Backed out changeset 773188fb9acf (bug 1660551) for causing bustages.

CLOSED TREE
This commit is contained in:
Mihai Alexandru Michis 2020-08-24 23:33:44 +03:00
Родитель b79310d312
Коммит 1b1ee1c86e
143 изменённых файлов: 3104 добавлений и 26420 удалений

Просмотреть файл

@ -15,7 +15,7 @@ tag = "v0.4.10"
[source."https://github.com/mozilla/mp4parse-rust"] [source."https://github.com/mozilla/mp4parse-rust"]
git = "https://github.com/mozilla/mp4parse-rust" git = "https://github.com/mozilla/mp4parse-rust"
replace-with = "vendored-sources" replace-with = "vendored-sources"
rev = "6ebb531e1b0381c7a5980279637ef6ae7a3b6bc2" rev = "63325444ae3388599f2f222775eebdde4c2f9f30"
[source."https://github.com/mozilla/application-services"] [source."https://github.com/mozilla/application-services"]
git = "https://github.com/mozilla/application-services" git = "https://github.com/mozilla/application-services"

72
Cargo.lock сгенерированный
Просмотреть файл

@ -2344,7 +2344,7 @@ dependencies = [
"bytemuck", "bytemuck",
"byteorder", "byteorder",
"num-iter", "num-iter",
"num-rational 0.2.1", "num-rational",
"num-traits", "num-traits",
"png", "png",
] ]
@ -3121,7 +3121,7 @@ dependencies = [
[[package]] [[package]]
name = "mp4parse" name = "mp4parse"
version = "0.11.4" version = "0.11.4"
source = "git+https://github.com/mozilla/mp4parse-rust?rev=6ebb531e1b0381c7a5980279637ef6ae7a3b6bc2#6ebb531e1b0381c7a5980279637ef6ae7a3b6bc2" source = "git+https://github.com/mozilla/mp4parse-rust?rev=63325444ae3388599f2f222775eebdde4c2f9f30#63325444ae3388599f2f222775eebdde4c2f9f30"
dependencies = [ dependencies = [
"bitreader", "bitreader",
"byteorder", "byteorder",
@ -3138,12 +3138,12 @@ version = "0.1.0"
[[package]] [[package]]
name = "mp4parse_capi" name = "mp4parse_capi"
version = "0.11.4" version = "0.11.4"
source = "git+https://github.com/mozilla/mp4parse-rust?rev=6ebb531e1b0381c7a5980279637ef6ae7a3b6bc2#6ebb531e1b0381c7a5980279637ef6ae7a3b6bc2" source = "git+https://github.com/mozilla/mp4parse-rust?rev=63325444ae3388599f2f222775eebdde4c2f9f30#63325444ae3388599f2f222775eebdde4c2f9f30"
dependencies = [ dependencies = [
"byteorder", "byteorder",
"log", "log",
"mp4parse", "mp4parse",
"num", "num-traits",
] ]
[[package]] [[package]]
@ -3364,20 +3364,6 @@ dependencies = [
"nsstring", "nsstring",
] ]
[[package]]
name = "num"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ab3e176191bc4faad357e3122c4747aa098ac880e88b168f106386128736cf4a"
dependencies = [
"num-bigint 0.3.0",
"num-complex",
"num-integer",
"num-iter",
"num-rational 0.3.0",
"num-traits",
]
[[package]] [[package]]
name = "num-bigint" name = "num-bigint"
version = "0.2.3" version = "0.2.3"
@ -3389,26 +3375,6 @@ dependencies = [
"num-traits", "num-traits",
] ]
[[package]]
name = "num-bigint"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b7f3fc75e3697059fb1bc465e3d8cca6cf92f56854f201158b3f9c77d5a3cfa0"
dependencies = [
"autocfg 1.0.0",
"num-integer",
"num-traits",
]
[[package]]
name = "num-complex"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b05ad05bd8977050b171b3f6b48175fea6e0565b7981059b486075e1026a9fb5"
dependencies = [
"num-traits",
]
[[package]] [[package]]
name = "num-derive" name = "num-derive"
version = "0.3.0" version = "0.3.0"
@ -3422,21 +3388,19 @@ dependencies = [
[[package]] [[package]]
name = "num-integer" name = "num-integer"
version = "0.1.43" version = "0.1.39"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8d59457e662d541ba17869cf51cf177c0b5f0cbf476c66bdc90bf1edac4f875b" checksum = "e83d528d2677f0518c570baf2b7abdcf0cd2d248860b68507bdcb3e91d4c0cea"
dependencies = [ dependencies = [
"autocfg 1.0.0",
"num-traits", "num-traits",
] ]
[[package]] [[package]]
name = "num-iter" name = "num-iter"
version = "0.1.41" version = "0.1.37"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a6e6b7c748f995c4c29c5f5ae0248536e04a5739927c74ec0fa564805094b9f" checksum = "af3fdbbc3291a5464dc57b03860ec37ca6bf915ed6ee385e7c6c052c422b2124"
dependencies = [ dependencies = [
"autocfg 1.0.0",
"num-integer", "num-integer",
"num-traits", "num-traits",
] ]
@ -3451,25 +3415,13 @@ dependencies = [
"num-traits", "num-traits",
] ]
[[package]]
name = "num-rational"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a5b4d7360f362cfb50dde8143501e6940b22f644be75a4cc90b2d81968908138"
dependencies = [
"autocfg 1.0.0",
"num-bigint 0.3.0",
"num-integer",
"num-traits",
]
[[package]] [[package]]
name = "num-traits" name = "num-traits"
version = "0.2.12" version = "0.2.10"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ac267bcc07f48ee5f8935ab0d24f316fb722d7a1292e2913f0cc196b29ffd611" checksum = "d4c81ffc11c212fa327657cb19dd85eb7419e163b5b076bede2bdb5c974c07e4"
dependencies = [ dependencies = [
"autocfg 1.0.0", "autocfg 0.1.6",
] ]
[[package]] [[package]]
@ -3767,7 +3719,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c20593a99fe08068cbe2b59001527f36021d6ad53ac5f2d8793fcf2fe94015a0" checksum = "c20593a99fe08068cbe2b59001527f36021d6ad53ac5f2d8793fcf2fe94015a0"
dependencies = [ dependencies = [
"libloading 0.5.2", "libloading 0.5.2",
"num-bigint 0.2.3", "num-bigint",
] ]
[[package]] [[package]]

Просмотреть файл

@ -1 +1 @@
{"files":{"Cargo.toml":"107804fbf8f667fbad45e7dea9fa1bb32ce8ef5580b543a54455e678d7769708","src/boxes.rs":"5f84805435af90034075709867e02c74a198e26dc628a9fc95df034928ee5bbc","src/fallible.rs":"7dc89699f1e75433ab5c6bbd23807383b3b918fe572d41e68e5a270591b0a4ab","src/lib.rs":"ff16461743a5e09c2dc8ade092206e4c84ddcae061766b38d53eff6f94916b2e","src/macros.rs":"76c840f9299797527fe71aa5b378ffb01312767372b45cc62deddb19775400ae","src/tests.rs":"f1a27e785d4006cd910ca3c48c8a972da1db9c9b4a67185f67a191ddc3c69328","tests/bug-1655846.avif":"e0a5a06225800fadf05f5352503a4cec11af73eef705c43b4acab5f4a99dea50","tests/overflow.rs":"16b591d8def1a155b3b997622f6ea255536870d99c3d8f97c51755b77a50de3c","tests/public.rs":"fd646ffd5fab8beed5949b87482048ba400438fa90860f86f357a7f6141dc649"},"package":null} {"files":{"Cargo.toml":"107804fbf8f667fbad45e7dea9fa1bb32ce8ef5580b543a54455e678d7769708","src/boxes.rs":"5f84805435af90034075709867e02c74a198e26dc628a9fc95df034928ee5bbc","src/fallible.rs":"836a36c2bc9803aead4bb24621e4fa6176c77b3752e69459a1f36555eb8bf2ec","src/lib.rs":"7c8bde48b42f5470a937d3affc4452e06b2158ff07c207f39376bdca11efa832","src/macros.rs":"76c840f9299797527fe71aa5b378ffb01312767372b45cc62deddb19775400ae","src/tests.rs":"f1a27e785d4006cd910ca3c48c8a972da1db9c9b4a67185f67a191ddc3c69328","tests/bug-1655846.avif":"e0a5a06225800fadf05f5352503a4cec11af73eef705c43b4acab5f4a99dea50","tests/overflow.rs":"16b591d8def1a155b3b997622f6ea255536870d99c3d8f97c51755b77a50de3c","tests/public.rs":"fd646ffd5fab8beed5949b87482048ba400438fa90860f86f357a7f6141dc649"},"package":null}

2
third_party/rust/mp4parse/src/fallible.rs поставляемый
Просмотреть файл

@ -256,7 +256,7 @@ impl<T> TryVec<T> {
Ok(()) Ok(())
} }
pub fn reserve(&mut self, additional: usize) -> Result<()> { fn reserve(&mut self, additional: usize) -> Result<()> {
#[cfg(feature = "mp4parse_fallible")] #[cfg(feature = "mp4parse_fallible")]
{ {
let available = self let available = self

