
* -(i+1)
|
||||
* If (2) is false, then q = q ; otherwise q = q + 2 .
|
||||
* i+1 i i+1 i
|
||||
*
|
||||
* With some algebric manipulation, it is not difficult to see
|
||||
* that (2) is equivalent to
|
||||
* -(i+1)
|
||||
* s + 2 <= y (3)
|
||||
* i i
|
||||
*
|
||||
* The advantage of (3) is that s and y can be computed by
|
||||
* i i
|
||||
* the following recurrence formula:
|
||||
* if (3) is false
|
||||
*
|
||||
* s = s , y = y ; (4)
|
||||
* i+1 i i+1 i
|
||||
*
|
||||
* otherwise,
|
||||
* -i -(i+1)
|
||||
* s = s + 2 , y = y - s - 2 (5)
|
||||
* i+1 i i+1 i i
|
||||
*
|
||||
* One may easily use induction to prove (4) and (5).
|
||||
* Note. Since the left hand side of (3) contain only i+2 bits,
|
||||
* it does not necessary to do a full (53-bit) comparison
|
||||
* in (3).
|
||||
* 3. Final rounding
|
||||
* After generating the 53 bits result, we compute one more bit.
|
||||
* Together with the remainder, we can decide whether the
|
||||
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
||||
* (it will never equal to 1/2ulp).
|
||||
* The rounding mode can be detected by checking whether
|
||||
* huge + tiny is equal to huge, and whether huge - tiny is
|
||||
* equal to huge for some floating point number "huge" and "tiny".
|
||||
*
|
||||
* Special cases:
|
||||
* sqrt(+-0) = +-0 ... exact
|
||||
* sqrt(inf) = inf
|
||||
* sqrt(-ve) = NaN ... with invalid signal
|
||||
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
|
||||
*
|
||||
* Other methods : see the appended file at the end of the program below.
|
||||
*---------------
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double one = 1.0, tiny=1.0e-300;
|
||||
|
||||
double
|
||||
__ieee754_sqrt(double x)
|
||||
{
|
||||
double z;
|
||||
int32_t sign = (int)0x80000000;
|
||||
int32_t ix0,s0,q,m,t,i;
|
||||
u_int32_t r,t1,s1,ix1,q1;
|
||||
|
||||
EXTRACT_WORDS(ix0,ix1,x);
|
||||
|
||||
/* take care of Inf and NaN */
|
||||
if((ix0&0x7ff00000)==0x7ff00000) {
|
||||
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
|
||||
sqrt(-inf)=sNaN */
|
||||
}
|
||||
/* take care of zero */
|
||||
if(ix0<=0) {
|
||||
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
|
||||
else if(ix0<0)
|
||||
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
|
||||
}
|
||||
/* normalize x */
|
||||
m = (ix0>>20);
|
||||
if(m==0) { /* subnormal x */
|
||||
while(ix0==0) {
|
||||
m -= 21;
|
||||
ix0 |= (ix1>>11); ix1 <<= 21;
|
||||
}
|
||||
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
|
||||
m -= i-1;
|
||||
ix0 |= (ix1>>(32-i));
|
||||
ix1 <<= i;
|
||||
}
|
||||
m -= 1023; /* unbias exponent */
|
||||
ix0 = (ix0&0x000fffff)|0x00100000;
|
||||
if(m&1){ /* odd m, double x to make it even */
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
}
|
||||
m >>= 1; /* m = [m/2] */
|
||||
|
||||
/* generate sqrt(x) bit by bit */
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
|
||||
r = 0x00200000; /* r = moving bit from right to left */
|
||||
|
||||
while(r!=0) {
|
||||
t = s0+r;
|
||||
if(t<=ix0) {
|
||||
s0 = t+r;
|
||||
ix0 -= t;
|
||||
q += r;
|
||||
}
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
r>>=1;
|
||||
}
|
||||
|
||||
r = sign;
|
||||
while(r!=0) {
|
||||
t1 = s1+r;
|
||||
t = s0;
|
||||
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
|
||||
s1 = t1+r;
|
||||
if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
|
||||
ix0 -= t;
|
||||
if (ix1 < t1) ix0 -= 1;
|
||||
ix1 -= t1;
|
||||
q1 += r;
|
||||
}
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
r>>=1;
|
||||
}
|
||||
|
||||
/* use floating add to find out rounding direction */
|
||||
if((ix0|ix1)!=0) {
|
||||
z = one-tiny; /* trigger inexact flag */
|
||||
if (z>=one) {
|
||||
z = one+tiny;
|
||||
if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
|
||||
else if (z>one) {
|
||||
if (q1==(u_int32_t)0xfffffffe) q+=1;
|
||||
q1+=2;
|
||||
} else
|
||||
q1 += (q1&1);
|
||||
}
|
||||
}
|
||||
ix0 = (q>>1)+0x3fe00000;
|
||||
ix1 = q1>>1;
|
||||
if ((q&1)==1) ix1 |= sign;
|
||||
ix0 += (m <<20);
|
||||
INSERT_WORDS(z,ix0,ix1);
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
Other methods (use floating-point arithmetic)
|
||||
-------------
|
||||
(This is a copy of a drafted paper by Prof W. Kahan
|
||||
and K.C. Ng, written in May, 1986)
|
||||
|
||||
Two algorithms are given here to implement sqrt(x)
|
||||
(IEEE double precision arithmetic) in software.
|
||||
Both supply sqrt(x) correctly rounded. The first algorithm (in
|
||||
Section A) uses newton iterations and involves four divisions.
|
||||
The second one uses reciproot iterations to avoid division, but
|
||||
requires more multiplications. Both algorithms need the ability
|
||||
to chop results of arithmetic operations instead of round them,
|
||||
and the INEXACT flag to indicate when an arithmetic operation
|
||||
is executed exactly with no roundoff error, all part of the
|
||||
standard (IEEE 754-1985). The ability to perform shift, add,
|
||||
subtract and logical AND operations upon 32-bit words is needed
|
||||
too, though not part of the standard.
|
||||
|
||||
A. sqrt(x) by Newton Iteration
|
||||
|
||||
(1) Initial approximation
|
||||
|
||||
Let x0 and x1 be the leading and the trailing 32-bit words of
|
||||
a floating point number x (in IEEE double format) respectively
|
||||
|
||||
1 11 52 ...widths
|
||||
------------------------------------------------------
|
||||
x: |s| e | f |
|
||||
------------------------------------------------------
|
||||
msb lsb msb lsb ...order
|
||||
|
||||
|
||||
------------------------ ------------------------
|
||||
x0: |s| e | f1 | x1: | f2 |
|
||||
------------------------ ------------------------
|
||||
|
||||
By performing shifts and subtracts on x0 and x1 (both regarded
|
||||
as integers), we obtain an 8-bit approximation of sqrt(x) as
|
||||
follows.
|
||||
|
||||
k := (x0>>1) + 0x1ff80000;
|
||||
y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
|
||||
Here k is a 32-bit integer and T1[] is an integer array containing
|
||||
correction terms. Now magically the floating value of y (y's
|
||||
leading 32-bit word is y0, the value of its trailing word is 0)
|
||||
approximates sqrt(x) to almost 8-bit.
|
||||
|
||||
Value of T1:
|
||||
static int T1[32]= {
|
||||
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
|
||||
29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
|
||||
83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
|
||||
16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
|
||||
|
||||
(2) Iterative refinement
|
||||
|
||||
Apply Heron's rule three times to y, we have y approximates
|
||||
sqrt(x) to within 1 ulp (Unit in the Last Place):
|
||||
|
||||
y := (y+x/y)/2 ... almost 17 sig. bits
|
||||
y := (y+x/y)/2 ... almost 35 sig. bits
|
||||
y := y-(y-x/y)/2 ... within 1 ulp
|
||||
|
||||
|
||||
Remark 1.
|
||||
Another way to improve y to within 1 ulp is:
|
||||
|
||||
y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
|
||||
y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
|
||||
|
||||
2
|
||||
(x-y )*y
|
||||
y := y + 2* ---------- ...within 1 ulp
|
||||
2
|
||||
3y + x
|
||||
|
||||
|
||||
This formula has one division fewer than the one above; however,
|
||||
it requires more multiplications and additions. Also x must be
|
||||
scaled in advance to avoid spurious overflow in evaluating the
|
||||
expression 3y*y+x. Hence it is not recommended uless division
|
||||
is slow. If division is very slow, then one should use the
|
||||
reciproot algorithm given in section B.
|
||||
|
||||
(3) Final adjustment
|
||||
|
||||
By twiddling y's last bit it is possible to force y to be
|
||||
correctly rounded according to the prevailing rounding mode
|
||||
as follows. Let r and i be copies of the rounding mode and
|
||||
inexact flag before entering the square root program. Also we
|
||||
use the expression y+-ulp for the next representable floating
|
||||
numbers (up and down) of y. Note that y+-ulp = either fixed
|
||||
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
|
||||
mode.
|
||||
|
||||
I := FALSE; ... reset INEXACT flag I
|
||||
R := RZ; ... set rounding mode to round-toward-zero
|
||||
z := x/y; ... chopped quotient, possibly inexact
|
||||
If(not I) then { ... if the quotient is exact
|
||||
if(z=y) {
|
||||
I := i; ... restore inexact flag
|
||||
R := r; ... restore rounded mode
|
||||
return sqrt(x):=y.
|
||||
} else {
|
||||
z := z - ulp; ... special rounding
|
||||
}
|
||||
}
|
||||
i := TRUE; ... sqrt(x) is inexact
|
||||
If (r=RN) then z=z+ulp ... rounded-to-nearest
|
||||
If (r=RP) then { ... round-toward-+inf
|
||||
y = y+ulp; z=z+ulp;
|
||||
}
|
||||
y := y+z; ... chopped sum
|
||||
y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
|
||||
I := i; ... restore inexact flag
|
||||
R := r; ... restore rounded mode
|
||||
return sqrt(x):=y.
|
||||
|
||||
(4) Special cases
|
||||
|
||||
Square root of +inf, +-0, or NaN is itself;
|
||||
Square root of a negative number is NaN with invalid signal.
|
||||
|
||||
|
||||
B. sqrt(x) by Reciproot Iteration
|
||||
|
||||
(1) Initial approximation
|
||||
|
||||
Let x0 and x1 be the leading and the trailing 32-bit words of
|
||||
a floating point number x (in IEEE double format) respectively
|
||||
(see section A). By performing shifs and subtracts on x0 and y0,
|
||||
we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
|
||||
|
||||
k := 0x5fe80000 - (x0>>1);
|
||||
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
|
||||
|
||||
Here k is a 32-bit integer and T2[] is an integer array
|
||||
containing correction terms. Now magically the floating
|
||||
value of y (y's leading 32-bit word is y0, the value of
|
||||
its trailing word y1 is set to zero) approximates 1/sqrt(x)
|
||||
to almost 7.8-bit.
|
||||
|
||||
Value of T2:
|
||||
static int T2[64]= {
|
||||
0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
|
||||
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
|
||||
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
|
||||
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
|
||||
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
|
||||
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
|
||||
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
|
||||
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
|
||||
|
||||
(2) Iterative refinement
|
||||
|
||||
Apply Reciproot iteration three times to y and multiply the
|
||||
result by x to get an approximation z that matches sqrt(x)
|
||||
to about 1 ulp. To be exact, we will have
|
||||
-1ulp < sqrt(x)-z<1.0625ulp.
|
||||
|
||||
... set rounding mode to Round-to-nearest
|
||||
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
|
||||
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
|
||||
... special arrangement for better accuracy
|
||||
z := x*y ... 29 bits to sqrt(x), with z*y<1
|
||||
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
|
||||
|
||||
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
|
||||
(a) the term z*y in the final iteration is always less than 1;
|
||||
(b) the error in the final result is biased upward so that
|
||||
-1 ulp < sqrt(x) - z < 1.0625 ulp
|
||||
instead of |sqrt(x)-z|<1.03125ulp.
|
||||
|
||||
(3) Final adjustment
|
||||
|
||||
By twiddling y's last bit it is possible to force y to be
|
||||
correctly rounded according to the prevailing rounding mode
|
||||
as follows. Let r and i be copies of the rounding mode and
|
||||
inexact flag before entering the square root program. Also we
|
||||
use the expression y+-ulp for the next representable floating
|
||||
numbers (up and down) of y. Note that y+-ulp = either fixed
|
||||
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
|
||||
mode.
|
||||
|
||||
R := RZ; ... set rounding mode to round-toward-zero
|
||||
switch(r) {
|
||||
case RN: ... round-to-nearest
|
||||
if(x<= z*(z-ulp)...chopped) z = z - ulp; else
|
||||
if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
|
||||
break;
|
||||
case RZ:case RM: ... round-to-zero or round-to--inf
|
||||
R:=RP; ... reset rounding mod to round-to-+inf
|
||||
if(x<z*z ... rounded up) z = z - ulp; else
|
||||
if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
|
||||
break;
|
||||
case RP: ... round-to-+inf
|
||||
if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
|
||||
if(x>z*z ...chopped) z = z+ulp;
|
||||
break;
|
||||
}
|
||||
|
||||
Remark 3. The above comparisons can be done in fixed point. For
|
||||
example, to compare x and w=z*z chopped, it suffices to compare
|
||||
x1 and w1 (the trailing parts of x and w), regarding them as
|
||||
two's complement integers.
|
||||
|
||||
...Is z an exact square root?
|
||||
To determine whether z is an exact square root of x, let z1 be the
|
||||
trailing part of z, and also let x0 and x1 be the leading and
|
||||
trailing parts of x.
