Bug 732660 - Efficient drawElements validation on subarray and/or dynamically updated array - r=jgilbert

This commit is contained in:
Benoit Jacob 2012-09-21 13:44:35 -04:00
Родитель 679ebc3321
Коммит 1a9671df92
9 изменённых файлов: 854 добавлений и 120 удалений

Просмотреть файл

@ -12,7 +12,7 @@ include $(DEPTH)/config/autoconf.mk
PARALLEL_DIRS = public src
TEST_DIRS += test
TOOLS_DIRS += test
include $(topsrcdir)/config/rules.mk

Просмотреть файл

@ -20,6 +20,7 @@ EXPORTS = \
CustomQS_Canvas.h \
CustomQS_Canvas2D.h \
WebGLContext.h \
WebGLElementArrayCache.h \
$(NULL)
EXPORTS_NAMESPACES = mozilla/dom
@ -52,6 +53,7 @@ CPPSRCS += \
WebGLTexelConversions.cpp \
WebGLExtensionCompressedTextureS3TC.cpp \
WebGLExtensionDepthTexture.cpp \
WebGLElementArrayCache.cpp \
$(NULL)
DEFINES += -DUSE_ANGLE

Просмотреть файл

@ -41,6 +41,8 @@
#include "mozilla/ErrorResult.h"
#include "mozilla/dom/BindingUtils.h"
#include "WebGLElementArrayCache.h"
/*
* Minimum value constants defined in 6.2 State Tables of OpenGL ES - 2.0.25
* https://bugzilla.mozilla.org/show_bug.cgi?id=686732
@ -1496,7 +1498,6 @@ public:
, mHasEverBeenBound(false)
, mByteLength(0)
, mTarget(LOCAL_GL_NONE)
, mData(nullptr)
{
mContext->MakeContextCurrent();
mContext->gl->fGenBuffers(1, &mGLName);
@ -1510,14 +1511,14 @@ public:
void Delete() {
mContext->MakeContextCurrent();
mContext->gl->fDeleteBuffers(1, &mGLName);
free(mData);
mData = nullptr;
mByteLength = 0;
mCache = nullptr;
LinkedListElement<WebGLBuffer>::remove(); // remove from mContext->mBuffers
}
size_t SizeOfIncludingThis(nsMallocSizeOfFun aMallocSizeOf) const {
return aMallocSizeOf(this) + aMallocSizeOf(mData);
size_t sizeOfCache = mCache ? mCache->SizeOfIncludingThis(aMallocSizeOf) : 0;
return aMallocSizeOf(this) + sizeOfCache;
}
bool HasEverBeenBound() { return mHasEverBeenBound; }
@ -1525,83 +1526,28 @@ public:
GLuint GLName() const { return mGLName; }
GLuint ByteLength() const { return mByteLength; }
GLenum Target() const { return mTarget; }
const void *Data() const { return mData; }
void SetByteLength(GLuint byteLength) { mByteLength = byteLength; }
void SetTarget(GLenum target) { mTarget = target; }
// element array buffers are the only buffers for which we need to keep a copy of the data.
// this method assumes that the byte length has previously been set by calling SetByteLength.
bool CopyDataIfElementArray(const void* data) {
if (mTarget == LOCAL_GL_ELEMENT_ARRAY_BUFFER) {
mData = realloc(mData, mByteLength);
if (!mData) {
mByteLength = 0;
return false;
}
memcpy(mData, data, mByteLength);
}
void SetTarget(GLenum target) {
mTarget = target;
if (!mCache && mTarget == LOCAL_GL_ELEMENT_ARRAY_BUFFER)
mCache = new WebGLElementArrayCache;
}
bool ElementArrayCacheBufferData(const void* ptr, size_t buffer_size_in_bytes) {
if (mTarget == LOCAL_GL_ELEMENT_ARRAY_BUFFER)
return mCache->BufferData(ptr, buffer_size_in_bytes);
return true;
}
// same comments as for CopyElementArrayData
bool ZeroDataIfElementArray() {
if (mTarget == LOCAL_GL_ELEMENT_ARRAY_BUFFER) {
mData = realloc(mData, mByteLength);
if (!mData) {
mByteLength = 0;
return false;
}
memset(mData, 0, mByteLength);
}
return true;
void ElementArrayCacheBufferSubData(size_t pos, const void* ptr, size_t update_size_in_bytes) {
if (mTarget == LOCAL_GL_ELEMENT_ARRAY_BUFFER)
mCache->BufferSubData(pos, ptr, update_size_in_bytes);
}
// same comments as for CopyElementArrayData
void CopySubDataIfElementArray(GLuint byteOffset, GLuint byteLength, const void* data) {
if (mTarget == LOCAL_GL_ELEMENT_ARRAY_BUFFER && mByteLength) {
memcpy((void*) (size_t(mData)+byteOffset), data, byteLength);
}
}
// this method too is only for element array buffers. It returns the maximum value in the part of
// the buffer starting at given offset, consisting of given count of elements. The type T is the type
// to interpret the array elements as, must be GLushort or GLubyte.
template<typename T>
T FindMaxElementInSubArray(GLuint count, GLuint byteOffset)
{
const T* start = reinterpret_cast<T*>(reinterpret_cast<size_t>(mData) + byteOffset);
const T* stop = start + count;
T result = 0;
for(const T* ptr = start; ptr != stop; ++ptr) {
if (*ptr > result) result = *ptr;
}
return result;
}
void InvalidateCachedMaxElements() {
mHasCachedMaxUbyteElement = false;
mHasCachedMaxUshortElement = false;
}
int32_t FindMaxUbyteElement() {
if (mHasCachedMaxUbyteElement) {
return mCachedMaxUbyteElement;
} else {
mHasCachedMaxUbyteElement = true;
mCachedMaxUbyteElement = FindMaxElementInSubArray<GLubyte>(mByteLength, 0);
return mCachedMaxUbyteElement;
}
}
int32_t FindMaxUshortElement() {
if (mHasCachedMaxUshortElement) {
return mCachedMaxUshortElement;
} else {
mHasCachedMaxUshortElement = true;
mCachedMaxUshortElement = FindMaxElementInSubArray<GLushort>(mByteLength>>1, 0);
return mCachedMaxUshortElement;
}
bool Validate(WebGLenum type, uint32_t max_allowed, size_t first, size_t count) {
return mCache->Validate(type, max_allowed, first, count);
}
NS_DECL_ISUPPORTS
@ -1614,12 +1560,7 @@ protected:
GLuint mByteLength;
GLenum mTarget;
uint8_t mCachedMaxUbyteElement;
bool mHasCachedMaxUbyteElement;
uint16_t mCachedMaxUshortElement;
bool mHasCachedMaxUshortElement;
void* mData; // in the case of an Element Array Buffer, we keep a copy.
nsAutoPtr<WebGLElementArrayCache> mCache;
};
// NOTE: When this class is switched to new DOM bindings, update the (then-slow)