59
third_party/rust/mp4parse/src/lib.rs поставляемый
Просмотреть файл

@ -58,7 +58,7 @@ impl ToU64 for usize {
/// A trait to indicate a type can be infallibly converted to `usize`. /// A trait to indicate a type can be infallibly converted to `usize`.
/// This should only be implemented for infallible conversions, so only unsigned types are valid. /// This should only be implemented for infallible conversions, so only unsigned types are valid.
pub trait ToUsize { trait ToUsize {
fn to_usize(self) -> usize; fn to_usize(self) -> usize;
} }
@ -975,16 +975,16 @@ pub struct TrackTimeScale<T: Num>(pub T, pub usize);
/// A time to be scaled by the track's local (mdhd) timescale. /// A time to be scaled by the track's local (mdhd) timescale.
/// Members are time in scale units and the track id. /// Members are time in scale units and the track id.
#[derive(Debug, Copy, Clone, PartialEq)] #[derive(Debug, Copy, Clone, PartialEq)]
pub struct TrackScaledTime<T>(pub T, pub usize); pub struct TrackScaledTime<T: Num>(pub T, pub usize);
impl<T> std::ops::Add for TrackScaledTime<T> impl<T> std::ops::Add for TrackScaledTime<T>
where where
T: num_traits::CheckedAdd, T: Num,
{ {
type Output = Option<Self>; type Output = TrackScaledTime<T>;
fn add(self, other: TrackScaledTime<T>) -> Self::Output { fn add(self, other: TrackScaledTime<T>) -> TrackScaledTime<T> {
self.0.checked_add(&other.0).map(|sum| Self(sum, self.1)) TrackScaledTime::<T>(self.0 + other.0, self.1)
} }
} }
@ -1953,7 +1953,6 @@ fn read_stbl<T: Read>(f: &mut BMFFBox<T>, track: &mut Track) -> Result<()> {
} }
/// Parse an ftyp box. /// Parse an ftyp box.
/// See ISO 14496-12:2015 § 4.3
fn read_ftyp<T: Read>(src: &mut BMFFBox<T>) -> Result<FileTypeBox> { fn read_ftyp<T: Read>(src: &mut BMFFBox<T>) -> Result<FileTypeBox> {
let major = be_u32(src)?; let major = be_u32(src)?;
let minor = be_u32(src)?; let minor = be_u32(src)?;
@ -1963,7 +1962,7 @@ fn read_ftyp<T: Read>(src: &mut BMFFBox<T>) -> Result<FileTypeBox> {
} }
// Is a brand_count of zero valid? // Is a brand_count of zero valid?
let brand_count = bytes_left / 4; let brand_count = bytes_left / 4;
let mut brands = TryVec::with_capacity(brand_count.try_into()?)?; let mut brands = TryVec::new();
for _ in 0..brand_count { for _ in 0..brand_count {
brands.push(be_u32(src)?.into())?; brands.push(be_u32(src)?.into())?;
} }
@ -2059,11 +2058,10 @@ fn read_tkhd<T: Read>(src: &mut BMFFBox<T>) -> Result<TrackHeaderBox> {
} }
/// Parse a elst box. /// Parse a elst box.
/// See ISO 14496-12:2015 § 8.6.6
fn read_elst<T: Read>(src: &mut BMFFBox<T>) -> Result<EditListBox> { fn read_elst<T: Read>(src: &mut BMFFBox<T>) -> Result<EditListBox> {
let (version, _) = read_fullbox_extra(src)?; let (version, _) = read_fullbox_extra(src)?;
let edit_count = be_u32_with_limit(src)?; let edit_count = be_u32_with_limit(src)?;
let mut edits = TryVec::with_capacity(edit_count.to_usize())?; let mut edits = TryVec::new();
for _ in 0..edit_count { for _ in 0..edit_count {
let (segment_duration, media_time) = match version { let (segment_duration, media_time) = match version {
1 => { 1 => {
@ -2135,11 +2133,10 @@ fn read_mdhd<T: Read>(src: &mut BMFFBox<T>) -> Result<MediaHeaderBox> {
} }
/// Parse a stco box. /// Parse a stco box.
/// See ISO 14496-12:2015 § 8.7.5
fn read_stco<T: Read>(src: &mut BMFFBox<T>) -> Result<ChunkOffsetBox> { fn read_stco<T: Read>(src: &mut BMFFBox<T>) -> Result<ChunkOffsetBox> {
let (_, _) = read_fullbox_extra(src)?; let (_, _) = read_fullbox_extra(src)?;
let offset_count = be_u32_with_limit(src)?; let offset_count = be_u32_with_limit(src)?;
let mut offsets = TryVec::with_capacity(offset_count.to_usize())?; let mut offsets = TryVec::new();
for _ in 0..offset_count { for _ in 0..offset_count {
offsets.push(be_u32(src)?.into())?; offsets.push(be_u32(src)?.into())?;
} }
@ -2151,11 +2148,10 @@ fn read_stco<T: Read>(src: &mut BMFFBox<T>) -> Result<ChunkOffsetBox> {
} }
/// Parse a co64 box. /// Parse a co64 box.
/// See ISO 14496-12:2015 § 8.7.5
fn read_co64<T: Read>(src: &mut BMFFBox<T>) -> Result<ChunkOffsetBox> { fn read_co64<T: Read>(src: &mut BMFFBox<T>) -> Result<ChunkOffsetBox> {
let (_, _) = read_fullbox_extra(src)?; let (_, _) = read_fullbox_extra(src)?;
let offset_count = be_u32_with_limit(src)?; let offset_count = be_u32_with_limit(src)?;
let mut offsets = TryVec::with_capacity(offset_count.to_usize())?; let mut offsets = TryVec::new();
for _ in 0..offset_count { for _ in 0..offset_count {
offsets.push(be_u64(src)?)?; offsets.push(be_u64(src)?)?;
} }
@ -2167,11 +2163,10 @@ fn read_co64<T: Read>(src: &mut BMFFBox<T>) -> Result<ChunkOffsetBox> {
} }
/// Parse a stss box. /// Parse a stss box.
/// See ISO 14496-12:2015 § 8.6.2
fn read_stss<T: Read>(src: &mut BMFFBox<T>) -> Result<SyncSampleBox> { fn read_stss<T: Read>(src: &mut BMFFBox<T>) -> Result<SyncSampleBox> {
let (_, _) = read_fullbox_extra(src)?; let (_, _) = read_fullbox_extra(src)?;
let sample_count = be_u32_with_limit(src)?; let sample_count = be_u32_with_limit(src)?;
let mut samples = TryVec::with_capacity(sample_count.to_usize())?; let mut samples = TryVec::new();
for _ in 0..sample_count { for _ in 0..sample_count {
samples.push(be_u32(src)?)?; samples.push(be_u32(src)?)?;
} }
@ -2183,11 +2178,10 @@ fn read_stss<T: Read>(src: &mut BMFFBox<T>) -> Result<SyncSampleBox> {
} }
/// Parse a stsc box. /// Parse a stsc box.
/// See ISO 14496-12:2015 § 8.7.4
fn read_stsc<T: Read>(src: &mut BMFFBox<T>) -> Result<SampleToChunkBox> { fn read_stsc<T: Read>(src: &mut BMFFBox<T>) -> Result<SampleToChunkBox> {
let (_, _) = read_fullbox_extra(src)?; let (_, _) = read_fullbox_extra(src)?;
let sample_count = be_u32_with_limit(src)?; let sample_count = be_u32_with_limit(src)?;
let mut samples = TryVec::with_capacity(sample_count.to_usize())?; let mut samples = TryVec::new();
for _ in 0..sample_count { for _ in 0..sample_count {
let first_chunk = be_u32(src)?; let first_chunk = be_u32(src)?;
let samples_per_chunk = be_u32_with_limit(src)?; let samples_per_chunk = be_u32_with_limit(src)?;
@ -2205,23 +2199,16 @@ fn read_stsc<T: Read>(src: &mut BMFFBox<T>) -> Result<SampleToChunkBox> {
Ok(SampleToChunkBox { samples }) Ok(SampleToChunkBox { samples })
} }
/// Parse a Composition Time to Sample Box
/// See ISO 14496-12:2015 § 8.6.1.3
fn read_ctts<T: Read>(src: &mut BMFFBox<T>) -> Result<CompositionOffsetBox> { fn read_ctts<T: Read>(src: &mut BMFFBox<T>) -> Result<CompositionOffsetBox> {
let (version, _) = read_fullbox_extra(src)?; let (version, _) = read_fullbox_extra(src)?;
let counts = be_u32_with_limit(src)?; let counts = u64::from(be_u32_with_limit(src)?);
if src.bytes_left() if src.bytes_left() < counts.checked_mul(8).expect("counts -> bytes overflow") {
< counts
.checked_mul(8)
.expect("counts -> bytes overflow")
.into()
{
return Err(Error::InvalidData("insufficient data in 'ctts' box")); return Err(Error::InvalidData("insufficient data in 'ctts' box"));
} }
let mut offsets = TryVec::with_capacity(counts.to_usize())?; let mut offsets = TryVec::new();
for _ in 0..counts { for _ in 0..counts {
let (sample_count, time_offset) = match version { let (sample_count, time_offset) = match version {
// According to spec, Version0 shoule be used when version == 0; // According to spec, Version0 shoule be used when version == 0;
@ -2248,14 +2235,12 @@ fn read_ctts<T: Read>(src: &mut BMFFBox<T>) -> Result<CompositionOffsetBox> {
} }
/// Parse a stsz box. /// Parse a stsz box.
/// See ISO 14496-12:2015 § 8.7.3.2
fn read_stsz<T: Read>(src: &mut BMFFBox<T>) -> Result<SampleSizeBox> { fn read_stsz<T: Read>(src: &mut BMFFBox<T>) -> Result<SampleSizeBox> {
let (_, _) = read_fullbox_extra(src)?; let (_, _) = read_fullbox_extra(src)?;
let sample_size = be_u32(src)?; let sample_size = be_u32(src)?;
let sample_count = be_u32_with_limit(src)?; let sample_count = be_u32_with_limit(src)?;
let mut sample_sizes = TryVec::new(); let mut sample_sizes = TryVec::new();
if sample_size == 0 { if sample_size == 0 {
sample_sizes.reserve(sample_count.to_usize())?;
for _ in 0..sample_count { for _ in 0..sample_count {
sample_sizes.push(be_u32(src)?)?; sample_sizes.push(be_u32(src)?)?;
} }
@ -2271,11 +2256,10 @@ fn read_stsz<T: Read>(src: &mut BMFFBox<T>) -> Result<SampleSizeBox> {
} }
/// Parse a stts box. /// Parse a stts box.
/// See ISO 14496-12:2015 § 8.6.1.2
fn read_stts<T: Read>(src: &mut BMFFBox<T>) -> Result<TimeToSampleBox> { fn read_stts<T: Read>(src: &mut BMFFBox<T>) -> Result<TimeToSampleBox> {
let (_, _) = read_fullbox_extra(src)?; let (_, _) = read_fullbox_extra(src)?;
let sample_count = be_u32_with_limit(src)?; let sample_count = be_u32_with_limit(src)?;
let mut samples = TryVec::with_capacity(sample_count.to_usize())?; let mut samples = TryVec::new();
for _ in 0..sample_count { for _ in 0..sample_count {
let sample_count = be_u32_with_limit(src)?; let sample_count = be_u32_with_limit(src)?;
let sample_delta = be_u32(src)?; let sample_delta = be_u32(src)?;
@ -2437,7 +2421,7 @@ fn find_descriptor(data: &[u8], esds: &mut ES_Descriptor) -> Result<()> {
let des = &mut Cursor::new(remains); let des = &mut Cursor::new(remains);
let tag = des.read_u8()?; let tag = des.read_u8()?;
// See ISO 14496-1:2010 § 8.3.3 for interpreting size of expandable classes // See ISO 14496-1:2010 § 8.3.3 for interpreting size of exandable classes
let mut end: u32 = 0; // It's u8 without declaration type that is incorrect. let mut end: u32 = 0; // It's u8 without declaration type that is incorrect.
// MSB of extend_or_len indicates more bytes, up to 4 bytes. // MSB of extend_or_len indicates more bytes, up to 4 bytes.
@ -2643,11 +2627,7 @@ fn read_ds_descriptor(data: &[u8], esds: &mut ES_Descriptor) -> Result<()> {
esds.extended_audio_object_type = extended_audio_object_type; esds.extended_audio_object_type = extended_audio_object_type;
esds.audio_sample_rate = Some(sample_frequency_value); esds.audio_sample_rate = Some(sample_frequency_value);
esds.audio_channel_count = Some(channel_counts); esds.audio_channel_count = Some(channel_counts);
if !esds.decoder_specific_data.is_empty() { assert!(esds.decoder_specific_data.is_empty());
return Err(Error::InvalidData(
"There can be only one DecSpecificInfoTag descriptor",
));
}
esds.decoder_specific_data.extend_from_slice(data)?; esds.decoder_specific_data.extend_from_slice(data)?;
Ok(()) Ok(())
@ -2715,7 +2695,6 @@ fn read_es_descriptor(data: &[u8], esds: &mut ES_Descriptor) -> Result<()> {
Ok(()) Ok(())
} }
/// See ISO 14496-14:2010 § 6.7.2
fn read_esds<T: Read>(src: &mut BMFFBox<T>) -> Result<ES_Descriptor> { fn read_esds<T: Read>(src: &mut BMFFBox<T>) -> Result<ES_Descriptor> {
let (_, _) = read_fullbox_extra(src)?; let (_, _) = read_fullbox_extra(src)?;
@ -2730,7 +2709,6 @@ fn read_esds<T: Read>(src: &mut BMFFBox<T>) -> Result<ES_Descriptor> {
} }
/// Parse `FLACSpecificBox`. /// Parse `FLACSpecificBox`.
/// See https://github.com/xiph/flac/blob/master/doc/isoflac.txt § 3.3.2
fn read_dfla<T: Read>(src: &mut BMFFBox<T>) -> Result<FLACSpecificBox> { fn read_dfla<T: Read>(src: &mut BMFFBox<T>) -> Result<FLACSpecificBox> {
let (version, flags) = read_fullbox_extra(src)?; let (version, flags) = read_fullbox_extra(src)?;
if version != 0 { if version != 0 {
@ -3157,7 +3135,6 @@ fn read_audio_sample_entry<T: Read>(src: &mut BMFFBox<T>) -> Result<SampleEntry>
/// Parse a stsd box. /// Parse a stsd box.
/// See ISO 14496-12:2015 § 8.5.2 /// See ISO 14496-12:2015 § 8.5.2
/// See ISO 14496-14:2010 § 6.7.2
fn read_stsd<T: Read>(src: &mut BMFFBox<T>, track: &mut Track) -> Result<SampleDescriptionBox> { fn read_stsd<T: Read>(src: &mut BMFFBox<T>, track: &mut Track) -> Result<SampleDescriptionBox> {
let (_, _) = read_fullbox_extra(src)?; let (_, _) = read_fullbox_extra(src)?;

Просмотреть файл

@ -1 +1 @@
{"files":{"Cargo.toml":"1ea27367203b20aa8992320d1a561f0bf98e309d3f799ffa2c3eea3159d1ee57","cbindgen.toml":"5c9429f271d6e914d81b63e6509c04ffe84cab11ed3a53a2ed4715e5d5ace80e","examples/dump.rs":"83462422315c22e496960bae922edb23105c0aa272d2b106edd7574ff068513a","src/lib.rs":"e9b6b19c43962e0b21bbcbcab89c8acb09185f18939ccdf25534971e1146410c","tests/test_chunk_out_of_range.rs":"b5da583218d98027ed973a29c67434a91a1306f2d2fb39ec4d640d4824c308ce","tests/test_encryption.rs":"ca98516ff423c03b5fcc17b05f993f13b32485e4cf3ba86faf1bea72681d75ce","tests/test_fragment.rs":"e90eb5a4418d30002655466c0c4b3125c7fd70a74b6871471eaa172f1def9db8","tests/test_rotation.rs":"fb43c2f2dfa496d151c33bdd46c0fd3252387c23cc71e2cac9ed0234de715a81","tests/test_sample_table.rs":"185755909b2f4e0ea99604bb423a07623d614a180accdaebd1c98aef2c2e3ae6","tests/test_workaround_stsc.rs":"7dd419f3d55b9a3a039cac57e58a9240a9c8166bcd4356c24f69f731c3ced83b"},"package":null} {"files":{"Cargo.toml":"13408d7785c5fe40f9db2bac1f93e8cf2aca7c35b5d2ba9acbbb23eb3a71e40a","cbindgen.toml":"5c9429f271d6e914d81b63e6509c04ffe84cab11ed3a53a2ed4715e5d5ace80e","examples/dump.rs":"598f828f07bac9b204d3eb7af4efd7158087382fc322dcce913a28729f854f70","src/lib.rs":"dfd3bccfb80aaab2389d11ae00242709d6c5dae8a299b55098bf5ec39698a097","tests/test_chunk_out_of_range.rs":"b5da583218d98027ed973a29c67434a91a1306f2d2fb39ec4d640d4824c308ce","tests/test_encryption.rs":"ca98516ff423c03b5fcc17b05f993f13b32485e4cf3ba86faf1bea72681d75ce","tests/test_fragment.rs":"e90eb5a4418d30002655466c0c4b3125c7fd70a74b6871471eaa172f1def9db8","tests/test_rotation.rs":"fb43c2f2dfa496d151c33bdd46c0fd3252387c23cc71e2cac9ed0234de715a81","tests/test_sample_table.rs":"adc8d264c46aef78c047377fbb792a4400d6db98bc44583b464d7b3dc182c884","tests/test_workaround_stsc.rs":"7dd419f3d55b9a3a039cac57e58a9240a9c8166bcd4356c24f69f731c3ced83b"},"package":null}