|
||||
|
||||
If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
|
||||
I := 1; ... Raise Inexact flag: z is not exact
|
||||
else {
|
||||
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
|
||||
k := z1 >> 26; ... get z's 25-th and 26-th
|
||||
fraction bits
|
||||
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
|
||||
}
|
||||
R:= r ... restore rounded mode
|
||||
return sqrt(x):=z.
|
||||
|
||||
If multiplication is cheaper then the foregoing red tape, the
|
||||
Inexact flag can be evaluated by
|
||||
|
||||
I := i;
|
||||
I := (z*z!=x) or I.
|
||||
|
||||
Note that z*z can overwrite I; this value must be sensed if it is
|
||||
True.
|
||||
|
||||
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
|
||||
zero.
|
||||
|
||||
--------------------
|
||||
z1: | f2 |
|
||||
--------------------
|
||||
bit 31 bit 0
|
||||
|
||||
Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
|
||||
or even of logb(x) have the following relations:
|
||||
|
||||
-------------------------------------------------
|
||||
bit 27,26 of z1 bit 1,0 of x1 logb(x)
|
||||
-------------------------------------------------
|
||||
00 00 odd and even
|
||||
01 01 even
|
||||
10 10 odd
|
||||
10 00 even
|
||||
11 01 even
|
||||
-------------------------------------------------
|
||||
|
||||
(4) Special cases (see (4) of Section A).
|
||||
|
||||
*/
|
||||
|
|
@ -0,0 +1,63 @@
|
|||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* from: @(#)fdlibm.h 5.1 93/09/24
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#ifndef mozilla_imported_fdlibm_h
|
||||
#define mozilla_imported_fdlibm_h
|
||||
|
||||
namespace fdlibm {
|
||||
|
||||
double acos(double);
|
||||
double asin(double);
|
||||
double atan(double);
|
||||
double atan2(double, double);
|
||||
double cos(double);
|
||||
double sin(double);
|
||||
double tan(double);
|
||||
|
||||
double cosh(double);
|
||||
double sinh(double);
|
||||
double tanh(double);
|
||||
|
||||
double exp(double);
|
||||
double log(double);
|
||||
double log10(double);
|
||||
|
||||
double pow(double, double);
|
||||
double sqrt(double);
|
||||
|
||||
double ceil(double);
|
||||
float ceilf(float);
|
||||
double fabs(double);
|
||||
double floor(double);
|
||||
|
||||
double acosh(double);
|
||||
double asinh(double);
|
||||
double atanh(double);
|
||||
double cbrt(double);
|
||||
double expm1(double);
|
||||
double hypot(double, double);
|
||||
double log1p(double);
|
||||
double log2(double);
|
||||
|
||||
double copysign(double, double);
|
||||
double scalbn(double, int);
|
||||
double trunc(double);
|
||||
|
||||
float floorf(float);
|
||||
|
||||
} /* namespace fdlibm */
|
||||
|
||||
#endif /* mozilla_imported_fdlibm_h */
|
|
@ -0,0 +1,78 @@
|
|||
|
||||
/* @(#)k_cos.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* __kernel_cos( x, y )
|
||||
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
||||
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
||||
* 3. cos(x) is approximated by a polynomial of degree 14 on
|
||||
* [0,pi/4]
|
||||
* 4 14
|
||||
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
||||
* where the remez error is
|
||||
*
|
||||
* | 2 4 6 8 10 12 14 | -58
|
||||
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
||||
* | |
|
||||
*
|
||||
* 4 6 8 10 12 14
|
||||
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
||||
* cos(x) ~ 1 - x*x/2 + r
|
||||
* since cos(x+y) ~ cos(x) - sin(x)*y
|
||||
* ~ cos(x) - x*y,
|
||||
* a correction term is necessary in cos(x) and hence
|
||||
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
||||
* For better accuracy, rearrange to
|
||||
* cos(x+y) ~ w + (tmp + (r-x*y))
|
||||
* where w = 1 - x*x/2 and tmp is a tiny correction term
|
||||
* (1 - x*x/2 == w + tmp exactly in infinite precision).
|
||||
* The exactness of w + tmp in infinite precision depends on w
|
||||
* and tmp having the same precision as x. If they have extra
|
||||
* precision due to compiler bugs, then the extra precision is
|
||||
* only good provided it is retained in all terms of the final
|
||||
* expression for cos(). Retention happens in all cases tested
|
||||
* under FreeBSD, so don't pessimize things by forcibly clipping
|
||||
* any extra precision in w.
|
||||
*/
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
||||
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
||||
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
|
||||
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
||||
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
||||
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
||||
|
||||
double
|
||||
__kernel_cos(double x, double y)
|
||||
{
|
||||
double hz,z,r,w;
|
||||
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
r = z*(C1+z*(C2+z*C3)) + w*w*(C4+z*(C5+z*C6));
|
||||
hz = 0.5*z;
|
||||
w = one-hz;
|
||||
return w + (((one-w)-hz) + (z*r-x*y));
|
||||
}
|
|
@ -0,0 +1,81 @@
|
|||
/*-
|
||||
* Copyright (c) 2011 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const uint32_t k = 1799; /* constant for reduction */
|
||||
static const double kln2 = 1246.97177782734161156; /* k * ln2 */
|
||||
|
||||
/*
|
||||
* Compute exp(x), scaled to avoid spurious overflow. An exponent is
|
||||
* returned separately in 'expt'.
|
||||
*
|
||||
* Input: ln(DBL_MAX) <= x < ln(2 * DBL_MAX / DBL_MIN_DENORM) ~= 1454.91
|
||||
* Output: 2**1023 <= y < 2**1024
|
||||
*/
|
||||
static double
|
||||
__frexp_exp(double x, int *expt)
|
||||
{
|
||||
double exp_x;
|
||||
uint32_t hx;
|
||||
|
||||
/*
|
||||
* We use exp(x) = exp(x - kln2) * 2**k, carefully chosen to
|
||||
* minimize |exp(kln2) - 2**k|. We also scale the exponent of
|
||||
* exp_x to MAX_EXP so that the result can be multiplied by
|
||||
* a tiny number without losing accuracy due to denormalization.
|
||||
*/
|
||||
exp_x = exp(x - kln2);
|
||||
GET_HIGH_WORD(hx, exp_x);
|
||||
*expt = (hx >> 20) - (0x3ff + 1023) + k;
|
||||
SET_HIGH_WORD(exp_x, (hx & 0xfffff) | ((0x3ff + 1023) << 20));
|
||||
return (exp_x);
|
||||
}
|
||||
|
||||
/*
|
||||
* __ldexp_exp(x, expt) and __ldexp_cexp(x, expt) compute exp(x) * 2**expt.
|
||||
* They are intended for large arguments (real part >= ln(DBL_MAX))
|
||||
* where care is needed to avoid overflow.
|
||||
*
|
||||
* The present implementation is narrowly tailored for our hyperbolic and
|
||||
* exponential functions. We assume expt is small (0 or -1), and the caller
|
||||
* has filtered out very large x, for which overflow would be inevitable.
|
||||
*/
|
||||
|
||||
double
|
||||
__ldexp_exp(double x, int expt)
|
||||
{
|
||||
double exp_x, scale;
|
||||
int ex_expt;
|
||||
|
||||
exp_x = __frexp_exp(x, &ex_expt);
|
||||
expt += ex_expt;
|
||||
INSERT_WORDS(scale, (0x3ff + expt) << 20, 0);
|
||||
return (exp_x * scale);
|
||||
}
|
|
@ -0,0 +1,100 @@
|
|||
|
||||
/* @(#)e_log.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* k_log1p(f):
|
||||
* Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)].
|
||||
*
|
||||
* The following describes the overall strategy for computing
|
||||
* logarithms in base e. The argument reduction and adding the final
|
||||
* term of the polynomial are done by the caller for increased accuracy
|
||||
* when different bases are used.
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* 2. Approximation of log(1+f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Reme algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
||||
* (the values of Lg1 to Lg7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
* by
|
||||
* log(1+f) = f - s*(f - R) (if f is not too large)
|
||||
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
||||
*
|
||||
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
||||
* log(+INF) is +INF; log(0) is -INF with signal;
|
||||
* log(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
static const double
|
||||
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||||
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||||
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||||
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
/*
|
||||
* We always inline k_log1p(), since doing so produces a
|
||||
* substantial performance improvement (~40% on amd64).
|
||||
*/
|
||||
static inline double
|
||||
k_log1p(double f)
|
||||
{
|
||||
double hfsq,s,z,R,w,t1,t2;
|
||||
|
||||
s = f/(2.0+f);
|
||||
z = s*s;
|
||||
w = z*z;
|
||||
t1= w*(Lg2+w*(Lg4+w*Lg6));
|
||||
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
||||
R = t2+t1;
|
||||
hfsq=0.5*f*f;
|
||||
return s*(hfsq+R);
|
||||
}
|
|
@ -0,0 +1,442 @@
|
|||
|
||||
/* @(#)k_rem_pio2.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* __kernel_rem_pio2(x,y,e0,nx,prec)
|
||||
* double x[],y[]; int e0,nx,prec;
|
||||
*
|
||||
* __kernel_rem_pio2 return the last three digits of N with
|
||||
* y = x - N*pi/2
|
||||
* so that |y| < pi/2.
|
||||
*
|
||||
* The method is to compute the integer (mod 8) and fraction parts of
|
||||
* (2/pi)*x without doing the full multiplication. In general we
|
||||
* skip the part of the product that are known to be a huge integer (
|
||||
* more accurately, = 0 mod 8 ). Thus the number of operations are
|
||||
* independent of the exponent of the input.
|
||||
*
|
||||
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
|
||||
*
|
||||
* Input parameters:
|
||||
* x[] The input value (must be positive) is broken into nx
|
||||
* pieces of 24-bit integers in double precision format.
|
||||
* x[i] will be the i-th 24 bit of x. The scaled exponent
|
||||
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
||||
* match x's up to 24 bits.
|
||||
*
|
||||
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
||||
* e0 = ilogb(z)-23
|
||||
* z = scalbn(z,-e0)
|
||||
* for i = 0,1,2
|
||||
* x[i] = floor(z)
|
||||
* z = (z-x[i])*2**24
|
||||
*
|
||||
*
|
||||
* y[] output result in an array of double precision numbers.
|
||||
* The dimension of y[] is:
|
||||
* 24-bit precision 1
|
||||
* 53-bit precision 2
|
||||
* 64-bit precision 2
|
||||
* 113-bit precision 3
|
||||
* The actual value is the sum of them. Thus for 113-bit
|
||||
* precison, one may have to do something like:
|
||||
*
|
||||
* long double t,w,r_head, r_tail;
|
||||
* t = (long double)y[2] + (long double)y[1];
|
||||
* w = (long double)y[0];
|
||||
* r_head = t+w;
|
||||
* r_tail = w - (r_head - t);
|
||||
*
|
||||
* e0 The exponent of x[0]. Must be <= 16360 or you need to
|
||||
* expand the ipio2 table.
|
||||
*
|
||||
* nx dimension of x[]
|
||||
*
|
||||
* prec an integer indicating the precision:
|
||||
* 0 24 bits (single)
|
||||
* 1 53 bits (double)
|
||||
* 2 64 bits (extended)
|
||||
* 3 113 bits (quad)
|
||||
*
|
||||
* External function:
|
||||
* double scalbn(), floor();
|
||||
*
|
||||
*
|
||||
* Here is the description of some local variables:
|
||||
*
|
||||
* jk jk+1 is the initial number of terms of ipio2[] needed
|
||||
* in the computation. The minimum and recommended value
|
||||
* for jk is 3,4,4,6 for single, double, extended, and quad.
|
||||
* jk+1 must be 2 larger than you might expect so that our
|
||||
* recomputation test works. (Up to 24 bits in the integer
|
||||
* part (the 24 bits of it that we compute) and 23 bits in
|
||||
* the fraction part may be lost to cancelation before we
|
||||
* recompute.)
|
||||
*
|
||||
* jz local integer variable indicating the number of
|
||||
* terms of ipio2[] used.
|
||||
*
|
||||
* jx nx - 1
|
||||
*
|
||||
* jv index for pointing to the suitable ipio2[] for the
|
||||
* computation. In general, we want
|
||||
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
|
||||
* is an integer. Thus
|
||||
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
|
||||
* Hence jv = max(0,(e0-3)/24).
|
||||
*
|
||||
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
||||
*
|
||||
* q[] double array with integral value, representing the
|
||||
* 24-bits chunk of the product of x and 2/pi.
|
||||
*
|
||||
* q0 the corresponding exponent of q[0]. Note that the
|
||||
* exponent for q[i] would be q0-24*i.
|
||||
*
|
||||
* PIo2[] double precision array, obtained by cutting pi/2
|
||||
* into 24 bits chunks.
|
||||
*
|
||||
* f[] ipio2[] in floating point
|
||||
*
|
||||
* iq[] integer array by breaking up q[] in 24-bits chunk.
|
||||
*
|
||||
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
|
||||
*
|
||||
* ih integer. If >0 it indicates q[] is >= 0.5, hence
|
||||
* it also indicates the *sign* of the result.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
|
||||
|
||||
/*
|
||||
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
||||
*
|
||||
* integer array, contains the (24*i)-th to (24*i+23)-th
|
||||
* bit of 2/pi after binary point. The corresponding
|
||||
* floating value is
|
||||
*
|
||||
* ipio2[i] * 2^(-24(i+1)).
|
||||
*
|
||||
* NB: This table must have at least (e0-3)/24 + jk terms.
|
||||
* For quad precision (e0 <= 16360, jk = 6), this is 686.