Просмотреть файл

@ -360,9 +360,9 @@ WebGLContext::BufferData(WebGLenum target, WebGLsizeiptr size,
}
boundBuffer->SetByteLength(size);
boundBuffer->InvalidateCachedMaxElements();
if (!boundBuffer->ZeroDataIfElementArray())
if (!boundBuffer->ElementArrayCacheBufferData(nullptr, size)) {
return ErrorOutOfMemory("bufferData: out of memory");
}
}
void
@ -403,9 +403,9 @@ WebGLContext::BufferData(WebGLenum target, ArrayBuffer *data, WebGLenum usage)
}
boundBuffer->SetByteLength(data->Length());
boundBuffer->InvalidateCachedMaxElements();
if (!boundBuffer->CopyDataIfElementArray(data->Data()))
if (!boundBuffer->ElementArrayCacheBufferData(data->Data(), data->Length())) {
return ErrorOutOfMemory("bufferData: out of memory");
}
}
void
@ -440,9 +440,9 @@ WebGLContext::BufferData(WebGLenum target, ArrayBufferView& data, WebGLenum usag
}
boundBuffer->SetByteLength(data.Length());
boundBuffer->InvalidateCachedMaxElements();
if (!boundBuffer->CopyDataIfElementArray(data.Data()))
if (!boundBuffer->ElementArrayCacheBufferData(data.Data(), data.Length())) {
return ErrorOutOfMemory("bufferData: out of memory");
}
}
void
@ -483,8 +483,7 @@ WebGLContext::BufferSubData(GLenum target, WebGLsizeiptr byteOffset,
MakeContextCurrent();
boundBuffer->CopySubDataIfElementArray(byteOffset, data->Length(), data->Data());
boundBuffer->InvalidateCachedMaxElements();
boundBuffer->ElementArrayCacheBufferSubData(byteOffset, data->Data(), data->Length());
gl->fBufferSubData(target, byteOffset, data->Length(), data->Data());
}
@ -520,11 +519,9 @@ WebGLContext::BufferSubData(WebGLenum target, WebGLsizeiptr byteOffset,
return ErrorInvalidOperation("bufferSubData: not enough data -- operation requires %d bytes, but buffer only has %d bytes",
checked_neededByteLength.value(), boundBuffer->ByteLength());
boundBuffer->ElementArrayCacheBufferSubData(byteOffset, data.Data(), data.Length());
MakeContextCurrent();
boundBuffer->CopySubDataIfElementArray(byteOffset, data.Length(), data.Data());
boundBuffer->InvalidateCachedMaxElements();
gl->fBufferSubData(target, byteOffset, data.Length(), data.Data());
}
@ -1459,12 +1456,16 @@ WebGLContext::DrawElements(WebGLenum mode, WebGLsizei count, WebGLenum type,
CheckedUint32 checked_byteCount;
WebGLsizei first = 0;
if (type == LOCAL_GL_UNSIGNED_SHORT) {
checked_byteCount = 2 * CheckedUint32(count);
if (byteOffset % 2 != 0)
return ErrorInvalidOperation("drawElements: invalid byteOffset for UNSIGNED_SHORT (must be a multiple of 2)");
first = byteOffset / 2;
} else if (type == LOCAL_GL_UNSIGNED_BYTE) {
checked_byteCount = count;
first = byteOffset;
} else {
return ErrorInvalidEnum("drawElements: type must be UNSIGNED_SHORT or UNSIGNED_BYTE");
}
@ -1480,7 +1481,7 @@ WebGLContext::DrawElements(WebGLenum mode, WebGLsizei count, WebGLenum type,
if (!mBoundElementArrayBuffer)
return ErrorInvalidOperation("drawElements: must have element array buffer binding");
if (!mBoundElementArrayBuffer->Data())
if (!mBoundElementArrayBuffer->ByteLength())
return ErrorInvalidOperation("drawElements: bound element array buffer doesn't have any data");
CheckedUint32 checked_neededByteCount = checked_byteCount + byteOffset;
@ -1495,33 +1496,12 @@ WebGLContext::DrawElements(WebGLenum mode, WebGLsizei count, WebGLenum type,
if (!ValidateBuffers(&maxAllowedCount, "drawElements"))
return;
int32_t maxIndex
= type == LOCAL_GL_UNSIGNED_SHORT
? mBoundElementArrayBuffer->FindMaxUshortElement()
: mBoundElementArrayBuffer->FindMaxUbyteElement();
int32_t maxAllowedIndex = NS_MAX(maxAllowedCount - 1, 0);
CheckedInt32 checked_maxIndexPlusOne = CheckedInt32(maxIndex) + 1;
if (!checked_maxIndexPlusOne.isValid() ||
checked_maxIndexPlusOne.value() > maxAllowedCount)
{
// the index array contains invalid indices for the current drawing state, but they
// might not be used by the present drawElements call, depending on first and count.
int32_t maxIndexInSubArray
= type == LOCAL_GL_UNSIGNED_SHORT
? mBoundElementArrayBuffer->FindMaxElementInSubArray<GLushort>(count, byteOffset)
: mBoundElementArrayBuffer->FindMaxElementInSubArray<GLubyte>(count, byteOffset);
CheckedInt32 checked_maxIndexInSubArrayPlusOne = CheckedInt32(maxIndexInSubArray) + 1;
if (!checked_maxIndexInSubArrayPlusOne.isValid() ||
checked_maxIndexInSubArrayPlusOne.value() > maxAllowedCount)
{
return ErrorInvalidOperation(
"DrawElements: bound vertex attribute buffers do not have sufficient "
"size for given indices from the bound element array");
}
if (!mBoundElementArrayBuffer->Validate(type, maxAllowedIndex, first, count)) {
return ErrorInvalidOperation(
"DrawElements: bound vertex attribute buffers do not have sufficient "
"size for given indices from the bound element array");
}
MakeContextCurrent();
@ -1534,7 +1514,7 @@ WebGLContext::DrawElements(WebGLenum mode, WebGLsizei count, WebGLenum type,
}
BindFakeBlackTextures();
if (!DoFakeVertexAttrib0(checked_maxIndexPlusOne.value()))
if (!DoFakeVertexAttrib0(maxAllowedCount))
return;
SetupContextLossTimer();