2
third_party/rust/mp4parse_capi/Cargo.toml поставляемый
Просмотреть файл

@ -26,7 +26,7 @@ travis-ci = { repository = "https://github.com/mozilla/mp4parse-rust" }
byteorder = "1.2.1" byteorder = "1.2.1"
log = "0.4" log = "0.4"
mp4parse = {version = "0.11.2", path = "../mp4parse"} mp4parse = {version = "0.11.2", path = "../mp4parse"}
num = "0.3.0" num-traits = "0.2.0"
[dev-dependencies] [dev-dependencies]
env_logger = "0.7.1" env_logger = "0.7.1"

Просмотреть файл

@ -62,7 +62,9 @@ fn dump_file(filename: &str) {
for i in 0..counts { for i in 0..counts {
let mut track_info = Mp4parseTrackInfo { let mut track_info = Mp4parseTrackInfo {
track_type: Mp4parseTrackType::Audio, track_type: Mp4parseTrackType::Audio,
..Default::default() track_id: 0,
duration: 0,
media_time: 0,
}; };
match mp4parse_get_track_info(parser, i, &mut track_info) { match mp4parse_get_track_info(parser, i, &mut track_info) {
Mp4parseStatus::Ok => { Mp4parseStatus::Ok => {

275
third_party/rust/mp4parse_capi/src/lib.rs поставляемый
Просмотреть файл

@ -37,17 +37,11 @@
extern crate byteorder; extern crate byteorder;
extern crate mp4parse; extern crate mp4parse;
extern crate num; extern crate num_traits;
use byteorder::WriteBytesExt; use byteorder::WriteBytesExt;
use num::{CheckedAdd, CheckedSub}; use num_traits::{PrimInt, Zero};
use num::{PrimInt, Zero};
use std::convert::TryFrom;
use std::convert::TryInto;
use std::io::Read; use std::io::Read;
use std::ops::Neg;
use std::ops::{Add, Sub};
// Symbols we need from our rust api. // Symbols we need from our rust api.
use mp4parse::read_avif; use mp4parse::read_avif;
@ -61,7 +55,6 @@ use mp4parse::MediaContext;
use mp4parse::MediaScaledTime; use mp4parse::MediaScaledTime;
use mp4parse::MediaTimeScale; use mp4parse::MediaTimeScale;
use mp4parse::SampleEntry; use mp4parse::SampleEntry;
use mp4parse::ToUsize;
use mp4parse::Track; use mp4parse::Track;
use mp4parse::TrackScaledTime; use mp4parse::TrackScaledTime;
use mp4parse::TrackTimeScale; use mp4parse::TrackTimeScale;
@ -151,134 +144,36 @@ impl Default for Mp4ParseEncryptionSchemeType {
} }
} }
/// A zero-overhead wrapper around integer types for the sake of always
/// requiring checked arithmetic
#[repr(transparent)]
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct CheckedInteger<T>(pub T);
impl<T> From<T> for CheckedInteger<T> {
fn from(i: T) -> Self {
Self(i)
}
}
// Orphan rules prevent a more general implementation, but this suffices
impl From<CheckedInteger<i64>> for i64 {
fn from(checked: CheckedInteger<i64>) -> i64 {
checked.0
}
}
impl<T, U: Into<T>> Add<U> for CheckedInteger<T>
where
T: CheckedAdd,
{
type Output = Option<Self>;
fn add(self, other: U) -> Self::Output {
self.0.checked_add(&other.into()).map(Into::into)
}
}
impl<T, U: Into<T>> Sub<U> for CheckedInteger<T>
where
T: CheckedSub,
{
type Output = Option<Self>;
fn sub(self, other: U) -> Self::Output {
self.0.checked_sub(&other.into()).map(Into::into)
}
}
/// Implement subtraction of checked `u64`s returning i64
// This is necessary for handling Mp4parseTrackInfo::media_time gracefully
impl Sub for CheckedInteger<u64> {
type Output = Option<CheckedInteger<i64>>;
fn sub(self, other: Self) -> Self::Output {
if self >= other {
self.0
.checked_sub(other.0)
.and_then(|u| i64::try_from(u).ok())
.map(CheckedInteger)
} else {
other
.0
.checked_sub(self.0)
.and_then(|u| i64::try_from(u).ok())
.map(i64::neg)
.map(CheckedInteger)
}
}
}
#[test]
fn u64_subtraction_returning_i64() {
// self > other
assert_eq!(
CheckedInteger(2u64) - CheckedInteger(1u64),
Some(CheckedInteger(1i64))
);
// self == other
assert_eq!(
CheckedInteger(1u64) - CheckedInteger(1u64),
Some(CheckedInteger(0i64))
);
// difference too large to store in i64
assert_eq!(CheckedInteger(u64::MAX) - CheckedInteger(1u64), None);
// self < other
assert_eq!(
CheckedInteger(1u64) - CheckedInteger(2u64),
Some(CheckedInteger(-1i64))
);
// difference not representable due to overflow
assert_eq!(CheckedInteger(1u64) - CheckedInteger(u64::MAX), None);
}
impl<T: std::cmp::PartialEq> PartialEq<T> for CheckedInteger<T> {
fn eq(&self, other: &T) -> bool {
self.0 == *other
}
}
#[repr(C)] #[repr(C)]
#[derive(Default, Debug)] #[derive(Default, Debug)]
pub struct Mp4parseTrackInfo { pub struct Mp4parseTrackInfo {
pub track_type: Mp4parseTrackType, pub track_type: Mp4parseTrackType,
pub track_id: u32, pub track_id: u32,
pub duration: u64, pub duration: u64,
pub media_time: CheckedInteger<i64>, // wants to be u64? understand how elst adjustment works pub media_time: i64, // wants to be u64? understand how elst adjustment works
// TODO(kinetik): include crypto guff // TODO(kinetik): include crypto guff
// If this changes to u64, we can get rid of the strange
// impl Sub for CheckedInteger<u64>
} }
#[repr(C)] #[repr(C)]
#[derive(Default, Debug, PartialEq)] #[derive(Default, Debug, PartialEq)]
pub struct Mp4parseIndice { pub struct Mp4parseIndice {
/// The byte offset in the file where the indexed sample begins. /// The byte offset in the file where the indexed sample begins.
pub start_offset: CheckedInteger<u64>, pub start_offset: u64,
/// The byte offset in the file where the indexed sample ends. This is /// The byte offset in the file where the indexed sample ends. This is
/// equivalent to `start_offset` + the length in bytes of the indexed /// equivalent to `start_offset` + the length in bytes of the indexed
/// sample. Typically this will be the `start_offset` of the next sample /// sample. Typically this will be the `start_offset` of the next sample
/// in the file. /// in the file.
pub end_offset: CheckedInteger<u64>, pub end_offset: u64,
/// The time in microseconds when the indexed sample should be displayed. /// The time in microseconds when the indexed sample should be displayed.
/// Analogous to the concept of presentation time stamp (pts). /// Analogous to the concept of presentation time stamp (pts).
pub start_composition: CheckedInteger<i64>, pub start_composition: i64,
/// The time in microseconds when the indexed sample should stop being /// The time in microseconds when the indexed sample should stop being
/// displayed. Typically this would be the `start_composition` time of the /// displayed. Typically this would be the `start_composition` time of the
/// next sample if samples were ordered by composition time. /// next sample if samples were ordered by composition time.
pub end_composition: CheckedInteger<i64>, pub end_composition: i64,
/// The time in microseconds that the indexed sample should be decoded at. /// The time in microseconds that the indexed sample should be decoded at.
/// Analogous to the concept of decode time stamp (dts). /// Analogous to the concept of decode time stamp (dts).
pub start_decode: CheckedInteger<i64>, pub start_decode: i64,
/// Set if the indexed sample is a sync sample. The meaning of sync is /// Set if the indexed sample is a sync sample. The meaning of sync is
/// somewhat codec specific, but essentially amounts to if the sample is a /// somewhat codec specific, but essentially amounts to if the sample is a
/// key frame. /// key frame.
@ -704,7 +599,7 @@ where
let integer = numerator / denominator; let integer = numerator / denominator;
let remainder = numerator % denominator; let remainder = numerator % denominator;
num::cast(scale2).and_then(|s| match integer.checked_mul(&s) { num_traits::cast(scale2).and_then(|s| match integer.checked_mul(&s) {
Some(integer) => remainder Some(integer) => remainder
.checked_mul(&s) .checked_mul(&s)
.and_then(|remainder| (remainder / denominator).checked_add(&integer)), .and_then(|remainder| (remainder / denominator).checked_add(&integer)),
@ -765,23 +660,19 @@ pub unsafe extern "C" fn mp4parse_get_track_info(
let track = &context.tracks[track_index]; let track = &context.tracks[track_index];
if let (Some(track_timescale), Some(context_timescale)) = (track.timescale, context.timescale) { if let (Some(track_timescale), Some(context_timescale)) = (track.timescale, context.timescale) {
let media_time: CheckedInteger<_> = match track.media_time.map_or(Some(0), |media_time| { let media_time = match track.media_time.map_or(Some(0), |media_time| {
track_time_to_us(media_time, track_timescale) track_time_to_us(media_time, track_timescale)
}) { }) {
Some(time) => time.into(), Some(time) => time as i64,
None => return Mp4parseStatus::Invalid, None => return Mp4parseStatus::Invalid,
}; };
let empty_duration: CheckedInteger<_> = let empty_duration = match track.empty_duration.map_or(Some(0), |empty_duration| {
match track.empty_duration.map_or(Some(0), |empty_duration| { media_time_to_us(empty_duration, context_timescale)
media_time_to_us(empty_duration, context_timescale) }) {
}) { Some(time) => time as i64,
Some(time) => time.into(),
None => return Mp4parseStatus::Invalid,
};
info.media_time = match media_time - empty_duration {
Some(difference) => difference,
None => return Mp4parseStatus::Invalid, None => return Mp4parseStatus::Invalid,
}; };
info.media_time = media_time - empty_duration;
if let Some(track_duration) = track.duration { if let Some(track_duration) = track.duration {
match track_time_to_us(track_duration, track_timescale) { match track_time_to_us(track_duration, track_timescale) {
@ -1244,28 +1135,23 @@ fn get_indice_table(
} }
let media_time = match (&track.media_time, &track.timescale) { let media_time = match (&track.media_time, &track.timescale) {
(&Some(t), &Some(s)) => track_time_to_us(t, s) (&Some(t), &Some(s)) => track_time_to_us(t, s).map(|v| v as i64),
.and_then(|v| i64::try_from(v).ok())
.map(Into::into),
_ => None, _ => None,
}; };
let empty_duration: Option<CheckedInteger<_>> = let empty_duration = match (&track.empty_duration, &context.timescale) {
match (&track.empty_duration, &context.timescale) { (&Some(e), &Some(s)) => media_time_to_us(e, s).map(|v| v as i64),
(&Some(e), &Some(s)) => media_time_to_us(e, s) _ => None,
.and_then(|v| i64::try_from(v).ok()) };
.map(Into::into),
_ => None,
};
// Find the track start offset time from 'elst'. // Find the track start offset time from 'elst'.
// 'media_time' maps start time onward, 'empty_duration' adds time offset // 'media_time' maps start time onward, 'empty_duration' adds time offset
// before first frame is displayed. // before first frame is displayed.
let offset_time = match (empty_duration, media_time) { let offset_time = match (empty_duration, media_time) {
(Some(e), Some(m)) => (e - m).ok_or(Err(Mp4parseStatus::Invalid))?, (Some(e), Some(m)) => e - m,
(Some(e), None) => e, (Some(e), None) => e,
(None, Some(m)) => m, (None, Some(m)) => m,
_ => 0.into(), _ => 0,
}; };
if let Some(v) = create_sample_table(track, offset_time) { if let Some(v) = create_sample_table(track, offset_time) {
@ -1292,7 +1178,6 @@ struct TimeOffsetIterator<'a> {