|
||||
*/
|
||||
static const int32_t ipio2[] = {
|
||||
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
|
||||
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
|
||||
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
|
||||
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
|
||||
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
|
||||
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
|
||||
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
|
||||
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
|
||||
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
|
||||
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
|
||||
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
|
||||
|
||||
#if LDBL_MAX_EXP > 1024
|
||||
#if LDBL_MAX_EXP > 16384
|
||||
#error "ipio2 table needs to be expanded"
|
||||
#endif
|
||||
0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
|
||||
0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
|
||||
0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
|
||||
0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
|
||||
0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
|
||||
0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
|
||||
0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
|
||||
0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
|
||||
0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
|
||||
0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
|
||||
0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
|
||||
0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
|
||||
0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
|
||||
0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
|
||||
0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
|
||||
0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
|
||||
0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
|
||||
0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
|
||||
0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
|
||||
0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
|
||||
0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
|
||||
0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
|
||||
0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
|
||||
0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
|
||||
0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
|
||||
0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
|
||||
0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
|
||||
0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
|
||||
0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
|
||||
0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
|
||||
0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
|
||||
0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
|
||||
0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
|
||||
0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
|
||||
0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
|
||||
0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
|
||||
0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
|
||||
0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
|
||||
0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
|
||||
0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
|
||||
0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
|
||||
0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
|
||||
0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
|
||||
0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
|
||||
0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
|
||||
0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
|
||||
0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
|
||||
0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
|
||||
0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
|
||||
0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
|
||||
0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
|
||||
0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
|
||||
0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
|
||||
0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
|
||||
0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
|
||||
0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
|
||||
0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
|
||||
0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
|
||||
0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
|
||||
0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
|
||||
0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
|
||||
0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
|
||||
0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
|
||||
0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
|
||||
0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
|
||||
0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
|
||||
0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
|
||||
0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
|
||||
0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
|
||||
0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
|
||||
0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
|
||||
0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
|
||||
0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
|
||||
0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
|
||||
0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
|
||||
0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
|
||||
0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
|
||||
0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
|
||||
0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
|
||||
0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
|
||||
0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
|
||||
0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
|
||||
0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
|
||||
0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
|
||||
0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
|
||||
0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
|
||||
0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
|
||||
0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
|
||||
0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
|
||||
0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
|
||||
0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
|
||||
0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
|
||||
0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
|
||||
0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
|
||||
0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
|
||||
0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
|
||||
0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
|
||||
0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
|
||||
0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
|
||||
0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
|
||||
0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
|
||||
0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
|
||||
0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
|
||||
0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
static const double PIo2[] = {
|
||||
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
||||
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
||||
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
||||
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
|
||||
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
|
||||
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
|
||||
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
|
||||
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
||||
};
|
||||
|
||||
static const double
|
||||
zero = 0.0,
|
||||
one = 1.0,
|
||||
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
||||
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
|
||||
|
||||
int
|
||||
__kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec)
|
||||
{
|
||||
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
|
||||
double z,fw,f[20],fq[20],q[20];
|
||||
|
||||
/* initialize jk*/
|
||||
jk = init_jk[prec];
|
||||
jp = jk;
|
||||
|
||||
/* determine jx,jv,q0, note that 3>q0 */
|
||||
jx = nx-1;
|
||||
jv = (e0-3)/24; if(jv<0) jv=0;
|
||||
q0 = e0-24*(jv+1);
|
||||
|
||||
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
||||
j = jv-jx; m = jx+jk;
|
||||
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
|
||||
|
||||
/* compute q[0],q[1],...q[jk] */
|
||||
for (i=0;i<=jk;i++) {
|
||||
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
|
||||
}
|
||||
|
||||
jz = jk;
|
||||
recompute:
|
||||
/* distill q[] into iq[] reversingly */
|
||||
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
|
||||
fw = (double)((int32_t)(twon24* z));
|
||||
iq[i] = (int32_t)(z-two24*fw);
|
||||
z = q[j-1]+fw;
|
||||
}
|
||||
|
||||
/* compute n */
|
||||
z = scalbn(z,q0); /* actual value of z */
|
||||
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
|
||||
n = (int32_t) z;
|
||||
z -= (double)n;
|
||||
ih = 0;
|
||||
if(q0>0) { /* need iq[jz-1] to determine n */
|
||||
i = (iq[jz-1]>>(24-q0)); n += i;
|
||||
iq[jz-1] -= i<<(24-q0);
|
||||
ih = iq[jz-1]>>(23-q0);
|
||||
}
|
||||
else if(q0==0) ih = iq[jz-1]>>23;
|
||||
else if(z>=0.5) ih=2;
|
||||
|
||||
if(ih>0) { /* q > 0.5 */
|
||||
n += 1; carry = 0;
|
||||
for(i=0;i<jz ;i++) { /* compute 1-q */
|
||||
j = iq[i];
|
||||
if(carry==0) {
|
||||
if(j!=0) {
|
||||
carry = 1; iq[i] = 0x1000000- j;
|
||||
}
|
||||
} else iq[i] = 0xffffff - j;
|
||||
}
|
||||
if(q0>0) { /* rare case: chance is 1 in 12 */
|
||||
switch(q0) {
|
||||
case 1:
|
||||
iq[jz-1] &= 0x7fffff; break;
|
||||
case 2:
|
||||
iq[jz-1] &= 0x3fffff; break;
|
||||
}
|
||||
}
|
||||
if(ih==2) {
|
||||
z = one - z;
|
||||
if(carry!=0) z -= scalbn(one,q0);
|
||||
}
|
||||
}
|
||||
|
||||
/* check if recomputation is needed */
|
||||
if(z==zero) {
|
||||
j = 0;
|
||||
for (i=jz-1;i>=jk;i--) j |= iq[i];
|
||||
if(j==0) { /* need recomputation */
|
||||
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
|
||||
|
||||
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
|
||||
f[jx+i] = (double) ipio2[jv+i];
|
||||
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
|
||||
q[i] = fw;
|
||||
}
|
||||
jz += k;
|
||||
goto recompute;
|
||||
}
|
||||
}
|
||||
|
||||
/* chop off zero terms */
|
||||
if(z==0.0) {
|
||||
jz -= 1; q0 -= 24;
|
||||
while(iq[jz]==0) { jz--; q0-=24;}
|
||||
} else { /* break z into 24-bit if necessary */
|
||||
z = scalbn(z,-q0);
|
||||
if(z>=two24) {
|
||||
fw = (double)((int32_t)(twon24*z));
|
||||
iq[jz] = (int32_t)(z-two24*fw);
|
||||
jz += 1; q0 += 24;
|
||||
iq[jz] = (int32_t) fw;
|
||||
} else iq[jz] = (int32_t) z ;
|
||||
}
|
||||
|
||||
/* convert integer "bit" chunk to floating-point value */
|
||||
fw = scalbn(one,q0);
|
||||
for(i=jz;i>=0;i--) {
|
||||
q[i] = fw*(double)iq[i]; fw*=twon24;
|
||||
}
|
||||
|
||||
/* compute PIo2[0,...,jp]*q[jz,...,0] */
|
||||
for(i=jz;i>=0;i--) {
|
||||
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
|
||||
fq[jz-i] = fw;
|
||||
}
|
||||
|
||||
/* compress fq[] into y[] */
|
||||
switch(prec) {
|
||||
case 0:
|
||||
fw = 0.0;
|
||||
for (i=jz;i>=0;i--) fw += fq[i];
|
||||
y[0] = (ih==0)? fw: -fw;
|
||||
break;
|
||||
case 1:
|
||||
case 2:
|
||||
fw = 0.0;
|
||||
for (i=jz;i>=0;i--) fw += fq[i];
|
||||
STRICT_ASSIGN(double,fw,fw);
|
||||
y[0] = (ih==0)? fw: -fw;
|
||||
fw = fq[0]-fw;
|
||||
for (i=1;i<=jz;i++) fw += fq[i];
|
||||
y[1] = (ih==0)? fw: -fw;
|
||||
break;
|
||||
case 3: /* painful */
|
||||
for (i=jz;i>0;i--) {
|
||||
fw = fq[i-1]+fq[i];
|
||||
fq[i] += fq[i-1]-fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (i=jz;i>1;i--) {
|
||||
fw = fq[i-1]+fq[i];
|
||||
fq[i] += fq[i-1]-fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
|
||||
if(ih==0) {
|
||||
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
|
||||
} else {
|
||||
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
|
||||
}
|
||||
}
|
||||
return n&7;
|
||||
}
|
|
@ -0,0 +1,69 @@
|
|||
|
||||
/* @(#)k_sin.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __kernel_sin( x, y, iy)
|
||||
* kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
||||
* 2. Callers must return sin(-0) = -0 without calling here since our
|
||||
* odd polynomial is not evaluated in a way that preserves -0.
|
||||
* Callers may do the optimization sin(x) ~ x for tiny x.
|
||||
* 3. sin(x) is approximated by a polynomial of degree 13 on
|
||||
* [0,pi/4]
|
||||
* 3 13
|
||||
* sin(x) ~ x + S1*x + ... + S6*x
|
||||
* where
|
||||
*
|
||||
* |sin(x) 2 4 6 8 10 12 | -58
|
||||
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* 4. sin(x+y) = sin(x) + sin'(x')*y
|
||||
* ~ sin(x) + (1-x*x/2)*y
|
||||
* For better accuracy, let
|
||||
* 3 2 2 2 2
|
||||
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
||||
* then 3 2
|
||||
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
||||
*/
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
||||
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
||||
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
||||
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
|
||||
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
||||
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
||||
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
||||
|
||||
double
|
||||
__kernel_sin(double x, double y, int iy)
|
||||
{
|
||||
double z,r,v,w;
|
||||
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
r = S2+z*(S3+z*S4) + z*w*(S5+z*S6);
|
||||
v = z*x;
|
||||
if(iy==0) return x+v*(S1+z*r);
|
||||
else return x-((z*(half*y-v*r)-y)-v*S1);
|
||||
}
|
|
@ -0,0 +1,131 @@
|
|||
/* @(#)k_tan.c 1.5 04/04/22 SMI */
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* INDENT OFF */
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* __kernel_tan( x, y, k )
|
||||
* kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
* Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
||||
* 2. Callers must return tan(-0) = -0 without calling here since our
|
||||
* odd polynomial is not evaluated in a way that preserves -0.
|
||||
* Callers may do the optimization tan(x) ~ x for tiny x.
|
||||
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
||||
* [0,0.67434]
|
||||
* 3 27
|
||||
* tan(x) ~ x + T1*x + ... + T13*x
|
||||
* where
|
||||
*
|
||||
* |tan(x) 2 4 26 | -59.2
|
||||
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
||||
* ~ tan(x) + (1+x*x)*y
|
||||
* Therefore, for better accuracy in computing tan(x+y), let
|
||||
* 3 2 2 2 2
|
||||
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
||||
* then
|
||||
* 3 2
|
||||
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
||||
*
|
||||
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
||||
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
||||
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
||||
*/
|
||||
|
||||
#include "math_private.h"
|
||||
static const double xxx[] = {
|
||||
3.33333333333334091986e-01, /* 3FD55555, 55555563 */
|
||||
1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
|
||||
5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
|
||||
2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
|
||||
8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
|
||||
3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
|
||||
1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
|
||||
5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
|
||||
2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
|
||||
7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
|
||||
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
|
||||
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
|
||||
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
|
||||
/* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
|
||||
/* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
|
||||
/* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
|
||||
};
|
||||
#define one xxx[13]
|
||||
#define pio4 xxx[14]
|
||||
#define pio4lo xxx[15]
|
||||
#define T xxx
|
||||
/* INDENT ON */
|
||||
|
||||
double
|
||||
__kernel_tan(double x, double y, int iy) {
|
||||
double z, r, v, w, s;
|
||||
int32_t ix, hx;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx & 0x7fffffff; /* high word of |x| */
|
||||
if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
|
||||
if (hx < 0) {
|
||||
x = -x;
|
||||
y = -y;
|
||||
}
|
||||
z = pio4 - x;
|
||||
w = pio4lo - y;
|
||||
x = z + w;
|
||||
y = 0.0;
|
||||
}
|
||||
z = x * x;
|
||||
w = z * z;
|
||||
/*
|
||||
* Break x^5*(T[1]+x^2*T[2]+...) into
|
||||
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
||||
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
||||
*/
|
||||
r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
|
||||
w * T[11]))));
|
||||
v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
|
||||
w * T[12])))));
|
||||
s = z * x;
|
||||
r = y + z * (s * (r + v) + y);
|
||||
r += T[0] * s;
|
||||
w = x + r;
|
||||
if (ix >= 0x3FE59428) {
|
||||
v = (double) iy;
|
||||
return (double) (1 - ((hx >> 30) & 2)) *
|
||||
(v - 2.0 * (x - (w * w / (w + v) - r)));
|
||||
}
|
||||
if (iy == 1)
|
||||
return w;
|
||||
else {
|
||||
/*
|
||||
* if allow error up to 2 ulp, simply return
|
||||
* -1.0 / (x+r) here
|
||||
*/
|
||||
/* compute -1.0 / (x+r) accurately */
|
||||
double a, t;
|
||||
z = w;
|
||||
SET_LOW_WORD(z,0);
|
||||
v = r - (z - x); /* z+v = r+x */
|
||||
t = a = -1.0 / w; /* a = -1.0/w */
|
||||
SET_LOW_WORD(t,0);
|
||||
s = 1.0 + t * z;
|
||||
return t + a * (s + t * v);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,820 @@
|
|||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* from: @(#)fdlibm.h 5.1 93/09/24
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#ifndef _MATH_PRIVATE_H_
|
||||
#define _MATH_PRIVATE_H_
|
||||
|
||||
#include <cfloat>
|
||||
#include <stdint.h>
|
||||
#include <sys/types.h>
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#include "mozilla/Endian.h"
|
||||
|
||||
/*
|
||||
* The original fdlibm code used statements like:
|
||||
* n0 = ((*(int*)&one)>>29)^1; * index of high word *
|
||||
* ix0 = *(n0+(int*)&x); * high word of x *
|
||||
* ix1 = *((1-n0)+(int*)&x); * low word of x *
|
||||
* to dig two 32 bit words out of the 64 bit IEEE floating point
|
||||
* value. That is non-ANSI, and, moreover, the gcc instruction
|
||||
* scheduler gets it wrong. We instead use the following macros.