Просмотреть файл

@ -0,0 +1,539 @@
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "WebGLElementArrayCache.h"
#include "nsTArray.h"
#include "mozilla/Assertions.h"
#include <cstdlib>
#include <cstring>
namespace mozilla {
/*
* WebGLElementArrayCacheTree contains most of the implementation of WebGLElementArrayCache,
* which performs WebGL element array buffer validation for drawElements.
*
* Attention: Here lie nontrivial data structures, bug-prone algorithms, and non-canonical tweaks!
* Whence the explanatory comments, and compiled unit test.
*
* *** What problem are we solving here? ***
*
* WebGL::DrawElements has to validate that the elements are in range wrt the current vertex attribs.
* This boils down to the problem, given an array of integers, of computing the maximum in an arbitrary
* sub-array. The naive algorithm has linear complexity; this has been a major performance problem,
* see bug 569431. In that bug, we took the approach of caching the max for the whole array, which
* does cover most cases (DrawElements typically consumes the whole element array buffer) but doesn't
* help in other use cases:
* - when doing "partial DrawElements" i.e. consuming only part of the element array buffer
* - when doing frequent "partial buffer updates" i.e. bufferSubData calls updating parts of the
* element array buffer
*
* *** The solution: a binary tree ***
*
* The solution implemented here is to use a binary tree as the cache data structure. Each tree node
* contains the max of its two children nodes. In this way, finding the maximum in any contiguous sub-array
* has log complexity instead of linear complexity.
*
* Simplistically, if the element array is
*
* 1 4 3 2
*
* then the corresponding tree is
*
* 4
* _/ \_
* 4 3
* / \ / \
* 1 4 3 2
*
* In practice, the bottom-most levels of the tree are both the largest to store (because they
* have more nodes), and the least useful performance-wise (because each node in the bottom
* levels concerns only few entries in the elements array buffer, it is cheap to compute).
*
* For this reason, we stop the tree a few levels above, so that each tree leaf actually corresponds
* to more than one element array entry.
*
* The number of levels that we "drop" is |sSkippedBottomTreeLevels| and the number of element array entries
* that each leaf corresponds to, is |sElementsPerLeaf|. This being a binary tree, we have
*
* sElementsPerLeaf = 2 ^ sSkippedBottomTreeLevels.
*
* *** Storage layout of the binary tree ***
*
* We take advantage of the specifics of the situation to avoid generalist tree storage and instead
* store the tree entries in a vector, mTreeData.
*
* The number of leaves is given by mNumLeaves, and mTreeData is always a vector of length
*
* 2 * mNumLeaves.
*
* Its data layout is as follows: mTreeData[0] is unused, mTreeData[1] is the root node,
* then at offsets 2..3 is the tree level immediately below the root node, then at offsets 4..7
* is the tree level below that, etc.
*
* The figure below illustrates this by writing at each tree node the offset into mTreeData at
* which it is stored:
*
* 1
* _/ \_
* 2 3
* / \ / \
* 4 5 6 7
* ...
*
* Thus, under the convention that the root level is level 0, we see that level N is stored at offsets
*
* [ 2^n .. 2^(n+1) - 1 ]
*
* in mTreeData. Likewise, all the usual tree operations have simple mathematical expressions in
* terms of mTreeData offsets, see all the methods such as ParentNode, LeftChildNode, etc.
*
* *** Design constraint: element types aren't known at buffer-update time ***
*
* Note that a key constraint that we're operating under, is that we don't know the types of the elements
* by the time WebGL bufferData/bufferSubData methods are called. The type of elements is only
* specified in the drawElements call. This means that we may potentially have to store caches for
* multiple element types, for the same element array buffer. Since we don't know yet how many
* element types we'll eventually support (extensions add more), the concern about memory usage is serious.
* This is addressed by sSkippedBottomTreeLevels as explained above. Of course, in the typical
* case where each element array buffer is only ever used with one type, this is also addressed
* by having WebGLElementArrayCache lazily create trees for each type only upon first use.
*
* Another consequence of this constraint is that when invalidating the trees, we have to invalidate
* all existing trees. So if trees for types uint8_t and uint16_t have ever been constructed for this buffer,