impl<'a> Iterator for TimeOffsetIterator<'a> { impl<'a> Iterator for TimeOffsetIterator<'a> {
type Item = i64; type Item = i64;
#[allow(clippy::reversed_empty_ranges)]
fn next(&mut self) -> Option<i64> { fn next(&mut self) -> Option<i64> {
let has_sample = self.cur_sample_range.next().or_else(|| { let has_sample = self.cur_sample_range.next().or_else(|| {
// At end of current TimeOffset, find the next TimeOffset. // At end of current TimeOffset, find the next TimeOffset.
@ -1349,7 +1234,6 @@ struct TimeToSampleIterator<'a> {
impl<'a> Iterator for TimeToSampleIterator<'a> { impl<'a> Iterator for TimeToSampleIterator<'a> {
type Item = u32; type Item = u32;
#[allow(clippy::reversed_empty_ranges)]
fn next(&mut self) -> Option<u32> { fn next(&mut self) -> Option<u32> {
let has_sample = self.cur_sample_count.next().or_else(|| { let has_sample = self.cur_sample_count.next().or_else(|| {
self.cur_sample_count = match self.stts_iter.next() { self.cur_sample_count = match self.stts_iter.next() {
@ -1387,21 +1271,6 @@ impl<'a> TimeToSampleIterator<'a> {
// For example: // For example:
// (1, 5), (5, 10), (9, 2) => (1, 5), (2, 5), (3, 5), (4, 5), (5, 10), (6, 10), // (1, 5), (5, 10), (9, 2) => (1, 5), (2, 5), (3, 5), (4, 5), (5, 10), (6, 10),
// (7, 10), (8, 10), (9, 2) // (7, 10), (8, 10), (9, 2)
fn sample_to_chunk_iter<'a>(
stsc_samples: &'a TryVec<mp4parse::SampleToChunk>,
stco_offsets: &'a TryVec<u64>,
) -> SampleToChunkIterator<'a> {
SampleToChunkIterator {
chunks: (0..0),
sample_count: 0,
stsc_peek_iter: stsc_samples.as_slice().iter().peekable(),
remain_chunk_count: stco_offsets
.len()
.try_into()
.expect("stco.entry_count is u32"),
}
}
struct SampleToChunkIterator<'a> { struct SampleToChunkIterator<'a> {
chunks: std::ops::Range<u32>, chunks: std::ops::Range<u32>,
sample_count: u32, sample_count: u32,
@ -1416,12 +1285,7 @@ impl<'a> Iterator for SampleToChunkIterator<'a> {
let has_chunk = self.chunks.next().or_else(|| { let has_chunk = self.chunks.next().or_else(|| {
self.chunks = self.locate(); self.chunks = self.locate();
self.remain_chunk_count self.remain_chunk_count
.checked_sub( .checked_sub(self.chunks.len() as u32)
self.chunks
.len()
.try_into()
.expect("len() of a Range<u32> must fit in u32"),
)
.and_then(|res| { .and_then(|res| {
self.remain_chunk_count = res; self.remain_chunk_count = res;
self.chunks.next() self.chunks.next()
@ -1433,7 +1297,6 @@ impl<'a> Iterator for SampleToChunkIterator<'a> {
} }
impl<'a> SampleToChunkIterator<'a> { impl<'a> SampleToChunkIterator<'a> {
#[allow(clippy::reversed_empty_ranges)]
fn locate(&mut self) -> std::ops::Range<u32> { fn locate(&mut self) -> std::ops::Range<u32> {
loop { loop {
return match (self.stsc_peek_iter.next(), self.stsc_peek_iter.peek()) { return match (self.stsc_peek_iter.next(), self.stsc_peek_iter.peek()) {
@ -1461,11 +1324,7 @@ impl<'a> SampleToChunkIterator<'a> {
} }
} }
#[allow(clippy::reversed_empty_ranges)] fn create_sample_table(track: &Track, track_offset_time: i64) -> Option<TryVec<Mp4parseIndice>> {
fn create_sample_table(
track: &Track,
track_offset_time: CheckedInteger<i64>,
) -> Option<TryVec<Mp4parseIndice>> {
let timescale = match track.timescale { let timescale = match track.timescale {
Some(ref t) => TrackTimeScale::<i64>(t.0 as i64, t.1), Some(ref t) => TrackTimeScale::<i64>(t.0 as i64, t.1),
_ => return None, _ => return None,
@ -1482,32 +1341,31 @@ fn create_sample_table(
_ => false, _ => false,
}; };
let mut sample_table = TryVec::new();
let mut sample_size_iter = stsz.sample_sizes.iter(); let mut sample_size_iter = stsz.sample_sizes.iter();
// Get 'stsc' iterator for (chunk_id, chunk_sample_count) and calculate the sample // Get 'stsc' iterator for (chunk_id, chunk_sample_count) and calculate the sample
// offset address. // offset address.
let stsc_iter = SampleToChunkIterator {
chunks: (0..0),
sample_count: 0,
stsc_peek_iter: stsc.samples.as_slice().iter().peekable(),
remain_chunk_count: stco.offsets.len() as u32,
};
// With large numbers of samples, the cost of many allocations dominates, for i in stsc_iter {
// so it's worth iterating twice to allocate sample_table just once.
let total_sample_count = sample_to_chunk_iter(&stsc.samples, &stco.offsets)
.by_ref()
.map(|(_, sample_counts)| sample_counts.to_usize())
.sum();
let mut sample_table = TryVec::with_capacity(total_sample_count).ok()?;
for i in sample_to_chunk_iter(&stsc.samples, &stco.offsets) {
let chunk_id = i.0 as usize; let chunk_id = i.0 as usize;
let sample_counts = i.1; let sample_counts = i.1;
let mut cur_position = match stco.offsets.get(chunk_id) { let mut cur_position = match stco.offsets.get(chunk_id) {
Some(&i) => i.into(), Some(&i) => i,
_ => return None, _ => return None,
}; };
for _ in 0..sample_counts { for _ in 0..sample_counts {
let start_offset = cur_position; let start_offset = cur_position;
let end_offset = match (stsz.sample_size, sample_size_iter.next()) { let end_offset = match (stsz.sample_size, sample_size_iter.next()) {
(_, Some(t)) => (start_offset + *t)?, (_, Some(t)) => start_offset + u64::from(*t),
(t, _) if t > 0 => (start_offset + t)?, (t, _) if t > 0 => start_offset + u64::from(t),
_ => 0.into(), _ => 0,
}; };
if end_offset == 0 { if end_offset == 0 {
return None; return None;
@ -1518,8 +1376,10 @@ fn create_sample_table(
.push(Mp4parseIndice { .push(Mp4parseIndice {
start_offset, start_offset,
end_offset, end_offset,
start_composition: 0,
end_composition: 0,
start_decode: 0,
sync: !has_sync_table, sync: !has_sync_table,
..Default::default()
}) })
.ok()?; .ok()?;
} }
@ -1529,7 +1389,7 @@ fn create_sample_table(
if let Some(ref v) = track.stss { if let Some(ref v) = track.stss {
for iter in &v.samples { for iter in &v.samples {
match iter match iter
.checked_sub(&1) .checked_sub(1)
.and_then(|idx| sample_table.get_mut(idx as usize)) .and_then(|idx| sample_table.get_mut(idx as usize))
{ {
Some(elem) => elem.sync = true, Some(elem) => elem.sync = true,
@ -1566,20 +1426,25 @@ fn create_sample_table(
let mut sum_delta = TrackScaledTime::<i64>(0, track.id); let mut sum_delta = TrackScaledTime::<i64>(0, track.id);
for sample in sample_table.as_mut_slice() { for sample in sample_table.as_mut_slice() {
let decode_time = sum_delta; let decode_time = sum_delta;
sum_delta = (sum_delta + stts_iter.next_delta())?; sum_delta = sum_delta + stts_iter.next_delta();
// ctts_offset is the current sample offset time. // ctts_offset is the current sample offset time.
let ctts_offset = ctts_offset_iter.next_offset_time(); let ctts_offset = ctts_offset_iter.next_offset_time();
let start_composition = track_time_to_us((decode_time + ctts_offset)?, timescale)?; let start_composition = track_time_to_us(decode_time + ctts_offset, timescale);
let end_composition = track_time_to_us((sum_delta + ctts_offset)?, timescale)?; let end_composition = track_time_to_us(sum_delta + ctts_offset, timescale);
let start_decode = track_time_to_us(decode_time, timescale)?; let start_decode = track_time_to_us(decode_time, timescale);
sample.start_composition = (track_offset_time + start_composition)?; match (start_composition, end_composition, start_decode) {
sample.end_composition = (track_offset_time + end_composition)?; (Some(s_c), Some(e_c), Some(s_d)) => {
sample.start_decode = start_decode.into(); sample.start_composition = s_c + track_offset_time;
sample.end_composition = e_c + track_offset_time;
sample.start_decode = s_d;
}
_ => return None,
}
} }
// Correct composition end time due to 'ctts' causes composition time re-ordering. // Correct composition end time due to 'ctts' causes composition time re-ordering.
@ -1588,15 +1453,14 @@ fn create_sample_table(
// calculate to correct the composition end time. // calculate to correct the composition end time.
if !sample_table.is_empty() { if !sample_table.is_empty() {
// Create an index table refers to sample_table and sorted by start_composisiton time. // Create an index table refers to sample_table and sorted by start_composisiton time.
let mut sort_table = TryVec::with_capacity(sample_table.len()).ok()?; let mut sort_table = TryVec::new();
for i in 0..sample_table.len() { for i in 0..sample_table.len() {
sort_table.push(i).ok()?; sort_table.push(i).ok()?;
} }
sort_table.sort_by_key(|i| match sample_table.get(*i) { sort_table.sort_by_key(|i| match sample_table.get(*i) {
Some(v) => v.start_composition, Some(v) => v.start_composition,
_ => 0.into(), _ => 0,
}); });
for indices in sort_table.windows(2) { for indices in sort_table.windows(2) {
@ -1736,14 +1600,13 @@ fn get_pssh_info(
pssh_data.clear(); pssh_data.clear();
for pssh in &context.psshs { for pssh in &context.psshs {
let content_len = pssh let content_len = pssh.box_content.len();
.box_content if content_len > std::u32::MAX as usize {
.len() return Err(Mp4parseStatus::Invalid);
.try_into() }
.map_err(|_| Mp4parseStatus::Invalid)?;
let mut data_len = TryVec::new(); let mut data_len = TryVec::new();
if data_len if data_len
.write_u32::<byteorder::NativeEndian>(content_len) .write_u32::<byteorder::NativeEndian>(content_len as u32)
.is_err() .is_err()
{ {
return Err(Mp4parseStatus::Io); return Err(Mp4parseStatus::Io);
@ -1821,7 +1684,9 @@ fn arg_validation() {
let mut dummy_info = Mp4parseTrackInfo { let mut dummy_info = Mp4parseTrackInfo {
track_type: Mp4parseTrackType::Video, track_type: Mp4parseTrackType::Video,
..Default::default() track_id: 0,
duration: 0,
media_time: 0,
}; };
assert_eq!( assert_eq!(
Mp4parseStatus::BadArg, Mp4parseStatus::BadArg,
@ -1889,7 +1754,9 @@ fn arg_validation_with_parser() {
let mut dummy_info = Mp4parseTrackInfo { let mut dummy_info = Mp4parseTrackInfo {
track_type: Mp4parseTrackType::Video, track_type: Mp4parseTrackType::Video,
..Default::default() track_id: 0,
duration: 0,
media_time: 0,
}; };
assert_eq!( assert_eq!(
Mp4parseStatus::BadArg, Mp4parseStatus::BadArg,
@ -1961,7 +1828,9 @@ fn minimal_mp4_get_track_info() {
let mut info = Mp4parseTrackInfo { let mut info = Mp4parseTrackInfo {
track_type: Mp4parseTrackType::Video, track_type: Mp4parseTrackType::Video,
..Default::default() track_id: 0,
duration: 0,
media_time: 0,
}; };
assert_eq!(Mp4parseStatus::Ok, unsafe { assert_eq!(Mp4parseStatus::Ok, unsafe {
mp4parse_get_track_info(parser, 0, &mut info) mp4parse_get_track_info(parser, 0, &mut info)
@ -2033,7 +1902,9 @@ fn minimal_mp4_get_track_info_invalid_track_number() {
let mut info = Mp4parseTrackInfo { let mut info = Mp4parseTrackInfo {
track_type: Mp4parseTrackType::Video, track_type: Mp4parseTrackType::Video,
..Default::default() track_id: 0,
duration: 0,
media_time: 0,
}; };
assert_eq!(Mp4parseStatus::BadArg, unsafe { assert_eq!(Mp4parseStatus::BadArg, unsafe {
mp4parse_get_track_info(parser, 3, &mut info) mp4parse_get_track_info(parser, 3, &mut info)