|
||||
* Unlike the original code, we determine the endianness at compile
|
||||
* time, not at run time; I don't see much benefit to selecting
|
||||
* endianness at run time.
|
||||
*/
|
||||
|
||||
#ifdef WIN32
|
||||
#define u_int32_t uint32_t
|
||||
#define u_int64_t uint64_t
|
||||
#endif
|
||||
|
||||
/*
|
||||
* A union which permits us to convert between a double and two 32 bit
|
||||
* ints.
|
||||
*/
|
||||
|
||||
#if MOZ_BIG_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
double value;
|
||||
struct
|
||||
{
|
||||
u_int32_t msw;
|
||||
u_int32_t lsw;
|
||||
} parts;
|
||||
struct
|
||||
{
|
||||
u_int64_t w;
|
||||
} xparts;
|
||||
} ieee_double_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
#if MOZ_LITTLE_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
double value;
|
||||
struct
|
||||
{
|
||||
u_int32_t lsw;
|
||||
u_int32_t msw;
|
||||
} parts;
|
||||
struct
|
||||
{
|
||||
u_int64_t w;
|
||||
} xparts;
|
||||
} ieee_double_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
/* Get two 32 bit ints from a double. */
|
||||
|
||||
#define EXTRACT_WORDS(ix0,ix1,d) \
|
||||
do { \
|
||||
ieee_double_shape_type ew_u; \
|
||||
ew_u.value = (d); \
|
||||
(ix0) = ew_u.parts.msw; \
|
||||
(ix1) = ew_u.parts.lsw; \
|
||||
} while (0)
|
||||
|
||||
/* Get a 64-bit int from a double. */
|
||||
#define EXTRACT_WORD64(ix,d) \
|
||||
do { \
|
||||
ieee_double_shape_type ew_u; \
|
||||
ew_u.value = (d); \
|
||||
(ix) = ew_u.xparts.w; \
|
||||
} while (0)
|
||||
|
||||
/* Get the more significant 32 bit int from a double. */
|
||||
|
||||
#define GET_HIGH_WORD(i,d) \
|
||||
do { \
|
||||
ieee_double_shape_type gh_u; \
|
||||
gh_u.value = (d); \
|
||||
(i) = gh_u.parts.msw; \
|
||||
} while (0)
|
||||
|
||||
/* Get the less significant 32 bit int from a double. */
|
||||
|
||||
#define GET_LOW_WORD(i,d) \
|
||||
do { \
|
||||
ieee_double_shape_type gl_u; \
|
||||
gl_u.value = (d); \
|
||||
(i) = gl_u.parts.lsw; \
|
||||
} while (0)
|
||||
|
||||
/* Set a double from two 32 bit ints. */
|
||||
|
||||
#define INSERT_WORDS(d,ix0,ix1) \
|
||||
do { \
|
||||
ieee_double_shape_type iw_u; \
|
||||
iw_u.parts.msw = (ix0); \
|
||||
iw_u.parts.lsw = (ix1); \
|
||||
(d) = iw_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set a double from a 64-bit int. */
|
||||
#define INSERT_WORD64(d,ix) \
|
||||
do { \
|
||||
ieee_double_shape_type iw_u; \
|
||||
iw_u.xparts.w = (ix); \
|
||||
(d) = iw_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set the more significant 32 bits of a double from an int. */
|
||||
|
||||
#define SET_HIGH_WORD(d,v) \
|
||||
do { \
|
||||
ieee_double_shape_type sh_u; \
|
||||
sh_u.value = (d); \
|
||||
sh_u.parts.msw = (v); \
|
||||
(d) = sh_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set the less significant 32 bits of a double from an int. */
|
||||
|
||||
#define SET_LOW_WORD(d,v) \
|
||||
do { \
|
||||
ieee_double_shape_type sl_u; \
|
||||
sl_u.value = (d); \
|
||||
sl_u.parts.lsw = (v); \
|
||||
(d) = sl_u.value; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* A union which permits us to convert between a float and a 32 bit
|
||||
* int.
|
||||
*/
|
||||
|
||||
typedef union
|
||||
{
|
||||
float value;
|
||||
/* FIXME: Assumes 32 bit int. */
|
||||
unsigned int word;
|
||||
} ieee_float_shape_type;
|
||||
|
||||
/* Get a 32 bit int from a float. */
|
||||
|
||||
#define GET_FLOAT_WORD(i,d) \
|
||||
do { \
|
||||
ieee_float_shape_type gf_u; \
|
||||
gf_u.value = (d); \
|
||||
(i) = gf_u.word; \
|
||||
} while (0)
|
||||
|
||||
/* Set a float from a 32 bit int. */
|
||||
|
||||
#define SET_FLOAT_WORD(d,i) \
|
||||
do { \
|
||||
ieee_float_shape_type sf_u; \
|
||||
sf_u.word = (i); \
|
||||
(d) = sf_u.value; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
|
||||
* double.
|
||||
*/
|
||||
|
||||
#define EXTRACT_LDBL80_WORDS(ix0,ix1,d) \
|
||||
do { \
|
||||
union IEEEl2bits ew_u; \
|
||||
ew_u.e = (d); \
|
||||
(ix0) = ew_u.xbits.expsign; \
|
||||
(ix1) = ew_u.xbits.man; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
|
||||
* long double.
|
||||
*/
|
||||
|
||||
#define EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d) \
|
||||
do { \
|
||||
union IEEEl2bits ew_u; \
|
||||
ew_u.e = (d); \
|
||||
(ix0) = ew_u.xbits.expsign; \
|
||||
(ix1) = ew_u.xbits.manh; \
|
||||
(ix2) = ew_u.xbits.manl; \
|
||||
} while (0)
|
||||
|
||||
/* Get expsign as a 16 bit int from a long double. */
|
||||
|
||||
#define GET_LDBL_EXPSIGN(i,d) \
|
||||
do { \
|
||||
union IEEEl2bits ge_u; \
|
||||
ge_u.e = (d); \
|
||||
(i) = ge_u.xbits.expsign; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
|
||||
* mantissa.
|
||||
*/
|
||||
|
||||
#define INSERT_LDBL80_WORDS(d,ix0,ix1) \
|
||||
do { \
|
||||
union IEEEl2bits iw_u; \
|
||||
iw_u.xbits.expsign = (ix0); \
|
||||
iw_u.xbits.man = (ix1); \
|
||||
(d) = iw_u.e; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
|
||||
* comprising the mantissa.
|
||||
*/
|
||||
|
||||
#define INSERT_LDBL128_WORDS(d,ix0,ix1,ix2) \
|
||||
do { \
|
||||
union IEEEl2bits iw_u; \
|
||||
iw_u.xbits.expsign = (ix0); \
|
||||
iw_u.xbits.manh = (ix1); \
|
||||
iw_u.xbits.manl = (ix2); \
|
||||
(d) = iw_u.e; \
|
||||
} while (0)
|
||||
|
||||
/* Set expsign of a long double from a 16 bit int. */
|
||||
|
||||
#define SET_LDBL_EXPSIGN(d,v) \
|
||||
do { \
|
||||
union IEEEl2bits se_u; \
|
||||
se_u.e = (d); \
|
||||
se_u.xbits.expsign = (v); \
|
||||
(d) = se_u.e; \
|
||||
} while (0)
|
||||
|
||||
#ifdef __i386__
|
||||
/* Long double constants are broken on i386. */
|
||||
#define LD80C(m, ex, v) { \
|
||||
.xbits.man = __CONCAT(m, ULL), \
|
||||
.xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \
|
||||
}
|
||||
#else
|
||||
/* The above works on non-i386 too, but we use this to check v. */
|
||||
#define LD80C(m, ex, v) { .e = (v), }
|
||||
#endif
|
||||
|
||||
#ifdef FLT_EVAL_METHOD
|
||||
/*
|
||||
* Attempt to get strict C99 semantics for assignment with non-C99 compilers.
|
||||
*/
|
||||
#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
|
||||
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
|
||||
#else
|
||||
#define STRICT_ASSIGN(type, lval, rval) do { \
|
||||
volatile type __lval; \
|
||||
\
|
||||
if (sizeof(type) >= sizeof(long double)) \
|
||||
(lval) = (rval); \
|
||||
else { \
|
||||
__lval = (rval); \
|
||||
(lval) = __lval; \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
#else
|
||||
#define STRICT_ASSIGN(type, lval, rval) do { \
|
||||
volatile type __lval; \
|
||||
\
|
||||
if (sizeof(type) >= sizeof(long double)) \
|
||||
(lval) = (rval); \
|
||||
else { \
|
||||
__lval = (rval); \
|
||||
(lval) = __lval; \
|
||||
} \
|
||||
} while (0)
|
||||
#endif /* FLT_EVAL_METHOD */
|
||||
|
||||
/* Support switching the mode to FP_PE if necessary. */
|
||||
#if defined(__i386__) && !defined(NO_FPSETPREC)
|
||||
#define ENTERI() \
|
||||
long double __retval; \
|
||||
fp_prec_t __oprec; \
|
||||
\
|
||||
if ((__oprec = fpgetprec()) != FP_PE) \
|
||||
fpsetprec(FP_PE)
|
||||
#define RETURNI(x) do { \
|
||||
__retval = (x); \
|
||||
if (__oprec != FP_PE) \
|
||||
fpsetprec(__oprec); \
|
||||
RETURNF(__retval); \
|
||||
} while (0)
|
||||
#else
|
||||
#define ENTERI(x)
|
||||
#define RETURNI(x) RETURNF(x)
|
||||
#endif
|
||||
|
||||
/* Default return statement if hack*_t() is not used. */
|
||||
#define RETURNF(v) return (v)
|
||||
|
||||
/*
|
||||
* 2sum gives the same result as 2sumF without requiring |a| >= |b| or
|
||||
* a == 0, but is slower.
|
||||
*/
|
||||
#define _2sum(a, b) do { \
|
||||
__typeof(a) __s, __w; \
|
||||
\
|
||||
__w = (a) + (b); \
|
||||
__s = __w - (a); \
|
||||
(b) = ((a) - (__w - __s)) + ((b) - __s); \
|
||||
(a) = __w; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* 2sumF algorithm.
|
||||
*
|
||||
* "Normalize" the terms in the infinite-precision expression a + b for
|
||||
* the sum of 2 floating point values so that b is as small as possible
|
||||
* relative to 'a'. (The resulting 'a' is the value of the expression in
|
||||
* the same precision as 'a' and the resulting b is the rounding error.)
|
||||
* |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
|
||||
* exponent overflow or underflow must not occur. This uses a Theorem of
|
||||
* Dekker (1971). See Knuth (1981) 4.2.2 Theorem C. The name "TwoSum"
|
||||
* is apparently due to Skewchuk (1997).
|
||||
*
|
||||
* For this to always work, assignment of a + b to 'a' must not retain any
|
||||
* extra precision in a + b. This is required by C standards but broken
|
||||
* in many compilers. The brokenness cannot be worked around using
|
||||
* STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
|
||||
* algorithm would be destroyed by non-null strict assignments. (The
|
||||
* compilers are correct to be broken -- the efficiency of all floating
|
||||
* point code calculations would be destroyed similarly if they forced the
|
||||
* conversions.)
|
||||
*
|
||||
* Fortunately, a case that works well can usually be arranged by building
|
||||
* any extra precision into the type of 'a' -- 'a' should have type float_t,
|
||||
* double_t or long double. b's type should be no larger than 'a's type.
|
||||
* Callers should use these types with scopes as large as possible, to
|
||||
* reduce their own extra-precision and efficiciency problems. In
|
||||
* particular, they shouldn't convert back and forth just to call here.
|
||||
*/
|
||||
#ifdef DEBUG
|
||||
#define _2sumF(a, b) do { \
|
||||
__typeof(a) __w; \
|
||||
volatile __typeof(a) __ia, __ib, __r, __vw; \
|
||||
\
|
||||
__ia = (a); \
|
||||
__ib = (b); \
|
||||
assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib)); \
|
||||
\
|
||||
__w = (a) + (b); \
|
||||
(b) = ((a) - __w) + (b); \
|
||||
(a) = __w; \
|
||||
\
|
||||
/* The next 2 assertions are weak if (a) is already long double. */ \
|
||||
assert((long double)__ia + __ib == (long double)(a) + (b)); \
|
||||
__vw = __ia + __ib; \
|
||||
__r = __ia - __vw; \
|
||||
__r += __ib; \
|
||||
assert(__vw == (a) && __r == (b)); \
|
||||
} while (0)
|
||||
#else /* !DEBUG */
|
||||
#define _2sumF(a, b) do { \
|
||||
__typeof(a) __w; \
|
||||
\
|
||||
__w = (a) + (b); \
|
||||
(b) = ((a) - __w) + (b); \
|
||||
(a) = __w; \
|
||||
} while (0)
|
||||
#endif /* DEBUG */
|
||||
|
||||
/*
|
||||
* Set x += c, where x is represented in extra precision as a + b.