* every subsequent invalidation will have to invalidate both trees even if one of the two types is never
* used again. This implies that it is important to minimize the cost of invalidation i.e.
* do lazy updates upon use as opposed to immediately updating invalidated trees. This poses a problem:
* it is nontrivial to keep track of the part of the tree that's invalidated. The current solution
* can only keep track of an invalidated interval, from |mFirstInvalidatedLeaf| to |mLastInvalidatedLeaf|.
* The problem is that if one does two small, far-apart partial buffer updates, the resulting invalidated
* area is very large even though only a small part of the array really needed to be invalidated.
* The real solution to this problem would be to use a smarter data structure to keep track of the
* invalidated area, probably an interval tree. Meanwhile, we can probably live with the current situation
* as the unfavorable case seems to be a small corner case: in order to run into performance issues,
* the number of bufferSubData in between two consecutive draws must be small but greater than 1, and
* the partial buffer updates must be small and far apart. Anything else than this corner case
* should run fast in the current setting.
*/
template<typename T>
struct WebGLElementArrayCacheTree
{
// A too-high sSkippedBottomTreeLevels would harm the performance of small drawElements calls
// A too-low sSkippedBottomTreeLevels would cause undue memory usage.
// The current value has been validated by some benchmarking. See bug 732660.
static const size_t sSkippedBottomTreeLevels = 3;
static const size_t sElementsPerLeaf = 1 << sSkippedBottomTreeLevels;
static const size_t sElementsPerLeafMask = sElementsPerLeaf - 1; // sElementsPerLeaf is POT
private:
WebGLElementArrayCache& mParent;
nsTArray<T> mTreeData;
size_t mNumLeaves;
bool mInvalidated;
size_t mFirstInvalidatedLeaf;
size_t mLastInvalidatedLeaf;
public:
WebGLElementArrayCacheTree(WebGLElementArrayCache& p)
: mParent(p)
, mNumLeaves(0)
, mInvalidated(false)
, mFirstInvalidatedLeaf(0)
, mLastInvalidatedLeaf(0)
{
ResizeToParentSize();
Invalidate(0, mParent.ByteSize() - 1);
}
T GlobalMaximum() const {
MOZ_ASSERT(!mInvalidated);
return mTreeData[1];
}
// returns the index of the parent node; if treeIndex=1 (the root node),
// the return value is 0.
static size_t ParentNode(size_t treeIndex) {
MOZ_ASSERT(treeIndex);
return treeIndex >> 1;
}
static bool IsRightNode(size_t treeIndex) {
MOZ_ASSERT(treeIndex);
return treeIndex & 1;
}
static bool IsLeftNode(size_t treeIndex) {
MOZ_ASSERT(treeIndex);
return !IsRightNode(treeIndex);
}
static size_t SiblingNode(size_t treeIndex) {
MOZ_ASSERT(treeIndex);
return treeIndex ^ 1;
}
static size_t LeftChildNode(size_t treeIndex) {
MOZ_ASSERT(treeIndex);
return treeIndex << 1;
}
static size_t RightChildNode(size_t treeIndex) {
MOZ_ASSERT(treeIndex);
return SiblingNode(LeftChildNode(treeIndex));
}
static size_t LeftNeighborNode(size_t treeIndex, size_t distance = 1) {
MOZ_ASSERT(treeIndex);
return treeIndex - distance;
}
static size_t RightNeighborNode(size_t treeIndex, size_t distance = 1) {
MOZ_ASSERT(treeIndex);
return treeIndex + distance;
}
size_t LeafForElement(size_t element) {
size_t leaf = element / sElementsPerLeaf;
MOZ_ASSERT(leaf < mNumLeaves);
return leaf;
}
size_t LeafForByte(size_t byte) {
return LeafForElement(byte / sizeof(T));
}
// Returns the index, into the tree storage, where a given leaf is stored
size_t TreeIndexForLeaf(size_t leaf) {
// See above class comment. The tree storage is an array of length 2*mNumLeaves.
// The leaves are stored in its second half.
return leaf + mNumLeaves;
}
static size_t LastElementUnderSameLeaf(size_t element) {
return element | sElementsPerLeafMask;
}
static size_t FirstElementUnderSameLeaf(size_t element) {
return element & ~sElementsPerLeafMask;
}
static size_t NextMultipleOfElementsPerLeaf(size_t numElements) {
return ((numElements - 1) | sElementsPerLeafMask) + 1;
}
bool Validate(T maxAllowed, size_t firstLeaf, size_t lastLeaf) {
MOZ_ASSERT(!mInvalidated);
size_t firstTreeIndex = TreeIndexForLeaf(firstLeaf);
size_t lastTreeIndex = TreeIndexForLeaf(lastLeaf);
while (true) {
// given that we tweak these values in nontrivial ways, it doesn't hurt to do
// this sanity check
MOZ_ASSERT(firstTreeIndex <= lastTreeIndex);
// final case where there is only 1 node to validate at the current tree level
if (lastTreeIndex == firstTreeIndex) {
return mTreeData[firstTreeIndex] <= maxAllowed;
}