Просмотреть файл

@ -48,19 +48,19 @@ fn parse_sample_table() {
// Compare the value from stagefright. // Compare the value from stagefright.
let audio_indice_0 = Mp4parseIndice { let audio_indice_0 = Mp4parseIndice {
start_offset: 27_046.into(), start_offset: 27_046,
end_offset: 27_052.into(), end_offset: 27_052,
start_composition: 0.into(), start_composition: 0,
end_composition: 46_439.into(), end_composition: 46_439,
start_decode: 0.into(), start_decode: 0,
sync: true, sync: true,
}; };
let audio_indice_215 = Mp4parseIndice { let audio_indice_215 = Mp4parseIndice {
start_offset: 283_550.into(), start_offset: 283_550,
end_offset: 283_556.into(), end_offset: 283_556,
start_composition: 9_984_580.into(), start_composition: 9_984_580,
end_composition: 10_031_020.into(), end_composition: 10_031_020,
start_decode: 9_984_580.into(), start_decode: 9_984_580,
sync: true, sync: true,
}; };
assert_eq!(indice.length, 216); assert_eq!(indice.length, 216);
@ -83,19 +83,19 @@ fn parse_sample_table() {
// Compare the last few data from stagefright. // Compare the last few data from stagefright.
let video_indice_291 = Mp4parseIndice { let video_indice_291 = Mp4parseIndice {
start_offset: 280_226.into(), start_offset: 280_226,
end_offset: 280_855.into(), end_offset: 280_855,
start_composition: 9_838_333.into(), start_composition: 9_838_333,
end_composition: 9_871_677.into(), end_composition: 9_871_677,
start_decode: 9_710_000.into(), start_decode: 9_710_000,
sync: false, sync: false,
}; };
let video_indice_292 = Mp4parseIndice { let video_indice_292 = Mp4parseIndice {
start_offset: 280_855.into(), start_offset: 280_855,
end_offset: 281_297.into(), end_offset: 281_297,
start_composition: 9_805_011.into(), start_composition: 9_805_011,
end_composition: 9_838_333.into(), end_composition: 9_838_333,
start_decode: 9_710_011.into(), start_decode: 9_710_011,
sync: false, sync: false,
}; };
// TODO: start_composition time in stagefright is 9905000, but it is 9904999 in parser, it // TODO: start_composition time in stagefright is 9905000, but it is 9904999 in parser, it
@ -103,19 +103,19 @@ fn parse_sample_table() {
//let video_indice_293 = Mp4parseIndice { start_offset: 281_297, end_offset: 281_919, start_composition: 9_905_000, end_composition: 9_938_344, start_decode: 9_776_666, sync: false }; //let video_indice_293 = Mp4parseIndice { start_offset: 281_297, end_offset: 281_919, start_composition: 9_905_000, end_composition: 9_938_344, start_decode: 9_776_666, sync: false };
//let video_indice_294 = Mp4parseIndice { start_offset: 281_919, end_offset: 282_391, start_composition: 9_871_677, end_composition: 9_905_000, start_decode: 9_776_677, sync: false }; //let video_indice_294 = Mp4parseIndice { start_offset: 281_919, end_offset: 282_391, start_composition: 9_871_677, end_composition: 9_905_000, start_decode: 9_776_677, sync: false };
let video_indice_295 = Mp4parseIndice { let video_indice_295 = Mp4parseIndice {
start_offset: 282_391.into(), start_offset: 282_391,
end_offset: 283_032.into(), end_offset: 283_032,
start_composition: 9_971_666.into(), start_composition: 9_971_666,
end_composition: 9_971_677.into(), end_composition: 9_971_677,
start_decode: 9_843_333.into(), start_decode: 9_843_333,
sync: false, sync: false,
}; };
let video_indice_296 = Mp4parseIndice { let video_indice_296 = Mp4parseIndice {
start_offset: 283_092.into(), start_offset: 283_092,
end_offset: 283_526.into(), end_offset: 283_526,
start_composition: 9_938_344.into(), start_composition: 9_938_344,
end_composition: 9_971_666.into(), end_composition: 9_971_666,
start_decode: 9_843_344.into(), start_decode: 9_843_344,
sync: false, sync: false,
}; };
@ -169,27 +169,27 @@ fn parse_sample_table_with_elst() {
// Due to 'elst', the start_composition and end_composition are negative // Due to 'elst', the start_composition and end_composition are negative
// at first two samples. // at first two samples.
let audio_indice_0 = Mp4parseIndice { let audio_indice_0 = Mp4parseIndice {
start_offset: 6992.into(), start_offset: 6992,
end_offset: 7363.into(), end_offset: 7363,
start_composition: (-36281).into(), start_composition: -36281,
end_composition: (-13062).into(), end_composition: -13062,
start_decode: 0.into(), start_decode: 0,
sync: true, sync: true,
}; };
let audio_indice_1 = Mp4parseIndice { let audio_indice_1 = Mp4parseIndice {
start_offset: 7363.into(), start_offset: 7363,
end_offset: 7735.into(), end_offset: 7735,
start_composition: (-13062).into(), start_composition: -13062,
end_composition: 10158.into(), end_composition: 10158,
start_decode: 23219.into(), start_decode: 23219,
sync: true, sync: true,
}; };
let audio_indice_2 = Mp4parseIndice { let audio_indice_2 = Mp4parseIndice {
start_offset: 7735.into(), start_offset: 7735,
end_offset: 8106.into(), end_offset: 8106,
start_composition: 10158.into(), start_composition: 10158,
end_composition: 33378.into(), end_composition: 33378,
start_decode: 46439.into(), start_decode: 46439,
sync: true, sync: true,
}; };
assert_eq!(indice.length, 21); assert_eq!(indice.length, 21);
@ -236,35 +236,35 @@ fn parse_sample_table_with_negative_ctts() {
// There are negative value in 'ctts' table. // There are negative value in 'ctts' table.
let video_indice_0 = Mp4parseIndice { let video_indice_0 = Mp4parseIndice {
start_offset: 48.into(), start_offset: 48,
end_offset: 890.into(), end_offset: 890,
start_composition: 0.into(), start_composition: 0,
end_composition: 33_333.into(), end_composition: 33_333,
start_decode: 0.into(), start_decode: 0,
sync: true, sync: true,
}; };
let video_indice_1 = Mp4parseIndice { let video_indice_1 = Mp4parseIndice {
start_offset: 890.into(), start_offset: 890,
end_offset: 913.into(), end_offset: 913,
start_composition: 133_333.into(), start_composition: 133_333,
end_composition: 166_666.into(), end_composition: 166_666,
start_decode: 33_333.into(), start_decode: 33_333,
sync: false, sync: false,
}; };
let video_indice_2 = Mp4parseIndice { let video_indice_2 = Mp4parseIndice {
start_offset: 913.into(), start_offset: 913,
end_offset: 934.into(), end_offset: 934,
start_composition: 66_666.into(), start_composition: 66_666,
end_composition: 100_000.into(), end_composition: 100_000,
start_decode: 66_666.into(), start_decode: 66_666,
sync: false, sync: false,
}; };
let video_indice_3 = Mp4parseIndice { let video_indice_3 = Mp4parseIndice {
start_offset: 934.into(), start_offset: 934,
end_offset: 955.into(), end_offset: 955,
start_composition: 33_333.into(), start_composition: 33_333,
end_composition: 66_666.into(), end_composition: 66_666,
start_decode: 100_000.into(), start_decode: 100_000,
sync: false, sync: false,
}; };
assert_eq!(indice.length, 300); assert_eq!(indice.length, 300);

Просмотреть файл

@ -1 +0,0 @@
{"files":{"Cargo.toml":"ba1041ccca008388ab7d7432ae63b811d8e744c8fa9e50f371bfbeb78acd1995","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"25f684f15b0ed6ea216c3831e567a9b5dc02b78ff7e579e0d7323305db75218c","RELEASES.md":"5a3045437dc1850ae4e39acd14f2660ed7bace9b0c4d7dae3950f049dbfd4d65","benches/bigint.rs":"252c0dc1f220a6fbdc151e729069260c2f5909516467ceb873e412e5691d7042","benches/factorial.rs":"d536f5584987847f10321b94175a0d8fd2beb14b7c814ec28eef1f96ca081fbe","benches/gcd.rs":"7ec5ce7174e1d31bd08ccc5670f5a32a5c084f258d7980cd6d02e0a8bb5562c4","benches/roots.rs":"3f87db894c379122aee5cd8520c7c759c26d8a9649ac47f45d1bf4d560e1cb07","benches/shootout-pidigits.rs":"985b76d6dba05c396efe4da136c6a0bb2c02bcf5b05cbb346f0f802a891629bb","bors.toml":"1c81ede536a37edd30fe4e622ff0531b25372403ac9475a5d6c50f14156565a2","build.rs":"56d4fbb7a55750e61d2074df2735a31995c1decbd988c0e722926235e0fed487","ci/rustup.sh":"c976bb2756da3876363b01fdbf06c13de20df421e5add45e4017c4df42ed06a6","ci/test_full.sh":"a0ac26b85809eb43edd813c9dc88f34a1a8227b7618f4bede89c8f2ac9a4c05a","src/algorithms.rs":"8827c46df051214d1d0e7670680ca9f4834eae678ed340c86b5ea32fddbc7c3c","src/bigint.rs":"7f113fdc034c566bc8475ff0a7d136aa8250cae047b4356084e6797a15f968e1","src/bigrand.rs":"d2f72b8833f367dd8990b4b026f302d838144c5a4de942135d39a3a9932f137d","src/biguint.rs":"b95bfcf84e3f831fb07982aa4b058cd16a524eaa493946eed8e8c5fb8d65797a","src/lib.rs":"d5cc50306f73f07555e7d3413edd2ca5c7d54cbc80a2e83844d77fb8750ae314","src/macros.rs":"2e763517922d960c06e3ac4d319b1d81e66dffadfde8fdf300ff8b8bb95bd8cd","src/monty.rs":"6a867846b7f6af9115add2fd59fccd0651c71dd7f2316e8fb9c812ff3c27da12","tests/bigint.rs":"f7df454f085a862ad5a98e3a802303a3fdf06275a7a1b92074b40b76a715bed2","tests/bigint_bitwise.rs":"dc9436c8f200f2b0ac08cefb23bb8e39c4e688e9026a506a678416c3d573128b","tests/bigint_scalar.rs":"aa176ed102cafd425a215a93460806914d8f3ac288c98ec3e56772fa17379838","tests/biguint.rs":"9ae79f96d1a3beca5be95dffe9d79dc3436f886edc6cae51faf4203c3e0c4681","tests/biguint_scalar.rs":"9cc6f2bf2fe77f34b09eb2266c23aded3b27a60dc1859eb60d3013164292467e","tests/consts/mod.rs":"f9ea5f40733e2f5f432803d830be9db929d91e5e5efd8510b07c6ced2fe554be","tests/macros/mod.rs":"2789b680dd14a770d5ceef430018be0ada85098d69e218c61c17214084c4f763","tests/modpow.rs":"f14cdea11e355a371b314cc866dfa13281a3226706ab2cf01c1485273afde300","tests/quickcheck.rs":"6d6c1ec244b2384a8b34e989870aef8bcedccf6cc46e2626b29a032703bef03c","tests/rand.rs":"08370135bd78432660cfcd708a9ea852022d555bc92c1f3c482fabd17faa64a0","tests/roots.rs":"9ec1bdb0cd1c72402a41e5470325a5276af75979b7fc0f0b63e7bbbb9f3505b2","tests/serde.rs":"79d7a0347207b3a3666af67d2ed97fa34f2922732121a3cb8f5b9f990846acfa","tests/torture.rs":"9fe4897580c0ebe2b7062f5b0b890b4b03510daa45c9236f0edba7144f9eb6f8"},"package":"f9c3f34cdd24f334cb265d9bf8bfa8a241920d026916785747a92f0e55541a1a"}

81
third_party/rust/num-bigint-0.2.3/Cargo.toml поставляемый
Просмотреть файл

@ -1,81 +0,0 @@
# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
#
# When uploading crates to the registry Cargo will automatically
# "normalize" Cargo.toml files for maximal compatibility
# with all versions of Cargo and also rewrite `path` dependencies
# to registry (e.g., crates.io) dependencies
#
# If you believe there's an error in this file please file an
# issue against the rust-lang/cargo repository. If you're
# editing this file be aware that the upstream Cargo.toml
# will likely look very different (and much more reasonable)
[package]
name = "num-bigint"
version = "0.2.3"
authors = ["The Rust Project Developers"]
build = "build.rs"
description = "Big integer implementation for Rust"
homepage = "https://github.com/rust-num/num-bigint"
documentation = "https://docs.rs/num-bigint"
readme = "README.md"
keywords = ["mathematics", "numerics", "bignum"]
categories = ["algorithms", "data-structures", "science"]
license = "MIT/Apache-2.0"
repository = "https://github.com/rust-num/num-bigint"
[package.metadata.docs.rs]
features = ["std", "serde", "rand", "quickcheck"]
[[bench]]
name = "bigint"
[[bench]]
name = "factorial"
[[bench]]
name = "gcd"
[[bench]]
name = "roots"
[[bench]]
name = "shootout-pidigits"
harness = false
[dependencies.num-integer]
version = "0.1.39"
default-features = false
[dependencies.num-traits]
version = "0.2.7"
default-features = false
[dependencies.quickcheck]
version = "0.8"
optional = true
default-features = false
[dependencies.quickcheck_macros]
version = "0.8"
optional = true
default-features = false
[dependencies.rand]
version = "0.5"
features = ["std"]
optional = true
default-features = false
[dependencies.serde]
version = "1.0"
features = ["std"]
optional = true
default-features = false
[dev-dependencies.serde_test]
version = "1.0"
[build-dependencies.autocfg]
version = "0.1.2"
[features]
default = ["std"]
i128 = ["num-integer/i128", "num-traits/i128"]
std = ["num-integer/std", "num-traits/std"]

Просмотреть файл

@ -1,201 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

25
third_party/rust/num-bigint-0.2.3/LICENSE-MIT поставляемый
Просмотреть файл

@ -1,25 +0,0 @@
Copyright (c) 2014 The Rust Project Developers
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

63
third_party/rust/num-bigint-0.2.3/README.md поставляемый
Просмотреть файл

@ -1,63 +0,0 @@
# num-bigint
[![crate](https://img.shields.io/crates/v/num-bigint.svg)](https://crates.io/crates/num-bigint)
[![documentation](https://docs.rs/num-bigint/badge.svg)](https://docs.rs/num-bigint)
![minimum rustc 1.15](https://img.shields.io/badge/rustc-1.15+-red.svg)
[![Travis status](https://travis-ci.org/rust-num/num-bigint.svg?branch=master)](https://travis-ci.org/rust-num/num-bigint)
Big integer types for Rust, `BigInt` and `BigUint`.
## Usage
Add this to your `Cargo.toml`:
```toml
[dependencies]
num-bigint = "0.2"
```
and this to your crate root:
```rust
extern crate num_bigint;
```
## Features
The `std` crate feature is mandatory and enabled by default. If you depend on
`num-bigint` with `default-features = false`, you must manually enable the
`std` feature yourself. In the future, we hope to support `#![no_std]` with
the `alloc` crate when `std` is not enabled.
Implementations for `i128` and `u128` are only available with Rust 1.26 and
later. The build script automatically detects this, but you can make it
mandatory by enabling the `i128` crate feature.
## Releases
Release notes are available in [RELEASES.md](RELEASES.md).
## Compatibility
The `num-bigint` crate is tested for rustc 1.15 and greater.
## Alternatives
While `num-bigint` strives for good performance in pure Rust code, other
crates may offer better performance with different trade-offs. The following
table offers a brief comparison to a few alternatives.
| Crate | License | Min rustc | Implementation |
| :--------------- | :------------- | :-------- | :------------- |
| **`num-bigint`** | MIT/Apache-2.0 | 1.15 | pure rust |
| [`ramp`] | Apache-2.0 | nightly | rust and inline assembly |
| [`rug`] | LGPL-3.0+ | 1.31 | bundles [GMP] via [`gmp-mpfr-sys`] |
| [`rust-gmp`] | MIT | stable? | links to [GMP] |
| [`apint`] | MIT/Apache-2.0 | 1.26 | pure rust (unfinished) |
[GMP]: https://gmplib.org/
[`gmp-mpfr-sys`]: https://crates.io/crates/gmp-mpfr-sys
[`rug`]: https://crates.io/crates/rug
[`rust-gmp`]: https://crates.io/crates/rust-gmp
[`ramp`]: https://crates.io/crates/ramp
[`apint`]: https://crates.io/crates/apint