|
||||
* x must be sufficiently normalized and sufficiently larger than c,
|
||||
* and the result is then sufficiently normalized.
|
||||
*
|
||||
* The details of ordering are that |a| must be >= |c| (so that (a, c)
|
||||
* can be normalized without extra work to swap 'a' with c). The details of
|
||||
* the normalization are that b must be small relative to the normalized 'a'.
|
||||
* Normalization of (a, c) makes the normalized c tiny relative to the
|
||||
* normalized a, so b remains small relative to 'a' in the result. However,
|
||||
* b need not ever be tiny relative to 'a'. For example, b might be about
|
||||
* 2**20 times smaller than 'a' to give about 20 extra bits of precision.
|
||||
* That is usually enough, and adding c (which by normalization is about
|
||||
* 2**53 times smaller than a) cannot change b significantly. However,
|
||||
* cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
|
||||
* significantly relative to b. The caller must ensure that significant
|
||||
* cancellation doesn't occur, either by having c of the same sign as 'a',
|
||||
* or by having |c| a few percent smaller than |a|. Pre-normalization of
|
||||
* (a, b) may help.
|
||||
*
|
||||
* This is is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
|
||||
* exercise 19). We gain considerable efficiency by requiring the terms to
|
||||
* be sufficiently normalized and sufficiently increasing.
|
||||
*/
|
||||
#define _3sumF(a, b, c) do { \
|
||||
__typeof(a) __tmp; \
|
||||
\
|
||||
__tmp = (c); \
|
||||
_2sumF(__tmp, (a)); \
|
||||
(b) += (a); \
|
||||
(a) = __tmp; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Common routine to process the arguments to nan(), nanf(), and nanl().
|
||||
*/
|
||||
void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
|
||||
|
||||
#ifdef _COMPLEX_H
|
||||
|
||||
/*
|
||||
* C99 specifies that complex numbers have the same representation as
|
||||
* an array of two elements, where the first element is the real part
|
||||
* and the second element is the imaginary part.
|
||||
*/
|
||||
typedef union {
|
||||
float complex f;
|
||||
float a[2];
|
||||
} float_complex;
|
||||
typedef union {
|
||||
double complex f;
|
||||
double a[2];
|
||||
} double_complex;
|
||||
typedef union {
|
||||
long double complex f;
|
||||
long double a[2];
|
||||
} long_double_complex;
|
||||
#define REALPART(z) ((z).a[0])
|
||||
#define IMAGPART(z) ((z).a[1])
|
||||
|
||||
/*
|
||||
* Inline functions that can be used to construct complex values.
|
||||
*
|
||||
* The C99 standard intends x+I*y to be used for this, but x+I*y is
|
||||
* currently unusable in general since gcc introduces many overflow,
|
||||
* underflow, sign and efficiency bugs by rewriting I*y as
|
||||
* (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
|
||||
* In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
|
||||
* to -0.0+I*0.0.
|
||||
*
|
||||
* The C11 standard introduced the macros CMPLX(), CMPLXF() and CMPLXL()
|
||||
* to construct complex values. Compilers that conform to the C99
|
||||
* standard require the following functions to avoid the above issues.
|
||||
*/
|
||||
|
||||
#ifndef CMPLXF
|
||||
static __inline float complex
|
||||
CMPLXF(float x, float y)
|
||||
{
|
||||
float_complex z;
|
||||
|
||||
REALPART(z) = x;
|
||||
IMAGPART(z) = y;
|
||||
return (z.f);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef CMPLX
|
||||
static __inline double complex
|
||||
CMPLX(double x, double y)
|
||||
{
|
||||
double_complex z;
|
||||
|
||||
REALPART(z) = x;
|
||||
IMAGPART(z) = y;
|
||||
return (z.f);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef CMPLXL
|
||||
static __inline long double complex
|
||||
CMPLXL(long double x, long double y)
|
||||
{
|
||||
long_double_complex z;
|
||||
|
||||
REALPART(z) = x;
|
||||
IMAGPART(z) = y;
|
||||
return (z.f);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _COMPLEX_H */
|
||||
|
||||
#ifdef __GNUCLIKE_ASM
|
||||
|
||||
/* Asm versions of some functions. */
|
||||
|
||||
#ifdef __amd64__
|
||||
static __inline int
|
||||
irint(double x)
|
||||
{
|
||||
int n;
|
||||
|
||||
asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
|
||||
return (n);
|
||||
}
|
||||
#define HAVE_EFFICIENT_IRINT
|
||||
#endif
|
||||
|
||||
#ifdef __i386__
|
||||
static __inline int
|
||||
irint(double x)
|
||||
{
|
||||
int n;
|
||||
|
||||
asm("fistl %0" : "=m" (n) : "t" (x));
|
||||
return (n);
|
||||
}
|
||||
#define HAVE_EFFICIENT_IRINT
|
||||
#endif
|
||||
|
||||
#if defined(__amd64__) || defined(__i386__)
|
||||
static __inline int
|
||||
irintl(long double x)
|
||||
{
|
||||
int n;
|
||||
|
||||
asm("fistl %0" : "=m" (n) : "t" (x));
|
||||
return (n);
|
||||
}
|
||||
#define HAVE_EFFICIENT_IRINTL
|
||||
#endif
|
||||
|
||||
#endif /* __GNUCLIKE_ASM */
|
||||
|
||||
#ifdef DEBUG
|
||||
#if defined(__amd64__) || defined(__i386__)
|
||||
#define breakpoint() asm("int $3")
|
||||
#else
|
||||
#include <signal.h>
|
||||
|
||||
#define breakpoint() raise(SIGTRAP)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Write a pari script to test things externally. */
|
||||
#ifdef DOPRINT
|
||||
#include <stdio.h>
|
||||
|
||||
#ifndef DOPRINT_SWIZZLE
|
||||
#define DOPRINT_SWIZZLE 0
|
||||
#endif
|
||||
|
||||
#ifdef DOPRINT_LD80
|
||||
|
||||
#define DOPRINT_START(xp) do { \
|
||||
uint64_t __lx; \
|
||||
uint16_t __hx; \
|
||||
\
|
||||
/* Hack to give more-problematic args. */ \
|
||||
EXTRACT_LDBL80_WORDS(__hx, __lx, *xp); \
|
||||
__lx ^= DOPRINT_SWIZZLE; \
|
||||
INSERT_LDBL80_WORDS(*xp, __hx, __lx); \
|
||||
printf("x = %.21Lg; ", (long double)*xp); \
|
||||
} while (0)
|
||||
#define DOPRINT_END1(v) \
|
||||
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
||||
#define DOPRINT_END2(hi, lo) \
|
||||
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
|
||||
(long double)(hi), (long double)(lo))
|
||||
|
||||
#elif defined(DOPRINT_D64)
|
||||
|
||||
#define DOPRINT_START(xp) do { \
|
||||
uint32_t __hx, __lx; \
|
||||
\
|
||||
EXTRACT_WORDS(__hx, __lx, *xp); \
|
||||
__lx ^= DOPRINT_SWIZZLE; \
|
||||
INSERT_WORDS(*xp, __hx, __lx); \
|
||||
printf("x = %.21Lg; ", (long double)*xp); \
|
||||
} while (0)
|
||||
#define DOPRINT_END1(v) \
|
||||
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
||||
#define DOPRINT_END2(hi, lo) \
|
||||
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
|
||||
(long double)(hi), (long double)(lo))
|
||||
|
||||
#elif defined(DOPRINT_F32)
|
||||
|
||||
#define DOPRINT_START(xp) do { \
|
||||
uint32_t __hx; \
|
||||
\
|
||||
GET_FLOAT_WORD(__hx, *xp); \
|
||||
__hx ^= DOPRINT_SWIZZLE; \
|
||||
SET_FLOAT_WORD(*xp, __hx); \
|
||||
printf("x = %.21Lg; ", (long double)*xp); \
|
||||
} while (0)
|
||||
#define DOPRINT_END1(v) \
|
||||
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
||||
#define DOPRINT_END2(hi, lo) \
|
||||
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
|
||||
(long double)(hi), (long double)(lo))
|
||||
|
||||
#else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
|
||||
|
||||
#ifndef DOPRINT_SWIZZLE_HIGH
|
||||
#define DOPRINT_SWIZZLE_HIGH 0
|
||||
#endif
|
||||
|
||||
#define DOPRINT_START(xp) do { \
|
||||
uint64_t __lx, __llx; \
|
||||
uint16_t __hx; \
|
||||
\
|
||||
EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp); \
|
||||
__llx ^= DOPRINT_SWIZZLE; \
|
||||
__lx ^= DOPRINT_SWIZZLE_HIGH; \
|
||||
INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx); \
|
||||
printf("x = %.36Lg; ", (long double)*xp); \
|
||||
} while (0)
|
||||
#define DOPRINT_END1(v) \
|
||||
printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
||||
#define DOPRINT_END2(hi, lo) \
|
||||
printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n", \
|
||||
(long double)(hi), (long double)(lo))
|
||||
|
||||
#endif /* DOPRINT_LD80 */
|
||||
|
||||
#else /* !DOPRINT */
|
||||
#define DOPRINT_START(xp)
|
||||
#define DOPRINT_END1(v)
|
||||
#define DOPRINT_END2(hi, lo)
|
||||
#endif /* DOPRINT */
|
||||
|
||||
#define RETURNP(x) do { \
|
||||
DOPRINT_END1(x); \
|
||||
RETURNF(x); \
|
||||
} while (0)
|
||||
#define RETURNPI(x) do { \
|
||||
DOPRINT_END1(x); \
|
||||
RETURNI(x); \
|
||||
} while (0)
|
||||
#define RETURN2P(x, y) do { \
|
||||
DOPRINT_END2((x), (y)); \
|
||||
RETURNF((x) + (y)); \
|
||||
} while (0)
|
||||
#define RETURN2PI(x, y) do { \
|
||||
DOPRINT_END2((x), (y)); \
|
||||
RETURNI((x) + (y)); \
|
||||
} while (0)
|
||||
#ifdef STRUCT_RETURN
|
||||
#define RETURNSP(rp) do { \
|
||||
if (!(rp)->lo_set) \
|
||||
RETURNP((rp)->hi); \
|
||||
RETURN2P((rp)->hi, (rp)->lo); \
|
||||
} while (0)
|
||||
#define RETURNSPI(rp) do { \
|
||||
if (!(rp)->lo_set) \
|
||||
RETURNPI((rp)->hi); \
|
||||
RETURN2PI((rp)->hi, (rp)->lo); \
|
||||
} while (0)
|
||||
#endif
|
||||
#define SUM2P(x, y) ({ \
|
||||
const __typeof (x) __x = (x); \
|
||||
const __typeof (y) __y = (y); \
|
||||
\
|
||||
DOPRINT_END2(__x, __y); \
|
||||
__x + __y; \
|
||||
})
|
||||
|
||||
/*
|
||||
* ieee style elementary functions
|
||||
*
|
||||
* We rename functions here to improve other sources' diffability
|
||||
* against fdlibm.