// if the first node at current tree level is a right node, handle it individually
// and replace it with its right neighbor, which is a left node
if (IsRightNode(firstTreeIndex)) {
if (mTreeData[firstTreeIndex] > maxAllowed)
return false;
firstTreeIndex = RightNeighborNode(firstTreeIndex);
}
// if the last node at current tree level is a left node, handle it individually
// and replace it with its left neighbor, which is a right node
if (IsLeftNode(lastTreeIndex)) {
if (mTreeData[lastTreeIndex] > maxAllowed)
return false;
lastTreeIndex = LeftNeighborNode(lastTreeIndex);
}
// at this point it can happen that firstTreeIndex and lastTreeIndex "crossed" each
// other. That happens if firstTreeIndex was a right node and lastTreeIndex was its
// right neighor: in that case, both above tweaks happened and as a result, they ended
// up being swapped: lastTreeIndex is now the _left_ neighbor of firstTreeIndex.
// When that happens, there is nothing left to validate.
if (lastTreeIndex == LeftNeighborNode(firstTreeIndex)) {
return true;
}
// walk up 1 level
firstTreeIndex = ParentNode(firstTreeIndex);
lastTreeIndex = ParentNode(lastTreeIndex);
}
}
template<typename U>
static U NextPowerOfTwo(U x) {
U result = 1;
while (result < x)
result <<= 1;
MOZ_ASSERT(result >= x);
MOZ_ASSERT((result & (result - 1)) == 0);
return result;
}
bool ResizeToParentSize()
{
size_t numberOfElements = mParent.ByteSize() / sizeof(T);
size_t requiredNumLeaves = (numberOfElements + sElementsPerLeaf - 1) / sElementsPerLeaf;
mNumLeaves = NextPowerOfTwo(requiredNumLeaves);
// see class comment for why we the tree storage size is 2 * mNumLeaves
return mTreeData.SetLength(2 * mNumLeaves);
}
void Invalidate(size_t firstByte, size_t lastByte);
void Update();
size_t SizeOfIncludingThis(nsMallocSizeOfFun aMallocSizeOf) const
{
return aMallocSizeOf(this) + aMallocSizeOf(mTreeData.Elements());
}
};
// TreeForType: just a template helper to select the right tree object for a given
// element type.
template<typename T>
struct TreeForType {};
template<>
struct TreeForType<uint8_t>
{
static WebGLElementArrayCacheTree<uint8_t>*& Run(WebGLElementArrayCache *b) { return b->mUint8Tree; }
};
template<>
struct TreeForType<uint16_t>
{
static WebGLElementArrayCacheTree<uint16_t>*& Run(WebGLElementArrayCache *b) { return b->mUint16Tree; }
};
// When the buffer gets updated from firstByte to lastByte,
// calling this method will notify the tree accordingly
template<typename T>
void WebGLElementArrayCacheTree<T>::Invalidate(size_t firstByte, size_t lastByte)
{
lastByte = NS_MIN(lastByte, mNumLeaves * sElementsPerLeaf * sizeof(T) - 1);
size_t firstLeaf = LeafForByte(firstByte);
size_t lastLeaf = LeafForByte(lastByte);
if (mInvalidated) {
mFirstInvalidatedLeaf = NS_MIN(firstLeaf, mFirstInvalidatedLeaf);
mLastInvalidatedLeaf = NS_MAX(lastLeaf, mLastInvalidatedLeaf);
} else {
mInvalidated = true;
mFirstInvalidatedLeaf = firstLeaf;
mLastInvalidatedLeaf = lastLeaf;
}
}
// When tree has been partially invalidated, from mFirstInvalidatedLeaf to
// mLastInvalidatedLeaf, calling this method will 1) update the leaves in this interval
// from the raw buffer data, and 2) propagate this update up the tree
template<typename T>
void WebGLElementArrayCacheTree<T>::Update()
{
if (!mInvalidated) {
return;
}
MOZ_ASSERT(mLastInvalidatedLeaf < mNumLeaves);
size_t firstTreeIndex = TreeIndexForLeaf(mFirstInvalidatedLeaf);
size_t lastTreeIndex = TreeIndexForLeaf(mLastInvalidatedLeaf);
// Step #1: initialize the tree leaves from plain buffer data.
// That is, each tree leaf must be set to the max of the |sElementsPerLeaf| corresponding
// buffer entries.
// condition-less scope to prevent leaking this scope's variables into the code below
{
// treeIndex is the index of the tree leaf we're writing, i.e. the destination index
size_t treeIndex = firstTreeIndex;
// srcIndex is the index in the source buffer
size_t srcIndex = mFirstInvalidatedLeaf * sElementsPerLeaf;
size_t numberOfElements = mParent.ByteSize() / sizeof(T);
while (treeIndex <= lastTreeIndex) {
T m = 0;
size_t a = srcIndex;
size_t srcIndexNextLeaf = NS_MIN(a + sElementsPerLeaf, numberOfElements);
for (; srcIndex < srcIndexNextLeaf; srcIndex++) {
m = NS_MAX(m, mParent.Element<T>(srcIndex));
}
mTreeData[treeIndex] = m;
treeIndex++;
}
}
// Step #2: propagate the values up the tree. This is simply a matter of walking up
// the tree and setting each node to the max of its two children.
while (true) {
// fast-exit case where only one node is invalidated at the current level
if (firstTreeIndex == lastTreeIndex) {