134
third_party/rust/num-bigint-0.2.3/RELEASES.md поставляемый
Просмотреть файл

@ -1,134 +0,0 @@
# Release 0.2.3 (2019-09-03)
- [`Pow` is now implemented for `BigUint` exponents][77].
- [The optional `quickcheck` feature enables implementations of `Arbitrary`][99].
- See the [full comparison][compare-0.2.3] for performance enhancements and more!
[77]: https://github.com/rust-num/num-bigint/pull/77
[99]: https://github.com/rust-num/num-bigint/pull/99
[compare-0.2.3]: https://github.com/rust-num/num-bigint/compare/num-bigint-0.2.2...num-bigint-0.2.3
**Contributors**: @cuviper, @lcnr, @maxbla, @mikelodder7, @mikong,
@TheLetterTheta, @tspiteri, @XAMPPRocky, @youknowone
# Release 0.2.2 (2018-12-14)
- [The `Roots` implementations now use better initial guesses][71].
- [Fixed `to_signed_bytes_*` for some positive numbers][72], where the
most-significant byte is `0x80` and the rest are `0`.
[71]: https://github.com/rust-num/num-bigint/pull/71
[72]: https://github.com/rust-num/num-bigint/pull/72
**Contributors**: @cuviper, @leodasvacas
# Release 0.2.1 (2018-11-02)
- [`RandBigInt` now uses `Rng::fill_bytes`][53] to improve performance, instead
of repeated `gen::<u32>` calls. The also affects the implementations of the
other `rand` traits. This may potentially change the values produced by some
seeded RNGs on previous versions, but the values were tested to be stable
with `ChaChaRng`, `IsaacRng`, and `XorShiftRng`.
- [`BigInt` and `BigUint` now implement `num_integer::Roots`][56].
- [`BigInt` and `BigUint` now implement `num_traits::Pow`][54].
- [`BigInt` and `BigUint` now implement operators with 128-bit integers][64].
**Contributors**: @cuviper, @dignifiedquire, @mancabizjak, @Robbepop,
@TheIronBorn, @thomwiggers
[53]: https://github.com/rust-num/num-bigint/pull/53
[54]: https://github.com/rust-num/num-bigint/pull/54
[56]: https://github.com/rust-num/num-bigint/pull/56
[64]: https://github.com/rust-num/num-bigint/pull/64
# Release 0.2.0 (2018-05-25)
### Enhancements
- [`BigInt` and `BigUint` now implement `Product` and `Sum`][22] for iterators
of any item that we can `Mul` and `Add`, respectively. For example, a
factorial can now be simply: `let f: BigUint = (1u32..1000).product();`
- [`BigInt` now supports two's-complement logic operations][26], namely
`BitAnd`, `BitOr`, `BitXor`, and `Not`. These act conceptually as if each
number had an infinite prefix of `0` or `1` bits for positive or negative.
- [`BigInt` now supports assignment operators][41] like `AddAssign`.
- [`BigInt` and `BigUint` now support conversions with `i128` and `u128`][44],
if sufficient compiler support is detected.
- [`BigInt` and `BigUint` now implement rand's `SampleUniform` trait][48], and
[a custom `RandomBits` distribution samples by bit size][49].
- The release also includes other miscellaneous improvements to performance.
### Breaking Changes
- [`num-bigint` now requires rustc 1.15 or greater][23].
- [The crate now has a `std` feature, and won't build without it][46]. This is
in preparation for someday supporting `#![no_std]` with `alloc`.
- [The `serde` dependency has been updated to 1.0][24], still disabled by
default. The `rustc-serialize` crate is no longer supported by `num-bigint`.
- [The `rand` dependency has been updated to 0.5][48], now disabled by default.
This requires rustc 1.22 or greater for `rand`'s own requirement.
- [`Shr for BigInt` now rounds down][8] rather than toward zero, matching the
behavior of the primitive integers for negative values.
- [`ParseBigIntError` is now an opaque type][37].
- [The `big_digit` module is no longer public][38], nor are the `BigDigit` and
`DoubleBigDigit` types and `ZERO_BIG_DIGIT` constant that were re-exported in
the crate root. Public APIs which deal in digits, like `BigUint::from_slice`,
will now always be base-`u32`.
**Contributors**: @clarcharr, @cuviper, @dodomorandi, @tiehuis, @tspiteri
[8]: https://github.com/rust-num/num-bigint/pull/8
[22]: https://github.com/rust-num/num-bigint/pull/22
[23]: https://github.com/rust-num/num-bigint/pull/23
[24]: https://github.com/rust-num/num-bigint/pull/24
[26]: https://github.com/rust-num/num-bigint/pull/26
[37]: https://github.com/rust-num/num-bigint/pull/37
[38]: https://github.com/rust-num/num-bigint/pull/38
[41]: https://github.com/rust-num/num-bigint/pull/41
[44]: https://github.com/rust-num/num-bigint/pull/44
[46]: https://github.com/rust-num/num-bigint/pull/46
[48]: https://github.com/rust-num/num-bigint/pull/48
[49]: https://github.com/rust-num/num-bigint/pull/49
# Release 0.1.44 (2018-05-14)
- [Division with single-digit divisors is now much faster.][42]
- The README now compares [`ramp`, `rug`, `rust-gmp`][20], and [`apint`][21].
**Contributors**: @cuviper, @Robbepop
[20]: https://github.com/rust-num/num-bigint/pull/20
[21]: https://github.com/rust-num/num-bigint/pull/21
[42]: https://github.com/rust-num/num-bigint/pull/42
# Release 0.1.43 (2018-02-08)
- [The new `BigInt::modpow`][18] performs signed modular exponentiation, using
the existing `BigUint::modpow` and rounding negatives similar to `mod_floor`.
**Contributors**: @cuviper
[18]: https://github.com/rust-num/num-bigint/pull/18
# Release 0.1.42 (2018-02-07)
- [num-bigint now has its own source repository][num-356] at [rust-num/num-bigint][home].
- [`lcm` now avoids creating a large intermediate product][num-350].
- [`gcd` now uses Stein's algorithm][15] with faster shifts instead of division.
- [`rand` support is now extended to 0.4][11] (while still allowing 0.3).
**Contributors**: @cuviper, @Emerentius, @ignatenkobrain, @mhogrefe
[home]: https://github.com/rust-num/num-bigint
[num-350]: https://github.com/rust-num/num/pull/350
[num-356]: https://github.com/rust-num/num/pull/356
[11]: https://github.com/rust-num/num-bigint/pull/11
[15]: https://github.com/rust-num/num-bigint/pull/15
# Prior releases
No prior release notes were kept. Thanks all the same to the many
contributors that have made this crate what it is!

Просмотреть файл

@ -1,368 +0,0 @@
#![feature(test)]
#![cfg(feature = "rand")]
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
extern crate rand;
extern crate test;
use num_bigint::{BigInt, BigUint, RandBigInt};
use num_traits::{FromPrimitive, Num, One, Pow, Zero};
use rand::{SeedableRng, StdRng};
use std::mem::replace;
use test::Bencher;
fn get_rng() -> StdRng {
let mut seed = [0; 32];
for i in 1..32 {
seed[usize::from(i)] = i;
}
SeedableRng::from_seed(seed)
}
fn multiply_bench(b: &mut Bencher, xbits: usize, ybits: usize) {
let mut rng = get_rng();
let x = rng.gen_bigint(xbits);
let y = rng.gen_bigint(ybits);
b.iter(|| &x * &y);
}
fn divide_bench(b: &mut Bencher, xbits: usize, ybits: usize) {
let mut rng = get_rng();
let x = rng.gen_bigint(xbits);
let y = rng.gen_bigint(ybits);
b.iter(|| &x / &y);
}
fn remainder_bench(b: &mut Bencher, xbits: usize, ybits: usize) {
let mut rng = get_rng();
let x = rng.gen_bigint(xbits);
let y = rng.gen_bigint(ybits);
b.iter(|| &x % &y);
}
fn factorial(n: usize) -> BigUint {
let mut f: BigUint = One::one();
for i in 1..(n + 1) {
let bu: BigUint = FromPrimitive::from_usize(i).unwrap();
f = f * bu;
}
f
}
/// Compute Fibonacci numbers
fn fib(n: usize) -> BigUint {
let mut f0: BigUint = Zero::zero();
let mut f1: BigUint = One::one();
for _ in 0..n {
let f2 = f0 + &f1;
f0 = replace(&mut f1, f2);
}
f0
}
/// Compute Fibonacci numbers with two ops per iteration
/// (add and subtract, like issue #200)
fn fib2(n: usize) -> BigUint {
let mut f0: BigUint = Zero::zero();
let mut f1: BigUint = One::one();
for _ in 0..n {
f1 = f1 + &f0;
f0 = &f1 - f0;
}
f0
}
#[bench]
fn multiply_0(b: &mut Bencher) {
multiply_bench(b, 1 << 8, 1 << 8);
}
#[bench]
fn multiply_1(b: &mut Bencher) {
multiply_bench(b, 1 << 8, 1 << 16);
}
#[bench]
fn multiply_2(b: &mut Bencher) {
multiply_bench(b, 1 << 16, 1 << 16);
}
#[bench]
fn multiply_3(b: &mut Bencher) {
multiply_bench(b, 1 << 16, 1 << 17);
}
#[bench]
fn divide_0(b: &mut Bencher) {
divide_bench(b, 1 << 8, 1 << 6);
}
#[bench]
fn divide_1(b: &mut Bencher) {
divide_bench(b, 1 << 12, 1 << 8);
}
#[bench]
fn divide_2(b: &mut Bencher) {
divide_bench(b, 1 << 16, 1 << 12);
}
#[bench]
fn remainder_0(b: &mut Bencher) {
remainder_bench(b, 1 << 8, 1 << 6);
}
#[bench]
fn remainder_1(b: &mut Bencher) {
remainder_bench(b, 1 << 12, 1 << 8);
}
#[bench]
fn remainder_2(b: &mut Bencher) {
remainder_bench(b, 1 << 16, 1 << 12);
}
#[bench]
fn factorial_100(b: &mut Bencher) {
b.iter(|| factorial(100));
}
#[bench]
fn fib_100(b: &mut Bencher) {
b.iter(|| fib(100));
}
#[bench]
fn fib_1000(b: &mut Bencher) {
b.iter(|| fib(1000));
}
#[bench]
fn fib_10000(b: &mut Bencher) {
b.iter(|| fib(10000));
}
#[bench]
fn fib2_100(b: &mut Bencher) {
b.iter(|| fib2(100));
}
#[bench]
fn fib2_1000(b: &mut Bencher) {
b.iter(|| fib2(1000));
}
#[bench]
fn fib2_10000(b: &mut Bencher) {
b.iter(|| fib2(10000));
}
#[bench]
fn fac_to_string(b: &mut Bencher) {
let fac = factorial(100);
b.iter(|| fac.to_string());
}
#[bench]
fn fib_to_string(b: &mut Bencher) {
let fib = fib(100);
b.iter(|| fib.to_string());
}
fn to_str_radix_bench(b: &mut Bencher, radix: u32) {
let mut rng = get_rng();
let x = rng.gen_bigint(1009);
b.iter(|| x.to_str_radix(radix));
}
#[bench]
fn to_str_radix_02(b: &mut Bencher) {
to_str_radix_bench(b, 2);
}
#[bench]
fn to_str_radix_08(b: &mut Bencher) {
to_str_radix_bench(b, 8);
}
#[bench]
fn to_str_radix_10(b: &mut Bencher) {
to_str_radix_bench(b, 10);
}
#[bench]
fn to_str_radix_16(b: &mut Bencher) {
to_str_radix_bench(b, 16);
}
#[bench]
fn to_str_radix_36(b: &mut Bencher) {
to_str_radix_bench(b, 36);
}
fn from_str_radix_bench(b: &mut Bencher, radix: u32) {
let mut rng = get_rng();
let x = rng.gen_bigint(1009);
let s = x.to_str_radix(radix);
assert_eq!(x, BigInt::from_str_radix(&s, radix).unwrap());
b.iter(|| BigInt::from_str_radix(&s, radix));
}
#[bench]
fn from_str_radix_02(b: &mut Bencher) {
from_str_radix_bench(b, 2);
}
#[bench]
fn from_str_radix_08(b: &mut Bencher) {
from_str_radix_bench(b, 8);
}
#[bench]
fn from_str_radix_10(b: &mut Bencher) {
from_str_radix_bench(b, 10);
}
#[bench]
fn from_str_radix_16(b: &mut Bencher) {
from_str_radix_bench(b, 16);
}
#[bench]
fn from_str_radix_36(b: &mut Bencher) {
from_str_radix_bench(b, 36);
}
fn rand_bench(b: &mut Bencher, bits: usize) {
let mut rng = get_rng();
b.iter(|| rng.gen_bigint(bits));
}
#[bench]
fn rand_64(b: &mut Bencher) {
rand_bench(b, 1 << 6);
}
#[bench]
fn rand_256(b: &mut Bencher) {
rand_bench(b, 1 << 8);
}
#[bench]
fn rand_1009(b: &mut Bencher) {
rand_bench(b, 1009);
}
#[bench]
fn rand_2048(b: &mut Bencher) {
rand_bench(b, 1 << 11);
}
#[bench]
fn rand_4096(b: &mut Bencher) {
rand_bench(b, 1 << 12);
}
#[bench]
fn rand_8192(b: &mut Bencher) {
rand_bench(b, 1 << 13);
}
#[bench]
fn rand_65536(b: &mut Bencher) {
rand_bench(b, 1 << 16);
}
#[bench]
fn rand_131072(b: &mut Bencher) {
rand_bench(b, 1 << 17);
}
#[bench]
fn shl(b: &mut Bencher) {
let n = BigUint::one() << 1000;
b.iter(|| {
let mut m = n.clone();
for i in 0..50 {
m = m << i;
}
})
}
#[bench]
fn shr(b: &mut Bencher) {
let n = BigUint::one() << 2000;
b.iter(|| {
let mut m = n.clone();
for i in 0..50 {
m = m >> i;
}
})
}
#[bench]
fn hash(b: &mut Bencher) {
use std::collections::HashSet;
let mut rng = get_rng();
let v: Vec<BigInt> = (1000..2000).map(|bits| rng.gen_bigint(bits)).collect();
b.iter(|| {
let h: HashSet<&BigInt> = v.iter().collect();
assert_eq!(h.len(), v.len());
});
}
#[bench]
fn pow_bench(b: &mut Bencher) {
b.iter(|| {
let upper = 100_usize;
for i in 2..upper + 1 {
for j in 2..upper + 1 {
let i_big = BigUint::from_usize(i).unwrap();
i_big.pow(j);
}
}
});
}
/// This modulus is the prime from the 2048-bit MODP DH group:
/// https://tools.ietf.org/html/rfc3526#section-3
const RFC3526_2048BIT_MODP_GROUP: &'static str =
"\
FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\
29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\
EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\
E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\
EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\
C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\
83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\
670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\
E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\
DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\
15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF";
#[bench]
fn modpow(b: &mut Bencher) {
let mut rng = get_rng();
let base = rng.gen_biguint(2048);
let e = rng.gen_biguint(2048);
let m = BigUint::from_str_radix(RFC3526_2048BIT_MODP_GROUP, 16).unwrap();
b.iter(|| base.modpow(&e, &m));
}
#[bench]
fn modpow_even(b: &mut Bencher) {
let mut rng = get_rng();
let base = rng.gen_biguint(2048);
let e = rng.gen_biguint(2048);
// Make the modulus even, so monty (base-2^32) doesn't apply.
let m = BigUint::from_str_radix(RFC3526_2048BIT_MODP_GROUP, 16).unwrap() - 1u32;
b.iter(|| base.modpow(&e, &m));
}