|
||||
*/
|
||||
#define __ieee754_sqrt sqrt
|
||||
#define __ieee754_acos acos
|
||||
#define __ieee754_acosh acosh
|
||||
#define __ieee754_log log
|
||||
#define __ieee754_log2 log2
|
||||
#define __ieee754_atanh atanh
|
||||
#define __ieee754_asin asin
|
||||
#define __ieee754_atan2 atan2
|
||||
#define __ieee754_exp exp
|
||||
#define __ieee754_cosh cosh
|
||||
#define __ieee754_fmod fmod
|
||||
#define __ieee754_pow pow
|
||||
#define __ieee754_lgamma lgamma
|
||||
#define __ieee754_gamma gamma
|
||||
#define __ieee754_lgamma_r lgamma_r
|
||||
#define __ieee754_gamma_r gamma_r
|
||||
#define __ieee754_log10 log10
|
||||
#define __ieee754_sinh sinh
|
||||
#define __ieee754_hypot hypot
|
||||
#define __ieee754_j0 j0
|
||||
#define __ieee754_j1 j1
|
||||
#define __ieee754_y0 y0
|
||||
#define __ieee754_y1 y1
|
||||
#define __ieee754_jn jn
|
||||
#define __ieee754_yn yn
|
||||
#define __ieee754_remainder remainder
|
||||
#define __ieee754_scalb scalb
|
||||
#define __ieee754_sqrtf sqrtf
|
||||
#define __ieee754_acosf acosf
|
||||
#define __ieee754_acoshf acoshf
|
||||
#define __ieee754_logf logf
|
||||
#define __ieee754_atanhf atanhf
|
||||
#define __ieee754_asinf asinf
|
||||
#define __ieee754_atan2f atan2f
|
||||
#define __ieee754_expf expf
|
||||
#define __ieee754_coshf coshf
|
||||
#define __ieee754_fmodf fmodf
|
||||
#define __ieee754_powf powf
|
||||
#define __ieee754_lgammaf lgammaf
|
||||
#define __ieee754_gammaf gammaf
|
||||
#define __ieee754_lgammaf_r lgammaf_r
|
||||
#define __ieee754_gammaf_r gammaf_r
|
||||
#define __ieee754_log10f log10f
|
||||
#define __ieee754_log2f log2f
|
||||
#define __ieee754_sinhf sinhf
|
||||
#define __ieee754_hypotf hypotf
|
||||
#define __ieee754_j0f j0f
|
||||
#define __ieee754_j1f j1f
|
||||
#define __ieee754_y0f y0f
|
||||
#define __ieee754_y1f y1f
|
||||
#define __ieee754_jnf jnf
|
||||
#define __ieee754_ynf ynf
|
||||
#define __ieee754_remainderf remainderf
|
||||
#define __ieee754_scalbf scalbf
|
||||
|
||||
#define acos fdlibm::acos
|
||||
#define asin fdlibm::asin
|
||||
#define atan fdlibm::atan
|
||||
#define atan2 fdlibm::atan2
|
||||
#define cos fdlibm::cos
|
||||
#define sin fdlibm::sin
|
||||
#define tan fdlibm::tan
|
||||
#define cosh fdlibm::cosh
|
||||
#define sinh fdlibm::sinh
|
||||
#define tanh fdlibm::tanh
|
||||
#define exp fdlibm::exp
|
||||
#define log fdlibm::log
|
||||
#define log10 fdlibm::log10
|
||||
#define pow fdlibm::pow
|
||||
#define sqrt fdlibm::sqrt
|
||||
#define ceil fdlibm::ceil
|
||||
#define ceilf fdlibm::ceilf
|
||||
#define fabs fdlibm::fabs
|
||||
#define floor fdlibm::floor
|
||||
#define acosh fdlibm::acosh
|
||||
#define asinh fdlibm::asinh
|
||||
#define atanh fdlibm::atanh
|
||||
#define cbrt fdlibm::cbrt
|
||||
#define expm1 fdlibm::expm1
|
||||
#define hypot fdlibm::hypot
|
||||
#define log1p fdlibm::log1p
|
||||
#define log2 fdlibm::log2
|
||||
#define scalb fdlibm::scalb
|
||||
#define copysign fdlibm::copysign
|
||||
#define scalbn fdlibm::scalbn
|
||||
#define trunc fdlibm::trunc
|
||||
#define floorf fdlibm::floorf
|
||||
|
||||
/* fdlibm kernel function */
|
||||
int __kernel_rem_pio2(double*,double*,int,int,int);
|
||||
|
||||
/* double precision kernel functions */
|
||||
#ifndef INLINE_REM_PIO2
|
||||
int __ieee754_rem_pio2(double,double*);
|
||||
#endif
|
||||
double __kernel_sin(double,double,int);
|
||||
double __kernel_cos(double,double);
|
||||
double __kernel_tan(double,double,int);
|
||||
double __ldexp_exp(double,int);
|
||||
#ifdef _COMPLEX_H
|
||||
double complex __ldexp_cexp(double complex,int);
|
||||
#endif
|
||||
|
||||
/* float precision kernel functions */
|
||||
#ifndef INLINE_REM_PIO2F
|
||||
int __ieee754_rem_pio2f(float,double*);
|
||||
#endif
|
||||
#ifndef INLINE_KERNEL_SINDF
|
||||
float __kernel_sindf(double);
|
||||
#endif
|
||||
#ifndef INLINE_KERNEL_COSDF
|
||||
float __kernel_cosdf(double);
|
||||
#endif
|
||||
#ifndef INLINE_KERNEL_TANDF
|
||||
float __kernel_tandf(double,int);
|
||||
#endif
|
||||
float __ldexp_expf(float,int);
|
||||
#ifdef _COMPLEX_H
|
||||
float complex __ldexp_cexpf(float complex,int);
|
||||
#endif
|
||||
|
||||
/* long double precision kernel functions */
|
||||
long double __kernel_sinl(long double, long double, int);
|
||||
long double __kernel_cosl(long double, long double);
|
||||
long double __kernel_tanl(long double, long double, int);
|
||||
|
||||
#endif /* !_MATH_PRIVATE_H_ */
|
|
@ -0,0 +1,57 @@
|
|||
/* @(#)s_asinh.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* asinh(x)
|
||||
* Method :
|
||||
* Based on
|
||||
* asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
|
||||
* we have
|
||||
* asinh(x) := x if 1+x*x=1,
|
||||
* := sign(x)*(log(x)+ln2)) for large |x|, else
|
||||
* := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
|
||||
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
||||
huge= 1.00000000000000000000e+300;
|
||||
|
||||
double
|
||||
asinh(double x)
|
||||
{
|
||||
double t,w;
|
||||
int32_t hx,ix;
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7ff00000) return x+x; /* x is inf or NaN */
|
||||
if(ix< 0x3e300000) { /* |x|<2**-28 */
|
||||
if(huge+x>one) return x; /* return x inexact except 0 */
|
||||
}
|
||||
if(ix>0x41b00000) { /* |x| > 2**28 */
|
||||
w = __ieee754_log(fabs(x))+ln2;
|
||||
} else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */
|
||||
t = fabs(x);
|
||||
w = __ieee754_log(2.0*t+one/(__ieee754_sqrt(x*x+one)+t));
|
||||
} else { /* 2.0 > |x| > 2**-28 */
|
||||
t = x*x;
|
||||
w =log1p(fabs(x)+t/(one+__ieee754_sqrt(one+t)));
|
||||
}
|
||||
if(hx>0) return w; else return -w;
|
||||
}
|
|
@ -0,0 +1,119 @@
|
|||
/* @(#)s_atan.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* atan(x)
|
||||
* Method
|
||||
* 1. Reduce x to positive by atan(x) = -atan(-x).
|
||||
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
|
||||
* is further reduced to one of the following intervals and the
|
||||
* arctangent of t is evaluated by the corresponding formula:
|
||||
*
|
||||
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
|
||||
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
|
||||
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
|
||||
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
|
||||
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double atanhi[] = {
|
||||
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
|
||||
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
|
||||
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
|
||||
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
|
||||
};
|
||||
|
||||
static const double atanlo[] = {
|
||||
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
|
||||
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
|
||||
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
|
||||
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
|
||||
};
|
||||
|
||||
static const double aT[] = {
|
||||
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
|
||||
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
|
||||
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
|
||||
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
|
||||
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
|
||||
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
|
||||
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
|
||||
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
|
||||
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
|
||||
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
|
||||
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
|
||||
};
|
||||
|
||||
static const double
|
||||
one = 1.0,
|
||||
huge = 1.0e300;
|
||||
|
||||
double
|
||||
atan(double x)
|
||||
{
|
||||
double w,s1,s2,z;
|
||||
int32_t ix,hx,id;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x44100000) { /* if |x| >= 2^66 */
|
||||
u_int32_t low;
|
||||
GET_LOW_WORD(low,x);
|
||||
if(ix>0x7ff00000||
|
||||
(ix==0x7ff00000&&(low!=0)))
|
||||
return x+x; /* NaN */
|
||||
if(hx>0) return atanhi[3]+*(volatile double *)&atanlo[3];
|
||||
else return -atanhi[3]-*(volatile double *)&atanlo[3];
|
||||
} if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
|
||||
if (ix < 0x3e400000) { /* |x| < 2^-27 */
|
||||
if(huge+x>one) return x; /* raise inexact */
|
||||
}
|
||||
id = -1;
|
||||
} else {
|
||||
x = fabs(x);
|
||||
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
|
||||
if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
|
||||
id = 0; x = (2.0*x-one)/(2.0+x);
|
||||
} else { /* 11/16<=|x|< 19/16 */
|
||||
id = 1; x = (x-one)/(x+one);
|
||||
}
|
||||
} else {
|
||||
if (ix < 0x40038000) { /* |x| < 2.4375 */
|
||||
id = 2; x = (x-1.5)/(one+1.5*x);
|
||||
} else { /* 2.4375 <= |x| < 2^66 */
|
||||
id = 3; x = -1.0/x;
|
||||
}
|
||||
}}
|
||||
/* end of argument reduction */
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
|
||||
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
|
||||
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
|
||||
if (id<0) return x - x*(s1+s2);
|
||||
else {
|
||||
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
|
||||
return (hx<0)? -z:z;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,112 @@
|
|||
/* @(#)s_cbrt.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
/* cbrt(x)
|
||||
* Return cube root of x
|
||||
*/
|
||||
static const u_int32_t
|
||||
B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
|
||||
B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
|
||||
|
||||
/* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
|
||||
static const double
|
||||
P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */
|
||||
P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */
|
||||
P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */
|
||||
P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */
|
||||
P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
|
||||
|
||||
double
|
||||
cbrt(double x)
|
||||
{
|
||||
int32_t hx;
|
||||
union {
|
||||
double value;
|
||||
uint64_t bits;
|
||||
} u;
|
||||
double r,s,t=0.0,w;
|
||||
u_int32_t sign;
|
||||
u_int32_t high,low;
|
||||
|
||||
EXTRACT_WORDS(hx,low,x);
|
||||
sign=hx&0x80000000; /* sign= sign(x) */
|
||||
hx ^=sign;
|
||||
if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
|
||||
|
||||
/*
|
||||
* Rough cbrt to 5 bits:
|
||||
* cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
|
||||
* where e is integral and >= 0, m is real and in [0, 1), and "/" and
|
||||
* "%" are integer division and modulus with rounding towards minus
|
||||
* infinity. The RHS is always >= the LHS and has a maximum relative
|
||||
* error of about 1 in 16. Adding a bias of -0.03306235651 to the
|
||||
* (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
|
||||
* floating point representation, for finite positive normal values,
|
||||
* ordinary integer divison of the value in bits magically gives
|
||||
* almost exactly the RHS of the above provided we first subtract the
|
||||
* exponent bias (1023 for doubles) and later add it back. We do the
|
||||
* subtraction virtually to keep e >= 0 so that ordinary integer
|
||||
* division rounds towards minus infinity; this is also efficient.
|
||||
*/
|
||||
if(hx<0x00100000) { /* zero or subnormal? */
|
||||
if((hx|low)==0)
|
||||
return(x); /* cbrt(0) is itself */
|
||||
SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
|
||||
t*=x;
|
||||
GET_HIGH_WORD(high,t);
|
||||
INSERT_WORDS(t,sign|((high&0x7fffffff)/3+B2),0);
|
||||
} else
|
||||
INSERT_WORDS(t,sign|(hx/3+B1),0);
|
||||
|
||||
/*
|
||||
* New cbrt to 23 bits:
|
||||
* cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
|
||||
* where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
|
||||
* to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
|
||||
* has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
|
||||
* gives us bounds for r = t**3/x.
|
||||
*
|
||||
* Try to optimize for parallel evaluation as in k_tanf.c.
|
||||
*/
|
||||
r=(t*t)*(t/x);
|
||||
t=t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
|
||||
|
||||
/*
|
||||
* Round t away from zero to 23 bits (sloppily except for ensuring that
|
||||
* the result is larger in magnitude than cbrt(x) but not much more than
|
||||
* 2 23-bit ulps larger). With rounding towards zero, the error bound
|
||||
* would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
|
||||
* in the rounded t, the infinite-precision error in the Newton
|
||||
* approximation barely affects third digit in the final error
|
||||
* 0.667; the error in the rounded t can be up to about 3 23-bit ulps
|
||||
* before the final error is larger than 0.667 ulps.
|
||||
*/
|
||||
u.value=t;
|
||||
u.bits=(u.bits+0x80000000)&0xffffffffc0000000ULL;
|
||||
t=u.value;
|
||||
|
||||
/* one step Newton iteration to 53 bits with error < 0.667 ulps */
|
||||
s=t*t; /* t*t is exact */
|
||||
r=x/s; /* error <= 0.5 ulps; |r| < |t| */
|
||||
w=t+t; /* t+t is exact */
|
||||
r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
|
||||
t=t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */
|
||||
|
||||
return(t);
|
||||
}
|
|
@ -0,0 +1,72 @@
|
|||
/* @(#)s_ceil.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* ceil(x)
|
||||
* Return x rounded toward -inf to integral value
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to ceil(x).