size_t firstTreeIndexParent = ParentNode(firstTreeIndex);
while (firstTreeIndexParent) {
mTreeData[firstTreeIndexParent] = NS_MAX(mTreeData[firstTreeIndex], mTreeData[SiblingNode(firstTreeIndex)]);
firstTreeIndex = firstTreeIndexParent;
firstTreeIndexParent = ParentNode(firstTreeIndex);
}
break;
}
// move up 1 level
firstTreeIndex = ParentNode(firstTreeIndex);
lastTreeIndex = ParentNode(lastTreeIndex);
// initialize local iteration variables: child and parent.
size_t child = LeftChildNode(firstTreeIndex);
size_t parent = firstTreeIndex;
// the unrolling makes this look more complicated than it is; the plain non-unrolled
// version is in the second while loop below
const int unrollSize = 8;
while (RightNeighborNode(parent, unrollSize - 1) <= lastTreeIndex)
{
for (int unroll = 0; unroll < unrollSize; unroll++)
{
T a = mTreeData[child];
child = RightNeighborNode(child);
T b = mTreeData[child];
child = RightNeighborNode(child);
mTreeData[parent] = NS_MAX(a, b);
parent = RightNeighborNode(parent);
}
}
// plain non-unrolled version, used to terminate the job after the last unrolled iteration
while (parent <= lastTreeIndex)
{
T a = mTreeData[child];
child = RightNeighborNode(child);
T b = mTreeData[child];
child = RightNeighborNode(child);
mTreeData[parent] = NS_MAX(a, b);
parent = RightNeighborNode(parent);
}
}
mInvalidated = false;
}
WebGLElementArrayCache::~WebGLElementArrayCache() {
delete mUint8Tree;
delete mUint16Tree;
free(mUntypedData);
}
bool WebGLElementArrayCache::BufferData(const void* ptr, size_t byteSize) {
mByteSize = byteSize;
if (mUint8Tree)
if (!mUint8Tree->ResizeToParentSize())
return false;
if (mUint16Tree)
if (!mUint16Tree->ResizeToParentSize())
return false;
mUntypedData = realloc(mUntypedData, byteSize);
if (!mUntypedData)
return false;
BufferSubData(0, ptr, byteSize);
return true;
}
void WebGLElementArrayCache::BufferSubData(size_t pos, const void* ptr, size_t updateByteSize) {
if (!updateByteSize) return;
if (ptr)
memcpy(static_cast<uint8_t*>(mUntypedData) + pos, ptr, updateByteSize);
else
memset(static_cast<uint8_t*>(mUntypedData) + pos, 0, updateByteSize);
InvalidateTrees(pos, pos + updateByteSize - 1);
}
void WebGLElementArrayCache::InvalidateTrees(size_t firstByte, size_t lastByte)
{
if (mUint8Tree)
mUint8Tree->Invalidate(firstByte, lastByte);
if (mUint16Tree)
mUint16Tree->Invalidate(firstByte, lastByte);
}
template<typename T>
bool WebGLElementArrayCache::Validate(T maxAllowed, size_t firstElement, size_t countElements) {
if (!mByteSize || !countElements)
return true;
WebGLElementArrayCacheTree<T>*& tree = TreeForType<T>::Run(this);
if (!tree) {
tree = new WebGLElementArrayCacheTree<T>(*this);
}
size_t lastElement = firstElement + countElements - 1;
tree->Update();
// fast exit path when the global maximum for the whole element array buffer
// falls in the allowed range
if (tree->GlobalMaximum() <= maxAllowed)
{
return true;
}
const T* elements = Elements<T>();
// before calling tree->Validate, we have to validate ourselves the boundaries of the elements span,
// to round them to the nearest multiple of sElementsPerLeaf.
size_t firstElementAdjustmentEnd = NS_MIN(lastElement,
tree->LastElementUnderSameLeaf(firstElement));
while (firstElement <= firstElementAdjustmentEnd) {
if (elements[firstElement] > maxAllowed)
return false;
firstElement++;
}
size_t lastElementAdjustmentEnd = NS_MAX(firstElement,
tree->FirstElementUnderSameLeaf(lastElement));
while (lastElement >= lastElementAdjustmentEnd) {
if (elements[lastElement] > maxAllowed)
return false;
lastElement--;
}
// at this point, for many tiny validations, we're already done.
if (firstElement > lastElement)
return true;
// general case
return tree->Validate(maxAllowed,
tree->LeafForElement(firstElement),
tree->LeafForElement(lastElement));
}
bool WebGLElementArrayCache::Validate(GLenum type, uint32_t maxAllowed, size_t firstElement, size_t countElements) {
if (type == LOCAL_GL_UNSIGNED_BYTE)
return Validate<uint8_t>(uint8_t(maxAllowed), firstElement, countElements);
if (type == LOCAL_GL_UNSIGNED_SHORT)
return Validate<uint16_t>(uint16_t(maxAllowed), firstElement, countElements);
return false;
}
size_t WebGLElementArrayCache::SizeOfIncludingThis(nsMallocSizeOfFun aMallocSizeOf) const {
size_t uint8TreeSize = mUint8Tree ? mUint8Tree->SizeOfIncludingThis(aMallocSizeOf) : 0;
size_t uint16TreeSize = mUint16Tree ? mUint16Tree->SizeOfIncludingThis(aMallocSizeOf) : 0;
return aMallocSizeOf(this) +
mByteSize +
uint8TreeSize +
uint16TreeSize;
}
} // end namespace mozilla