Просмотреть файл

@ -1,44 +0,0 @@
#![feature(test)]
extern crate num_bigint;
extern crate num_traits;
extern crate test;
use num_bigint::BigUint;
use num_traits::One;
use std::ops::{Div, Mul};
use test::Bencher;
#[bench]
fn factorial_mul_biguint(b: &mut Bencher) {
b.iter(|| {
(1u32..1000)
.map(BigUint::from)
.fold(BigUint::one(), Mul::mul)
});
}
#[bench]
fn factorial_mul_u32(b: &mut Bencher) {
b.iter(|| (1u32..1000).fold(BigUint::one(), Mul::mul));
}
// The division test is inspired by this blog comparison:
// <https://tiehuis.github.io/big-integers-in-zig#division-test-single-limb>
#[bench]
fn factorial_div_biguint(b: &mut Bencher) {
let n: BigUint = (1u32..1000).fold(BigUint::one(), Mul::mul);
b.iter(|| {
(1u32..1000)
.rev()
.map(BigUint::from)
.fold(n.clone(), Div::div)
});
}
#[bench]
fn factorial_div_u32(b: &mut Bencher) {
let n: BigUint = (1u32..1000).fold(BigUint::one(), Mul::mul);
b.iter(|| (1u32..1000).rev().fold(n.clone(), Div::div));
}

Просмотреть файл

@ -1,86 +0,0 @@
#![feature(test)]
#![cfg(feature = "rand")]
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
extern crate rand;
extern crate test;
use num_bigint::{BigUint, RandBigInt};
use num_integer::Integer;
use num_traits::Zero;
use rand::{SeedableRng, StdRng};
use test::Bencher;
fn get_rng() -> StdRng {
let mut seed = [0; 32];
for i in 1..32 {
seed[usize::from(i)] = i;
}
SeedableRng::from_seed(seed)
}
fn bench(b: &mut Bencher, bits: usize, gcd: fn(&BigUint, &BigUint) -> BigUint) {
let mut rng = get_rng();
let x = rng.gen_biguint(bits);
let y = rng.gen_biguint(bits);
assert_eq!(euclid(&x, &y), x.gcd(&y));
b.iter(|| gcd(&x, &y));
}
fn euclid(x: &BigUint, y: &BigUint) -> BigUint {
// Use Euclid's algorithm
let mut m = x.clone();
let mut n = y.clone();
while !m.is_zero() {
let temp = m;
m = n % &temp;
n = temp;
}
return n;
}
#[bench]
fn gcd_euclid_0064(b: &mut Bencher) {
bench(b, 64, euclid);
}
#[bench]
fn gcd_euclid_0256(b: &mut Bencher) {
bench(b, 256, euclid);
}
#[bench]
fn gcd_euclid_1024(b: &mut Bencher) {
bench(b, 1024, euclid);
}
#[bench]
fn gcd_euclid_4096(b: &mut Bencher) {
bench(b, 4096, euclid);
}
// Integer for BigUint now uses Stein for gcd
#[bench]
fn gcd_stein_0064(b: &mut Bencher) {
bench(b, 64, BigUint::gcd);
}
#[bench]
fn gcd_stein_0256(b: &mut Bencher) {
bench(b, 256, BigUint::gcd);
}
#[bench]
fn gcd_stein_1024(b: &mut Bencher) {
bench(b, 1024, BigUint::gcd);
}
#[bench]
fn gcd_stein_4096(b: &mut Bencher) {
bench(b, 4096, BigUint::gcd);
}

Просмотреть файл

@ -1,176 +0,0 @@
#![feature(test)]
#![cfg(feature = "rand")]
extern crate num_bigint;
extern crate num_traits;
extern crate rand;
extern crate test;
use num_bigint::{BigUint, RandBigInt};
use num_traits::Pow;
use rand::{SeedableRng, StdRng};
use test::Bencher;
// The `big64` cases demonstrate the speed of cases where the value
// can be converted to a `u64` primitive for faster calculation.
//
// The `big1k` cases demonstrate those that can convert to `f64` for
// a better initial guess of the actual value.
//
// The `big2k` and `big4k` cases are too big for `f64`, and use a simpler guess.
fn get_rng() -> StdRng {
let mut seed = [0; 32];
for i in 1..32 {
seed[usize::from(i)] = i;
}
SeedableRng::from_seed(seed)
}
fn check(x: &BigUint, n: u32) {
let root = x.nth_root(n);
if n == 2 {
assert_eq!(root, x.sqrt())
} else if n == 3 {
assert_eq!(root, x.cbrt())
}
let lo = root.pow(n);
assert!(lo <= *x);
assert_eq!(lo.nth_root(n), root);
assert_eq!((&lo - 1u32).nth_root(n), &root - 1u32);
let hi = (&root + 1u32).pow(n);
assert!(hi > *x);
assert_eq!(hi.nth_root(n), &root + 1u32);
assert_eq!((&hi - 1u32).nth_root(n), root);
}
fn bench_sqrt(b: &mut Bencher, bits: usize) {
let x = get_rng().gen_biguint(bits);
eprintln!("bench_sqrt({})", x);
check(&x, 2);
b.iter(|| x.sqrt());
}
#[bench]
fn big64_sqrt(b: &mut Bencher) {
bench_sqrt(b, 64);
}
#[bench]
fn big1k_sqrt(b: &mut Bencher) {
bench_sqrt(b, 1024);
}
#[bench]
fn big2k_sqrt(b: &mut Bencher) {
bench_sqrt(b, 2048);
}
#[bench]
fn big4k_sqrt(b: &mut Bencher) {
bench_sqrt(b, 4096);
}
fn bench_cbrt(b: &mut Bencher, bits: usize) {
let x = get_rng().gen_biguint(bits);
eprintln!("bench_cbrt({})", x);
check(&x, 3);
b.iter(|| x.cbrt());
}
#[bench]
fn big64_cbrt(b: &mut Bencher) {
bench_cbrt(b, 64);
}
#[bench]
fn big1k_cbrt(b: &mut Bencher) {
bench_cbrt(b, 1024);
}
#[bench]
fn big2k_cbrt(b: &mut Bencher) {
bench_cbrt(b, 2048);
}
#[bench]
fn big4k_cbrt(b: &mut Bencher) {
bench_cbrt(b, 4096);
}
fn bench_nth_root(b: &mut Bencher, bits: usize, n: u32) {
let x = get_rng().gen_biguint(bits);
eprintln!("bench_{}th_root({})", n, x);
check(&x, n);
b.iter(|| x.nth_root(n));
}
#[bench]
fn big64_nth_10(b: &mut Bencher) {
bench_nth_root(b, 64, 10);
}
#[bench]
fn big1k_nth_10(b: &mut Bencher) {
bench_nth_root(b, 1024, 10);
}
#[bench]
fn big1k_nth_100(b: &mut Bencher) {
bench_nth_root(b, 1024, 100);
}
#[bench]
fn big1k_nth_1000(b: &mut Bencher) {
bench_nth_root(b, 1024, 1000);
}
#[bench]
fn big1k_nth_10000(b: &mut Bencher) {
bench_nth_root(b, 1024, 10000);
}
#[bench]
fn big2k_nth_10(b: &mut Bencher) {
bench_nth_root(b, 2048, 10);
}
#[bench]
fn big2k_nth_100(b: &mut Bencher) {
bench_nth_root(b, 2048, 100);
}
#[bench]
fn big2k_nth_1000(b: &mut Bencher) {
bench_nth_root(b, 2048, 1000);
}
#[bench]
fn big2k_nth_10000(b: &mut Bencher) {
bench_nth_root(b, 2048, 10000);
}
#[bench]
fn big4k_nth_10(b: &mut Bencher) {
bench_nth_root(b, 4096, 10);
}
#[bench]
fn big4k_nth_100(b: &mut Bencher) {
bench_nth_root(b, 4096, 100);
}
#[bench]
fn big4k_nth_1000(b: &mut Bencher) {
bench_nth_root(b, 4096, 1000);
}
#[bench]
fn big4k_nth_10000(b: &mut Bencher) {
bench_nth_root(b, 4096, 10000);
}

Просмотреть файл

@ -1,142 +0,0 @@
// The Computer Language Benchmarks Game
// http://benchmarksgame.alioth.debian.org/
//
// contributed by the Rust Project Developers
// Copyright (c) 2013-2014 The Rust Project Developers
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of "The Computer Language Benchmarks Game" nor
// the name of "The Computer Language Shootout Benchmarks" nor the
// names of its contributors may be used to endorse or promote
// products derived from this software without specific prior
// written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
use std::io;
use std::str::FromStr;
use num_bigint::BigInt;
use num_integer::Integer;
use num_traits::{FromPrimitive, One, ToPrimitive, Zero};
struct Context {
numer: BigInt,
accum: BigInt,
denom: BigInt,
}
impl Context {
fn new() -> Context {
Context {
numer: One::one(),
accum: Zero::zero(),
denom: One::one(),
}
}
fn from_i32(i: i32) -> BigInt {
FromPrimitive::from_i32(i).unwrap()
}
fn extract_digit(&self) -> i32 {
if self.numer > self.accum {
return -1;
}
let (q, r) = (&self.numer * Context::from_i32(3) + &self.accum).div_rem(&self.denom);
if r + &self.numer >= self.denom {
return -1;
}
q.to_i32().unwrap()
}
fn next_term(&mut self, k: i32) {
let y2 = Context::from_i32(k * 2 + 1);
self.accum = (&self.accum + (&self.numer << 1)) * &y2;
self.numer = &self.numer * Context::from_i32(k);
self.denom = &self.denom * y2;
}
fn eliminate_digit(&mut self, d: i32) {
let d = Context::from_i32(d);
let ten = Context::from_i32(10);
self.accum = (&self.accum - &self.denom * d) * &ten;
self.numer = &self.numer * ten;
}
}
fn pidigits(n: isize, out: &mut dyn io::Write) -> io::Result<()> {
let mut k = 0;
let mut context = Context::new();
for i in 1..(n + 1) {
let mut d;
loop {
k += 1;
context.next_term(k);
d = context.extract_digit();
if d != -1 {
break;
}
}
write!(out, "{}", d)?;
if i % 10 == 0 {
write!(out, "\t:{}\n", i)?;
}
context.eliminate_digit(d);
}
let m = n % 10;
if m != 0 {
for _ in m..10 {
write!(out, " ")?;
}
write!(out, "\t:{}\n", n)?;
}
Ok(())
}
const DEFAULT_DIGITS: isize = 512;
fn main() {
let args = std::env::args().collect::<Vec<_>>();
let n = if args.len() < 2 {
DEFAULT_DIGITS
} else if args[1] == "--bench" {
return pidigits(DEFAULT_DIGITS, &mut std::io::sink()).unwrap();
} else {
FromStr::from_str(&args[1]).unwrap()
};
pidigits(n, &mut std::io::stdout()).unwrap();
}