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double huge = 1.0e300;
|
||||
|
||||
double
|
||||
ceil(double x)
|
||||
{
|
||||
int32_t i0,i1,j0;
|
||||
u_int32_t i,j;
|
||||
EXTRACT_WORDS(i0,i1,x);
|
||||
j0 = ((i0>>20)&0x7ff)-0x3ff;
|
||||
if(j0<20) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0<0) {i0=0x80000000;i1=0;}
|
||||
else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;}
|
||||
}
|
||||
} else {
|
||||
i = (0x000fffff)>>j0;
|
||||
if(((i0&i)|i1)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0>0) i0 += (0x00100000)>>j0;
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
}
|
||||
} else if (j0>51) {
|
||||
if(j0==0x400) return x+x; /* inf or NaN */
|
||||
else return x; /* x is integral */
|
||||
} else {
|
||||
i = ((u_int32_t)(0xffffffff))>>(j0-20);
|
||||
if((i1&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0>0) {
|
||||
if(j0==20) i0+=1;
|
||||
else {
|
||||
j = i1 + (1<<(52-j0));
|
||||
if(j<i1) i0+=1; /* got a carry */
|
||||
i1 = j;
|
||||
}
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
}
|
||||
INSERT_WORDS(x,i0,i1);
|
||||
return x;
|
||||
}
|
|
@ -0,0 +1,51 @@
|
|||
/* s_ceilf.c -- float version of s_ceil.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const float huge = 1.0e30;
|
||||
|
||||
float
|
||||
ceilf(float x)
|
||||
{
|
||||
int32_t i0,j0;
|
||||
u_int32_t i;
|
||||
|
||||
GET_FLOAT_WORD(i0,x);
|
||||
j0 = ((i0>>23)&0xff)-0x7f;
|
||||
if(j0<23) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0<0) {i0=0x80000000;}
|
||||
else if(i0!=0) { i0=0x3f800000;}
|
||||
}
|
||||
} else {
|
||||
i = (0x007fffff)>>j0;
|
||||
if((i0&i)==0) return x; /* x is integral */
|
||||
if(huge+x>(float)0.0) { /* raise inexact flag */
|
||||
if(i0>0) i0 += (0x00800000)>>j0;
|
||||
i0 &= (~i);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if(j0==0x80) return x+x; /* inf or NaN */
|
||||
else return x; /* x is integral */
|
||||
}
|
||||
SET_FLOAT_WORD(x,i0);
|
||||
return x;
|
||||
}
|
|
@ -0,0 +1,32 @@
|
|||
/* @(#)s_copysign.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* copysign(double x, double y)
|
||||
* copysign(x,y) returns a value with the magnitude of x and
|
||||
* with the sign bit of y.
|
||||
*/
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
double
|
||||
copysign(double x, double y)
|
||||
{
|
||||
u_int32_t hx,hy;
|
||||
GET_HIGH_WORD(hx,x);
|
||||
GET_HIGH_WORD(hy,y);
|
||||
SET_HIGH_WORD(x,(hx&0x7fffffff)|(hy&0x80000000));
|
||||
return x;
|
||||
}
|
|
@ -0,0 +1,84 @@
|
|||
/* @(#)s_cos.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* cos(x)
|
||||
* Return cosine function of x.
|
||||
*
|
||||
* kernel function:
|
||||
* __kernel_sin ... sine function on [-pi/4,pi/4]
|
||||
* __kernel_cos ... cosine function on [-pi/4,pi/4]
|
||||
* __ieee754_rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
* n sin(x) cos(x) tan(x)
|
||||
* ----------------------------------------------------------
|
||||
* 0 S C T
|
||||
* 1 C -S -1/T
|
||||
* 2 -S -C T
|
||||
* 3 -C S -1/T
|
||||
* ----------------------------------------------------------
|
||||
*
|
||||
* Special cases:
|
||||
* Let trig be any of sin, cos, or tan.
|
||||
* trig(+-INF) is NaN, with signals;
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#define INLINE_REM_PIO2
|
||||
#include "math_private.h"
|
||||
#include "e_rem_pio2.cpp"
|
||||
|
||||
double
|
||||
cos(double x)
|
||||
{
|
||||
double y[2],z=0.0;
|
||||
int32_t n, ix;
|
||||
|
||||
/* High word of x. */
|
||||
GET_HIGH_WORD(ix,x);
|
||||
|
||||
/* |x| ~< pi/4 */
|
||||
ix &= 0x7fffffff;
|
||||
if(ix <= 0x3fe921fb) {
|
||||
if(ix<0x3e46a09e) /* if x < 2**-27 * sqrt(2) */
|
||||
if(((int)x)==0) return 1.0; /* generate inexact */
|
||||
return __kernel_cos(x,z);
|
||||
}
|
||||
|
||||
/* cos(Inf or NaN) is NaN */
|
||||
else if (ix>=0x7ff00000) return x-x;
|
||||
|
||||
/* argument reduction needed */
|
||||
else {
|
||||
n = __ieee754_rem_pio2(x,y);
|
||||
switch(n&3) {
|
||||
case 0: return __kernel_cos(y[0],y[1]);
|
||||
case 1: return -__kernel_sin(y[0],y[1],1);
|
||||
case 2: return -__kernel_cos(y[0],y[1]);
|
||||
default:
|
||||
return __kernel_sin(y[0],y[1],1);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,220 @@
|
|||
/* @(#)s_expm1.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* expm1(x)
|
||||
* Returns exp(x)-1, the exponential of x minus 1.
|
||||
*
|
||||
* Method
|
||||
* 1. Argument reduction:
|
||||
* Given x, find r and integer k such that
|
||||
*
|
||||
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
|
||||
*
|
||||
* Here a correction term c will be computed to compensate
|
||||
* the error in r when rounded to a floating-point number.
|
||||
*
|
||||
* 2. Approximating expm1(r) by a special rational function on
|
||||
* the interval [0,0.34658]:
|
||||
* Since
|
||||
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
|
||||
* we define R1(r*r) by
|
||||
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
|
||||
* That is,
|
||||
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
|
||||
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
|
||||
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
|
||||
* We use a special Reme algorithm on [0,0.347] to generate
|
||||
* a polynomial of degree 5 in r*r to approximate R1. The
|
||||
* maximum error of this polynomial approximation is bounded
|
||||
* by 2**-61. In other words,
|
||||
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
|
||||
* where Q1 = -1.6666666666666567384E-2,
|
||||
* Q2 = 3.9682539681370365873E-4,
|
||||
* Q3 = -9.9206344733435987357E-6,
|
||||
* Q4 = 2.5051361420808517002E-7,
|
||||
* Q5 = -6.2843505682382617102E-9;
|
||||
* z = r*r,
|
||||
* with error bounded by
|
||||
* | 5 | -61
|
||||
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
|
||||
* | |
|
||||
*
|
||||
* expm1(r) = exp(r)-1 is then computed by the following
|
||||
* specific way which minimize the accumulation rounding error:
|
||||
* 2 3
|
||||
* r r [ 3 - (R1 + R1*r/2) ]
|
||||
* expm1(r) = r + --- + --- * [--------------------]
|
||||
* 2 2 [ 6 - r*(3 - R1*r/2) ]
|
||||
*
|
||||
* To compensate the error in the argument reduction, we use
|
||||
* expm1(r+c) = expm1(r) + c + expm1(r)*c
|
||||
* ~ expm1(r) + c + r*c
|
||||
* Thus c+r*c will be added in as the correction terms for
|
||||
* expm1(r+c). Now rearrange the term to avoid optimization
|
||||
* screw up:
|
||||
* ( 2 2 )
|
||||
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
|
||||
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
|
||||
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
|
||||
* ( )
|
||||
*
|
||||
* = r - E
|
||||
* 3. Scale back to obtain expm1(x):
|
||||
* From step 1, we have
|
||||
* expm1(x) = either 2^k*[expm1(r)+1] - 1
|
||||
* = or 2^k*[expm1(r) + (1-2^-k)]
|
||||
* 4. Implementation notes:
|
||||
* (A). To save one multiplication, we scale the coefficient Qi
|
||||
* to Qi*2^i, and replace z by (x^2)/2.
|
||||
* (B). To achieve maximum accuracy, we compute expm1(x) by
|
||||
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
|
||||
* (ii) if k=0, return r-E
|
||||
* (iii) if k=-1, return 0.5*(r-E)-0.5
|
||||
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
|
||||
* else return 1.0+2.0*(r-E);
|
||||
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
|
||||
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
|
||||
* (vii) return 2^k(1-((E+2^-k)-r))
|
||||
*
|
||||
* Special cases:
|
||||
* expm1(INF) is INF, expm1(NaN) is NaN;
|
||||
* expm1(-INF) is -1, and
|
||||
* for finite argument, only expm1(0)=0 is exact.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Misc. info.
|
||||
* For IEEE double
|
||||
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
one = 1.0,
|
||||
tiny = 1.0e-300,
|
||||
o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
|
||||
ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
|
||||
invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
|
||||
/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
|
||||
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
|
||||
Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
|
||||
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
|
||||
Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
|
||||
Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
|
||||
|
||||
static volatile double huge = 1.0e+300;
|
||||
|
||||
double
|
||||
expm1(double x)
|
||||
{
|
||||
double y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
|
||||
int32_t k,xsb;
|
||||
u_int32_t hx;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
xsb = hx&0x80000000; /* sign bit of x */
|
||||
hx &= 0x7fffffff; /* high word of |x| */
|
||||
|
||||
/* filter out huge and non-finite argument */
|
||||
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
|
||||
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
||||
if(hx>=0x7ff00000) {
|
||||
u_int32_t low;
|
||||
GET_LOW_WORD(low,x);
|
||||
if(((hx&0xfffff)|low)!=0)
|
||||
return x+x; /* NaN */
|
||||
else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
|
||||
}
|
||||
if(x > o_threshold) return huge*huge; /* overflow */
|
||||
}
|
||||
if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
|
||||
if(x+tiny<0.0) /* raise inexact */
|
||||
return tiny-one; /* return -1 */
|
||||
}
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
||||
if(xsb==0)
|
||||
{hi = x - ln2_hi; lo = ln2_lo; k = 1;}
|
||||
else
|
||||
{hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
|
||||
} else {
|
||||
k = invln2*x+((xsb==0)?0.5:-0.5);
|
||||
t = k;
|
||||
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
|
||||
lo = t*ln2_lo;
|
||||
}
|
||||
STRICT_ASSIGN(double, x, hi - lo);
|
||||
c = (hi-x)-lo;
|
||||
}
|
||||
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
|
||||
t = huge+x; /* return x with inexact flags when x!=0 */
|
||||
return x - (t-(huge+x));
|
||||
}
|
||||
else k = 0;
|
||||
|
||||
/* x is now in primary range */
|
||||
hfx = 0.5*x;
|
||||
hxs = x*hfx;
|
||||
r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
|
||||
t = 3.0-r1*hfx;
|
||||
e = hxs*((r1-t)/(6.0 - x*t));
|
||||
if(k==0) return x - (x*e-hxs); /* c is 0 */
|
||||
else {
|
||||
INSERT_WORDS(twopk,0x3ff00000+(k<<20),0); /* 2^k */
|
||||
e = (x*(e-c)-c);
|
||||
e -= hxs;
|
||||
if(k== -1) return 0.5*(x-e)-0.5;
|
||||
if(k==1) {
|
||||
if(x < -0.25) return -2.0*(e-(x+0.5));
|
||||
else return one+2.0*(x-e);
|
||||
}
|
||||
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
|
||||
y = one-(e-x);
|
||||
if (k == 1024) {
|
||||
double const_0x1p1023 = pow(2, 1023);
|
||||
y = y*2.0*const_0x1p1023;
|
||||
}
|
||||
else y = y*twopk;
|
||||
return y-one;
|
||||
}
|
||||
t = one;
|
||||
if(k<20) {
|
||||
SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
|
||||
y = t-(e-x);
|
||||
y = y*twopk;
|
||||
} else {
|
||||
SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
|
||||
y = x-(e+t);
|
||||
y += one;
|
||||
y = y*twopk;
|
||||
}
|
||||
}
|
||||
return y;
|
||||
}
|
|
@ -0,0 +1,30 @@
|
|||
/* @(#)s_fabs.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#ifndef lint
|
||||
//static char rcsid[] = "$FreeBSD$";
|
||||
#endif
|
||||
|
||||
/*
|
||||
* fabs(x) returns the absolute value of x.
|
||||
*/
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
double
|
||||
fabs(double x)
|
||||
{
|
||||
u_int32_t high;
|
||||
GET_HIGH_WORD(high,x);
|
||||
SET_HIGH_WORD(x,high&0x7fffffff);
|
||||
return x;
|
||||
}
|
|
@ -0,0 +1,73 @@
|
|||
/* @(#)s_floor.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* floor(x)
|
||||
* Return x rounded toward -inf to integral value
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to floor(x).
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double huge = 1.0e300;
|
||||
|
||||
double
|
||||
floor(double x)
|
||||
{
|
||||
int32_t i0,i1,j0;
|
||||
u_int32_t i,j;
|
||||
EXTRACT_WORDS(i0,i1,x);
|
||||
j0 = ((i0>>20)&0x7ff)-0x3ff;
|
||||
if(j0<20) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0>=0) {i0=i1=0;}
|
||||
else if(((i0&0x7fffffff)|i1)!=0)
|
||||
{ i0=0xbff00000;i1=0;}
|
||||
}
|
||||
} else {
|
||||
i = (0x000fffff)>>j0;
|
||||
if(((i0&i)|i1)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0<0) i0 += (0x00100000)>>j0;
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
}
|
||||
} else if (j0>51) {
|
||||
if(j0==0x400) return x+x; /* inf or NaN */
|
||||
else return x; /* x is integral */
|
||||
} else {
|
||||
i = ((u_int32_t)(0xffffffff))>>(j0-20);
|
||||
if((i1&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0<0) {
|
||||
if(j0==20) i0+=1;
|
||||
else {
|
||||
j = i1+(1<<(52-j0));
|
||||
if(j<i1) i0 +=1 ; /* got a carry */
|
||||
i1=j;
|
||||
}
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
}
|
||||
INSERT_WORDS(x,i0,i1);
|
||||
return x;
|
||||
}
|
|
@ -0,0 +1,60 @@
|
|||
/* s_floorf.c -- float version of s_floor.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* floorf(x)
|
||||
* Return x rounded toward -inf to integral value
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to floorf(x).
|
||||
*/
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const float huge = 1.0e30;
|
||||
|
||||
float
|
||||
floorf(float x)
|
||||
{
|
||||
int32_t i0,j0;
|
||||
u_int32_t i;
|
||||
GET_FLOAT_WORD(i0,x);
|
||||
j0 = ((i0>>23)&0xff)-0x7f;
|
||||
if(j0<23) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0>=0) {i0=0;}
|
||||
else if((i0&0x7fffffff)!=0)
|
||||
{ i0=0xbf800000;}
|
||||
}
|
||||
} else {
|
||||
i = (0x007fffff)>>j0;
|
||||
if((i0&i)==0) return x; /* x is integral */
|
||||
if(huge+x>(float)0.0) { /* raise inexact flag */
|
||||
if(i0<0) i0 += (0x00800000)>>j0;
|
||||
i0 &= (~i);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if(j0==0x80) return x+x; /* inf or NaN */
|
||||
else return x; /* x is integral */
|
||||
}
|
||||
SET_FLOAT_WORD(x,i0);
|
||||
return x;
|
||||
}
|
|
@ -0,0 +1,175 @@
|
|||
/* @(#)s_log1p.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* double log1p(double x)
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* 1+x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* Note. If k=0, then f=x is exact. However, if k!=0, then f
|
||||
* may not be representable exactly. In that case, a correction
|
||||
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
||||
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
||||
* and add back the correction term c/u.