Просмотреть файл

@ -0,0 +1,81 @@
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef WEBGLELEMENTARRAYCACHE_H
#define WEBGLELEMENTARRAYCACHE_H
#include "mozilla/StandardInteger.h"
#include "nscore.h"
#include "GLDefs.h"
namespace mozilla {
template<typename T>
struct WebGLElementArrayCacheTree;
/*
* WebGLElementArrayCache implements WebGL element array buffer validation for drawElements.
*
* Its exposes methods meant to be called by WebGL method implementations:
* - Validate, to be called by WebGLContext::DrawElements, is where we use the cache
* - BufferData and BufferSubData, to be called by eponymous WebGL methods, are how
* data is fed into the cache
*
* Most of the implementation is hidden in the auxilary class template, WebGLElementArrayCacheTree.
* Refer to its code for design comments.
*/
class WebGLElementArrayCache {
public:
bool BufferData(const void* ptr, size_t byteSize);
void BufferSubData(size_t pos, const void* ptr, size_t updateByteSize);
bool Validate(GLenum type, uint32_t maxAllowed, size_t first, size_t count);
template<typename T>
T Element(size_t i) const { return Elements<T>()[i]; }
WebGLElementArrayCache()
: mUntypedData(nullptr)
, mByteSize(0)
, mUint8Tree(nullptr)
, mUint16Tree(nullptr)
{}
~WebGLElementArrayCache();
size_t SizeOfIncludingThis(nsMallocSizeOfFun aMallocSizeOf) const;
private:
template<typename T>
bool Validate(T maxAllowed, size_t first, size_t count);
size_t ByteSize() const {
return mByteSize;
}
template<typename T>
const T* Elements() const { return static_cast<const T*>(mUntypedData); }
template<typename T>
T* Elements() { return static_cast<T*>(mUntypedData); }
void InvalidateTrees(size_t firstByte, size_t lastByte);
template<typename T>
friend class WebGLElementArrayCacheTree;
template<typename T>
friend struct TreeForType;
void* mUntypedData;
size_t mByteSize;
WebGLElementArrayCacheTree<uint8_t>* mUint8Tree;
WebGLElementArrayCacheTree<uint16_t>* mUint16Tree;
};
} // end namespace mozilla
#endif // WEBGLELEMENTARRAYCACHE_H

Просмотреть файл

@ -10,6 +10,8 @@ VPATH = @srcdir@
relativesrcdir = @relativesrcdir@
DIRS += webgl crossorigin
TOOLS_DIRS += compiled
include $(DEPTH)/config/autoconf.mk
MOCHITEST_FILES = \
test_canvas.html \

Просмотреть файл

@ -0,0 +1,22 @@
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this file,
# You can obtain one at http://mozilla.org/MPL/2.0/.
DEPTH := @DEPTH@
topsrcdir := @top_srcdir@
srcdir := @srcdir@
VPATH := @srcdir@
FAIL_ON_WARNINGS = 1
include $(DEPTH)/config/autoconf.mk
LOCAL_INCLUDES := \
-I$(srcdir)/../../src \
$(NULL)
CPP_UNIT_TESTS := \
TestWebGLElementArrayCache.cpp \
$(NULL)
include $(topsrcdir)/config/rules.mk

Просмотреть файл

@ -0,0 +1,167 @@
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/Assertions.h"
#include "WebGLElementArrayCache.cpp"
#include <cstdlib>
#include <iostream>
#include "nscore.h"
#include "nsTArray.h"
using namespace mozilla;
int gTestsPassed = 0;
void VerifyImplFunction(bool condition, const char* file, int line)
{
if (condition) {
gTestsPassed++;
} else {
std::cerr << "Test failed at " << file << ":" << line << std::endl;
abort();
}
}
#define VERIFY(condition) \
VerifyImplFunction((condition), __FILE__, __LINE__)
void MakeRandomVector(nsTArray<uint8_t>& a, size_t size) {
a.SetLength(size);
// only the most-significant bits of rand() are reasonably random
// 16 here is arbitrary, may fail on platforms where RAND_MAX is low,
// but guarded by an assertion.
enum { bitsToIgnore = 16 };
MOZ_STATIC_ASSERT((unsigned int)(RAND_MAX) >> (8 + bitsToIgnore),
"Didn't expect RAND_MAX to be so low");
for (size_t i = 0; i < size; i++)
a[i] = static_cast<uint8_t>((unsigned int)(rand()) >> bitsToIgnore);
}
template<typename T>
T RandomInteger(T a, T b)
{
T result(a + rand() % (b - a + 1));
return result;
}
template<typename T>
GLenum GLType()
{
return sizeof(T) == 1
? LOCAL_GL_UNSIGNED_BYTE
: LOCAL_GL_UNSIGNED_SHORT;
}
template<typename T>
void CheckValidateOneType(WebGLElementArrayCache& c, size_t firstByte, size_t countBytes)
{
size_t first = firstByte / sizeof(T);
size_t count = countBytes / sizeof(T);
GLenum type = GLType<T>();
T max = 0;
for (size_t i = 0; i < count; i++)
if (c.Element<T>(first + i) > max)
max = c.Element<T>(first + i);
VERIFY(c.Validate(type, max, first, count));
VERIFY(c.Validate(type, T(-1), first, count));
if (T(max + 1)) VERIFY(c.Validate(type, T(max + 1), first, count));
if (max > 0) {
VERIFY(!c.Validate(type, max - 1, first, count));
VERIFY(!c.Validate(type, 0, first, count));
}
}
void CheckValidate(WebGLElementArrayCache& c, size_t firstByte, size_t countBytes)
{
CheckValidateOneType<uint8_t>(c, firstByte, countBytes);
CheckValidateOneType<uint16_t>(c, firstByte, countBytes);
}
template<typename T>
void CheckSanity()
{
const size_t numElems = 64; // should be significantly larger than tree leaf size to
// ensure we exercise some nontrivial tree-walking
T data[numElems] = {1,0,3,1,2,6,5,4}; // intentionally specify only 8 elements for now
size_t numBytes = numElems * sizeof(T);
MOZ_ASSERT(numBytes == sizeof(data));
GLenum type = GLType<T>();
WebGLElementArrayCache c;
c.BufferData(data, numBytes);
VERIFY( c.Validate(type, 6, 0, 8));
VERIFY(!c.Validate(type, 5, 0, 8));
VERIFY( c.Validate(type, 3, 0, 3));
VERIFY(!c.Validate(type, 2, 0, 3));
VERIFY( c.Validate(type, 6, 2, 4));
VERIFY(!c.Validate(type, 5, 2, 4));
c.BufferSubData(5*sizeof(T), data, sizeof(T));
VERIFY( c.Validate(type, 5, 0, 8));
VERIFY(!c.Validate(type, 4, 0, 8));
// now test a somewhat larger size to ensure we exceed the size of a tree leaf
for(size_t i = 0; i < numElems; i++)
data[i] = numElems - i;
c.BufferData(data, numBytes);
VERIFY( c.Validate(type, numElems, 0, numElems));
VERIFY(!c.Validate(type, numElems - 1, 0, numElems));
MOZ_ASSERT(numElems > 10);
VERIFY( c.Validate(type, numElems - 10, 10, numElems - 10));
VERIFY(!c.Validate(type, numElems - 11, 10, numElems - 10));
}
int main(int argc, char *argv[])
{
srand(0); // do not want a random seed here.
CheckSanity<uint8_t>();
CheckSanity<uint16_t>();
nsTArray<uint8_t> v, vsub;
WebGLElementArrayCache b;
for (int maxBufferSize = 1; maxBufferSize <= 4096; maxBufferSize *= 2) {
int repeat = std::min(maxBufferSize, 20);
for (int i = 0; i < repeat; i++) {
size_t size = RandomInteger<size_t>(1, maxBufferSize);
MakeRandomVector(v, size);
b.BufferData(v.Elements(), size);
CheckValidate(b, 0, size);
for (int j = 0; j < 16; j++) {
for (int bufferSubDataCalls = 1; bufferSubDataCalls <= 8; bufferSubDataCalls *= 2) {
for (int validateCalls = 1; validateCalls <= 8; validateCalls *= 2) {
size_t offset = 0, subsize = 0;
for (int k = 0; k < bufferSubDataCalls; k++) {
offset = RandomInteger<size_t>(0, size);
subsize = RandomInteger<size_t>(0, size - offset);
MakeRandomVector(vsub, subsize);
b.BufferSubData(offset, vsub.Elements(), subsize);
}
for (int k = 0; k < validateCalls; k++) {
offset = RandomInteger<size_t>(0, size);
subsize = RandomInteger<size_t>(0, size - offset);
CheckValidate(b, offset, subsize);
}
} // validateCalls
} // bufferSubDataCalls
} // j
} // i
} // maxBufferSize
std::cerr << argv[0] << ": all " << gTestsPassed << " tests passed" << std::endl;
return 0;
}