|
||||
* (Note: when x > 2**53, one can simply return log(x))
|
||||
*
|
||||
* 2. Approximation of log1p(f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Reme algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
|
||||
* (the values of Lp1 to Lp7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lp1*s +...+Lp7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
* by
|
||||
* log1p(f) = f - (hfsq - s*(hfsq+R)).
|
||||
*
|
||||
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
||||
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
||||
* log1p(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*
|
||||
* Note: Assuming log() return accurate answer, the following
|
||||
* algorithm can be used to compute log1p(x) to within a few ULP:
|
||||
*
|
||||
* u = 1+x;
|
||||
* if(u==1.0) return x ; else
|
||||
* return log(u)*(x/(u-1.0));
|
||||
*
|
||||
* See HP-15C Advanced Functions Handbook, p.193.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
||||
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
||||
Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||
Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||||
Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||||
Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||||
Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||
Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
static const double zero = 0.0;
|
||||
static volatile double vzero = 0.0;
|
||||
|
||||
double
|
||||
log1p(double x)
|
||||
{
|
||||
double hfsq,f,c,s,z,R,u;
|
||||
int32_t k,hx,hu,ax;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ax = hx&0x7fffffff;
|
||||
|
||||
k = 1;
|
||||
if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */
|
||||
if(ax>=0x3ff00000) { /* x <= -1.0 */
|
||||
if(x==-1.0) return -two54/vzero; /* log1p(-1)=+inf */
|
||||
else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
|
||||
}
|
||||
if(ax<0x3e200000) { /* |x| < 2**-29 */
|
||||
if(two54+x>zero /* raise inexact */
|
||||
&&ax<0x3c900000) /* |x| < 2**-54 */
|
||||
return x;
|
||||
else
|
||||
return x - x*x*0.5;
|
||||
}
|
||||
if(hx>0||hx<=((int32_t)0xbfd2bec4)) {
|
||||
k=0;f=x;hu=1;} /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
|
||||
}
|
||||
if (hx >= 0x7ff00000) return x+x;
|
||||
if(k!=0) {
|
||||
if(hx<0x43400000) {
|
||||
STRICT_ASSIGN(double,u,1.0+x);
|
||||
GET_HIGH_WORD(hu,u);
|
||||
k = (hu>>20)-1023;
|
||||
c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
|
||||
c /= u;
|
||||
} else {
|
||||
u = x;
|
||||
GET_HIGH_WORD(hu,u);
|
||||
k = (hu>>20)-1023;
|
||||
c = 0;
|
||||
}
|
||||
hu &= 0x000fffff;
|
||||
/*
|
||||
* The approximation to sqrt(2) used in thresholds is not
|
||||
* critical. However, the ones used above must give less
|
||||
* strict bounds than the one here so that the k==0 case is
|
||||
* never reached from here, since here we have committed to
|
||||
* using the correction term but don't use it if k==0.
|
||||
*/
|
||||
if(hu<0x6a09e) { /* u ~< sqrt(2) */
|
||||
SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
|
||||
} else {
|
||||
k += 1;
|
||||
SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
|
||||
hu = (0x00100000-hu)>>2;
|
||||
}
|
||||
f = u-1.0;
|
||||
}
|
||||
hfsq=0.5*f*f;
|
||||
if(hu==0) { /* |f| < 2**-20 */
|
||||
if(f==zero) {
|
||||
if(k==0) {
|
||||
return zero;
|
||||
} else {
|
||||
c += k*ln2_lo;
|
||||
return k*ln2_hi+c;
|
||||
}
|
||||
}
|
||||
R = hfsq*(1.0-0.66666666666666666*f);
|
||||
if(k==0) return f-R; else
|
||||
return k*ln2_hi-((R-(k*ln2_lo+c))-f);
|
||||
}
|
||||
s = f/(2.0+f);
|
||||
z = s*s;
|
||||
R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
|
||||
if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
||||
return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
|
||||
}
|
|
@ -0,0 +1,60 @@
|
|||
/* @(#)s_scalbn.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#ifndef lint
|
||||
//static char rcsid[] = "$FreeBSD$";
|
||||
#endif
|
||||
|
||||
/*
|
||||
* scalbn (double x, int n)
|
||||
* scalbn(x,n) returns x* 2**n computed by exponent
|
||||
* manipulation rather than by actually performing an
|
||||
* exponentiation or a multiplication.
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
|
||||
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
|
||||
huge = 1.0e+300,
|
||||
tiny = 1.0e-300;
|
||||
|
||||
double
|
||||
scalbn (double x, int n)
|
||||
{
|
||||
int32_t k,hx,lx;
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
k = (hx&0x7ff00000)>>20; /* extract exponent */
|
||||
if (k==0) { /* 0 or subnormal x */
|
||||
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
|
||||
x *= two54;
|
||||
GET_HIGH_WORD(hx,x);
|
||||
k = ((hx&0x7ff00000)>>20) - 54;
|
||||
if (n< -50000) return tiny*x; /*underflow*/
|
||||
}
|
||||
if (k==0x7ff) return x+x; /* NaN or Inf */
|
||||
k = k+n;
|
||||
if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */
|
||||
if (k > 0) /* normal result */
|
||||
{SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;}
|
||||
if (k <= -54)
|
||||
if (n > 50000) /* in case integer overflow in n+k */
|
||||
return huge*copysign(huge,x); /*overflow*/
|
||||
else return tiny*copysign(tiny,x); /*underflow*/
|
||||
k += 54; /* subnormal result */
|
||||
SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20));
|
||||
return x*twom54;
|
||||
}
|
|
@ -0,0 +1,84 @@
|
|||
/* @(#)s_sin.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* sin(x)
|
||||
* Return sine function of x.
|
||||
*
|
||||
* kernel function:
|
||||
* __kernel_sin ... sine function on [-pi/4,pi/4]
|
||||
* __kernel_cos ... cose function on [-pi/4,pi/4]
|
||||
* __ieee754_rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
* n sin(x) cos(x) tan(x)
|
||||
* ----------------------------------------------------------
|
||||
* 0 S C T
|
||||
* 1 C -S -1/T
|
||||
* 2 -S -C T
|
||||
* 3 -C S -1/T
|
||||
* ----------------------------------------------------------
|
||||
*
|
||||
* Special cases:
|
||||
* Let trig be any of sin, cos, or tan.
|
||||
* trig(+-INF) is NaN, with signals;
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#define INLINE_REM_PIO2
|
||||
#include "math_private.h"
|
||||
#include "e_rem_pio2.cpp"
|
||||
|
||||
double
|
||||
sin(double x)
|
||||
{
|
||||
double y[2],z=0.0;
|
||||
int32_t n, ix;
|
||||
|
||||
/* High word of x. */
|
||||
GET_HIGH_WORD(ix,x);
|
||||
|
||||
/* |x| ~< pi/4 */
|
||||
ix &= 0x7fffffff;
|
||||
if(ix <= 0x3fe921fb) {
|
||||
if(ix<0x3e500000) /* |x| < 2**-26 */
|
||||
{if((int)x==0) return x;} /* generate inexact */
|
||||
return __kernel_sin(x,z,0);
|
||||
}
|
||||
|
||||
/* sin(Inf or NaN) is NaN */
|
||||
else if (ix>=0x7ff00000) return x-x;
|
||||
|
||||
/* argument reduction needed */
|
||||
else {
|
||||
n = __ieee754_rem_pio2(x,y);
|
||||
switch(n&3) {
|
||||
case 0: return __kernel_sin(y[0],y[1],1);
|
||||
case 1: return __kernel_cos(y[0],y[1]);
|
||||
case 2: return -__kernel_sin(y[0],y[1],1);
|
||||
default:
|
||||
return -__kernel_cos(y[0],y[1]);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,78 @@
|
|||
/* @(#)s_tan.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* tan(x)
|
||||
* Return tangent function of x.
|
||||
*
|
||||
* kernel function:
|
||||
* __kernel_tan ... tangent function on [-pi/4,pi/4]
|
||||
* __ieee754_rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
* n sin(x) cos(x) tan(x)
|
||||
* ----------------------------------------------------------
|
||||
* 0 S C T
|
||||
* 1 C -S -1/T
|
||||
* 2 -S -C T
|
||||
* 3 -C S -1/T
|
||||
* ----------------------------------------------------------
|
||||
*
|
||||
* Special cases:
|
||||
* Let trig be any of sin, cos, or tan.
|
||||
* trig(+-INF) is NaN, with signals;
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#define INLINE_REM_PIO2
|
||||
#include "math_private.h"
|
||||
#include "e_rem_pio2.cpp"
|
||||
|
||||
double
|
||||
tan(double x)
|
||||
{
|
||||
double y[2],z=0.0;
|
||||
int32_t n, ix;
|
||||
|
||||
/* High word of x. */
|
||||
GET_HIGH_WORD(ix,x);
|
||||
|
||||
/* |x| ~< pi/4 */
|
||||
ix &= 0x7fffffff;
|
||||
if(ix <= 0x3fe921fb) {
|
||||
if(ix<0x3e400000) /* x < 2**-27 */
|
||||
if((int)x==0) return x; /* generate inexact */
|
||||
return __kernel_tan(x,z,1);
|
||||
}
|
||||
|
||||
/* tan(Inf or NaN) is NaN */
|
||||
else if (ix>=0x7ff00000) return x-x; /* NaN */
|
||||
|
||||
/* argument reduction needed */
|
||||
else {
|
||||
n = __ieee754_rem_pio2(x,y);
|
||||
return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
|
||||
-1 -- n odd */
|
||||
}
|
||||
}
|
|
@ -0,0 +1,79 @@
|
|||
/* @(#)s_tanh.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/* Tanh(x)
|
||||
* Return the Hyperbolic Tangent of x
|
||||
*
|
||||
* Method :
|
||||
* x -x
|
||||
* e - e
|
||||
* 0. tanh(x) is defined to be -----------
|
||||
* x -x
|
||||
* e + e
|
||||
* 1. reduce x to non-negative by tanh(-x) = -tanh(x).
|
||||
* 2. 0 <= x < 2**-28 : tanh(x) := x with inexact if x != 0
|
||||
* -t
|
||||
* 2**-28 <= x < 1 : tanh(x) := -----; t = expm1(-2x)
|
||||
* t + 2
|
||||
* 2
|
||||
* 1 <= x < 22 : tanh(x) := 1 - -----; t = expm1(2x)
|
||||
* t + 2
|
||||
* 22 <= x <= INF : tanh(x) := 1.
|
||||
*
|
||||
* Special cases:
|
||||
* tanh(NaN) is NaN;
|
||||
* only tanh(0)=0 is exact for finite argument.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const volatile double tiny = 1.0e-300;
|
||||
static const double one = 1.0, two = 2.0, huge = 1.0e300;
|
||||
|
||||
double
|
||||
tanh(double x)
|
||||
{
|
||||
double t,z;
|
||||
int32_t jx,ix;
|
||||
|
||||
GET_HIGH_WORD(jx,x);
|
||||
ix = jx&0x7fffffff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix>=0x7ff00000) {
|
||||
if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
|
||||
else return one/x-one; /* tanh(NaN) = NaN */
|
||||
}
|
||||
|
||||
/* |x| < 22 */
|
||||
if (ix < 0x40360000) { /* |x|<22 */
|
||||
if (ix<0x3e300000) { /* |x|<2**-28 */
|
||||
if(huge+x>one) return x; /* tanh(tiny) = tiny with inexact */
|
||||
}
|
||||
if (ix>=0x3ff00000) { /* |x|>=1 */
|
||||
t = expm1(two*fabs(x));
|
||||
z = one - two/(t+two);
|
||||
} else {
|
||||
t = expm1(-two*fabs(x));
|
||||
z= -t/(t+two);
|
||||
}
|
||||
/* |x| >= 22, return +-1 */
|
||||
} else {
|
||||
z = one - tiny; /* raise inexact flag */
|
||||
}
|
||||
return (jx>=0)? z: -z;
|
||||
}
|
|
@ -0,0 +1,62 @@
|
|||
/* @(#)s_floor.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
//#include <sys/cdefs.h>
|
||||
//__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* trunc(x)
|
||||
* Return x rounded toward 0 to integral value
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to trunc(x).
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double huge = 1.0e300;
|
||||
|
||||
double
|
||||
trunc(double x)
|
||||
{
|
||||
int32_t i0,i1,j0;
|
||||
u_int32_t i;
|
||||
EXTRACT_WORDS(i0,i1,x);
|
||||
j0 = ((i0>>20)&0x7ff)-0x3ff;
|
||||
if(j0<20) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* |x|<1, so return 0*sign(x) */
|
||||
i0 &= 0x80000000U;
|
||||
i1 = 0;
|
||||
}
|
||||
} else {
|
||||
i = (0x000fffff)>>j0;
|
||||
if(((i0&i)|i1)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
i0 &= (~i); i1=0;
|
||||
}
|
||||
}
|
||||
} else if (j0>51) {
|
||||
if(j0==0x400) return x+x; /* inf or NaN */
|
||||
else return x; /* x is integral */
|
||||
} else {
|
||||
i = ((u_int32_t)(0xffffffff))>>(j0-20);
|
||||
if((i1&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) /* raise inexact flag */
|
||||
i1 &= (~i);
|
||||
}
|
||||
INSERT_WORDS(x,i0,i1);
|
||||
return x;
|
||||
}
|
Загрузка…
Ссылка в новой задаче