14
third_party/rust/num-bigint-0.2.3/build.rs поставляемый
Просмотреть файл

@ -1,14 +0,0 @@
extern crate autocfg;
use std::env;
fn main() {
let ac = autocfg::new();
if ac.probe_type("i128") {
println!("cargo:rustc-cfg=has_i128");
} else if env::var_os("CARGO_FEATURE_I128").is_some() {
panic!("i128 support was not detected!");
}
autocfg::rerun_path(file!());
}

Просмотреть файл

@ -1,789 +0,0 @@
use std::borrow::Cow;
use std::cmp;
use std::cmp::Ordering::{self, Equal, Greater, Less};
use std::iter::repeat;
use std::mem;
use traits;
use traits::{One, Zero};
use biguint::BigUint;
use bigint::BigInt;
use bigint::Sign;
use bigint::Sign::{Minus, NoSign, Plus};
use big_digit::{self, BigDigit, DoubleBigDigit, SignedDoubleBigDigit};
// Generic functions for add/subtract/multiply with carry/borrow:
// Add with carry:
#[inline]
fn adc(a: BigDigit, b: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit {
*acc += DoubleBigDigit::from(a);
*acc += DoubleBigDigit::from(b);
let lo = *acc as BigDigit;
*acc >>= big_digit::BITS;
lo
}
// Subtract with borrow:
#[inline]
fn sbb(a: BigDigit, b: BigDigit, acc: &mut SignedDoubleBigDigit) -> BigDigit {
*acc += SignedDoubleBigDigit::from(a);
*acc -= SignedDoubleBigDigit::from(b);
let lo = *acc as BigDigit;
*acc >>= big_digit::BITS;
lo
}
#[inline]
pub fn mac_with_carry(a: BigDigit, b: BigDigit, c: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit {
*acc += DoubleBigDigit::from(a);
*acc += DoubleBigDigit::from(b) * DoubleBigDigit::from(c);
let lo = *acc as BigDigit;
*acc >>= big_digit::BITS;
lo
}
#[inline]
pub fn mul_with_carry(a: BigDigit, b: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit {
*acc += DoubleBigDigit::from(a) * DoubleBigDigit::from(b);
let lo = *acc as BigDigit;
*acc >>= big_digit::BITS;
lo
}
/// Divide a two digit numerator by a one digit divisor, returns quotient and remainder:
///
/// Note: the caller must ensure that both the quotient and remainder will fit into a single digit.
/// This is _not_ true for an arbitrary numerator/denominator.
///
/// (This function also matches what the x86 divide instruction does).
#[inline]
fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) {
debug_assert!(hi < divisor);
let lhs = big_digit::to_doublebigdigit(hi, lo);
let rhs = DoubleBigDigit::from(divisor);
((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit)
}
pub fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) {
let mut rem = 0;
for d in a.data.iter_mut().rev() {
let (q, r) = div_wide(rem, *d, b);
*d = q;
rem = r;
}
(a.normalized(), rem)
}
pub fn rem_digit(a: &BigUint, b: BigDigit) -> BigDigit {
let mut rem: DoubleBigDigit = 0;
for &digit in a.data.iter().rev() {
rem = (rem << big_digit::BITS) + DoubleBigDigit::from(digit);
rem %= DoubleBigDigit::from(b);
}
rem as BigDigit
}
// Only for the Add impl:
#[inline]
pub fn __add2(a: &mut [BigDigit], b: &[BigDigit]) -> BigDigit {
debug_assert!(a.len() >= b.len());
let mut carry = 0;
let (a_lo, a_hi) = a.split_at_mut(b.len());
for (a, b) in a_lo.iter_mut().zip(b) {
*a = adc(*a, *b, &mut carry);
}
if carry != 0 {
for a in a_hi {
*a = adc(*a, 0, &mut carry);
if carry == 0 {
break;
}
}
}
carry as BigDigit
}
/// Two argument addition of raw slices:
/// a += b
///
/// The caller _must_ ensure that a is big enough to store the result - typically this means
/// resizing a to max(a.len(), b.len()) + 1, to fit a possible carry.
pub fn add2(a: &mut [BigDigit], b: &[BigDigit]) {
let carry = __add2(a, b);
debug_assert!(carry == 0);
}
pub fn sub2(a: &mut [BigDigit], b: &[BigDigit]) {
let mut borrow = 0;
let len = cmp::min(a.len(), b.len());
let (a_lo, a_hi) = a.split_at_mut(len);
let (b_lo, b_hi) = b.split_at(len);
for (a, b) in a_lo.iter_mut().zip(b_lo) {
*a = sbb(*a, *b, &mut borrow);
}
if borrow != 0 {
for a in a_hi {
*a = sbb(*a, 0, &mut borrow);
if borrow == 0 {
break;
}
}
}
// note: we're _required_ to fail on underflow
assert!(
borrow == 0 && b_hi.iter().all(|x| *x == 0),
"Cannot subtract b from a because b is larger than a."
);
}
// Only for the Sub impl. `a` and `b` must have same length.
#[inline]
pub fn __sub2rev(a: &[BigDigit], b: &mut [BigDigit]) -> BigDigit {
debug_assert!(b.len() == a.len());
let mut borrow = 0;
for (ai, bi) in a.iter().zip(b) {
*bi = sbb(*ai, *bi, &mut borrow);
}
borrow as BigDigit
}
pub fn sub2rev(a: &[BigDigit], b: &mut [BigDigit]) {
debug_assert!(b.len() >= a.len());
let len = cmp::min(a.len(), b.len());
let (a_lo, a_hi) = a.split_at(len);
let (b_lo, b_hi) = b.split_at_mut(len);
let borrow = __sub2rev(a_lo, b_lo);
assert!(a_hi.is_empty());
// note: we're _required_ to fail on underflow
assert!(
borrow == 0 && b_hi.iter().all(|x| *x == 0),
"Cannot subtract b from a because b is larger than a."
);
}
pub fn sub_sign(a: &[BigDigit], b: &[BigDigit]) -> (Sign, BigUint) {
// Normalize:
let a = &a[..a.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
let b = &b[..b.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
match cmp_slice(a, b) {
Greater => {
let mut a = a.to_vec();
sub2(&mut a, b);
(Plus, BigUint::new(a))
}
Less => {
let mut b = b.to_vec();
sub2(&mut b, a);
(Minus, BigUint::new(b))
}
_ => (NoSign, Zero::zero()),
}
}
/// Three argument multiply accumulate:
/// acc += b * c
pub fn mac_digit(acc: &mut [BigDigit], b: &[BigDigit], c: BigDigit) {
if c == 0 {
return;
}
let mut carry = 0;
let (a_lo, a_hi) = acc.split_at_mut(b.len());
for (a, &b) in a_lo.iter_mut().zip(b) {
*a = mac_with_carry(*a, b, c, &mut carry);
}
let mut a = a_hi.iter_mut();
while carry != 0 {
let a = a.next().expect("carry overflow during multiplication!");
*a = adc(*a, 0, &mut carry);
}
}
/// Three argument multiply accumulate:
/// acc += b * c
fn mac3(acc: &mut [BigDigit], b: &[BigDigit], c: &[BigDigit]) {
let (x, y) = if b.len() < c.len() { (b, c) } else { (c, b) };
// We use three algorithms for different input sizes.
//
// - For small inputs, long multiplication is fastest.
// - Next we use Karatsuba multiplication (Toom-2), which we have optimized
// to avoid unnecessary allocations for intermediate values.
// - For the largest inputs we use Toom-3, which better optimizes the
// number of operations, but uses more temporary allocations.
//
// The thresholds are somewhat arbitrary, chosen by evaluating the results
// of `cargo bench --bench bigint multiply`.
if x.len() <= 32 {
// Long multiplication:
for (i, xi) in x.iter().enumerate() {
mac_digit(&mut acc[i..], y, *xi);
}
} else if x.len() <= 256 {
/*
* Karatsuba multiplication:
*
* The idea is that we break x and y up into two smaller numbers that each have about half
* as many digits, like so (note that multiplying by b is just a shift):
*
* x = x0 + x1 * b
* y = y0 + y1 * b
*
* With some algebra, we can compute x * y with three smaller products, where the inputs to
* each of the smaller products have only about half as many digits as x and y:
*
* x * y = (x0 + x1 * b) * (y0 + y1 * b)
*
* x * y = x0 * y0
* + x0 * y1 * b
* + x1 * y0 * b
* + x1 * y1 * b^2
*
* Let p0 = x0 * y0 and p2 = x1 * y1:
*
* x * y = p0
* + (x0 * y1 + x1 * y0) * b
* + p2 * b^2
*
* The real trick is that middle term:
*
* x0 * y1 + x1 * y0
*
* = x0 * y1 + x1 * y0 - p0 + p0 - p2 + p2
*
* = x0 * y1 + x1 * y0 - x0 * y0 - x1 * y1 + p0 + p2
*
* Now we complete the square:
*
* = -(x0 * y0 - x0 * y1 - x1 * y0 + x1 * y1) + p0 + p2
*
* = -((x1 - x0) * (y1 - y0)) + p0 + p2
*
* Let p1 = (x1 - x0) * (y1 - y0), and substitute back into our original formula:
*
* x * y = p0
* + (p0 + p2 - p1) * b
* + p2 * b^2
*
* Where the three intermediate products are:
*
* p0 = x0 * y0
* p1 = (x1 - x0) * (y1 - y0)
* p2 = x1 * y1
*
* In doing the computation, we take great care to avoid unnecessary temporary variables
* (since creating a BigUint requires a heap allocation): thus, we rearrange the formula a
* bit so we can use the same temporary variable for all the intermediate products:
*
* x * y = p2 * b^2 + p2 * b
* + p0 * b + p0
* - p1 * b
*
* The other trick we use is instead of doing explicit shifts, we slice acc at the
* appropriate offset when doing the add.
*/
/*
* When x is smaller than y, it's significantly faster to pick b such that x is split in
* half, not y:
*/
let b = x.len() / 2;
let (x0, x1) = x.split_at(b);
let (y0, y1) = y.split_at(b);
/*
* We reuse the same BigUint for all the intermediate multiplies and have to size p
* appropriately here: x1.len() >= x0.len and y1.len() >= y0.len():
*/
let len = x1.len() + y1.len() + 1;
let mut p = BigUint { data: vec![0; len] };
// p2 = x1 * y1
mac3(&mut p.data[..], x1, y1);
// Not required, but the adds go faster if we drop any unneeded 0s from the end:
p.normalize();
add2(&mut acc[b..], &p.data[..]);
add2(&mut acc[b * 2..], &p.data[..]);
// Zero out p before the next multiply:
p.data.truncate(0);
p.data.extend(repeat(0).take(len));
// p0 = x0 * y0
mac3(&mut p.data[..], x0, y0);
p.normalize();
add2(&mut acc[..], &p.data[..]);
add2(&mut acc[b..], &p.data[..]);
// p1 = (x1 - x0) * (y1 - y0)
// We do this one last, since it may be negative and acc can't ever be negative:
let (j0_sign, j0) = sub_sign(x1, x0);
let (j1_sign, j1) = sub_sign(y1, y0);
match j0_sign * j1_sign {
Plus => {
p.data.truncate(0);
p.data.extend(repeat(0).take(len));
mac3(&mut p.data[..], &j0.data[..], &j1.data[..]);
p.normalize();
sub2(&mut acc[b..], &p.data[..]);
}
Minus => {
mac3(&mut acc[b..], &j0.data[..], &j1.data[..]);
}
NoSign => (),
}
} else {
// Toom-3 multiplication:
//
// Toom-3 is like Karatsuba above, but dividing the inputs into three parts.
// Both are instances of Toom-Cook, using `k=3` and `k=2` respectively.
//
// The general idea is to treat the large integers digits as
// polynomials of a certain degree and determine the coefficients/digits
// of the product of the two via interpolation of the polynomial product.
let i = y.len() / 3 + 1;
let x0_len = cmp::min(x.len(), i);
let x1_len = cmp::min(x.len() - x0_len, i);
let y0_len = i;
let y1_len = cmp::min(y.len() - y0_len, i);
// Break x and y into three parts, representating an order two polynomial.
// t is chosen to be the size of a digit so we can use faster shifts
// in place of multiplications.
//
// x(t) = x2*t^2 + x1*t + x0
let x0 = BigInt::from_slice(Plus, &x[..x0_len]);
let x1 = BigInt::from_slice(Plus, &x[x0_len..x0_len + x1_len]);
let x2 = BigInt::from_slice(Plus, &x[x0_len + x1_len..]);
// y(t) = y2*t^2 + y1*t + y0
let y0 = BigInt::from_slice(Plus, &y[..y0_len]);
let y1 = BigInt::from_slice(Plus, &y[y0_len..y0_len + y1_len]);
let y2 = BigInt::from_slice(Plus, &y[y0_len + y1_len..]);
// Let w(t) = x(t) * y(t)
//
// This gives us the following order-4 polynomial.
//
// w(t) = w4*t^4 + w3*t^3 + w2*t^2 + w1*t + w0
//
// We need to find the coefficients w4, w3, w2, w1 and w0. Instead
// of simply multiplying the x and y in total, we can evaluate w
// at 5 points. An n-degree polynomial is uniquely identified by (n + 1)
// points.
//
// It is arbitrary as to what points we evaluate w at but we use the
// following.
//
// w(t) at t = 0, 1, -1, -2 and inf
//
// The values for w(t) in terms of x(t)*y(t) at these points are:
//
// let a = w(0) = x0 * y0
// let b = w(1) = (x2 + x1 + x0) * (y2 + y1 + y0)
// let c = w(-1) = (x2 - x1 + x0) * (y2 - y1 + y0)
// let d = w(-2) = (4*x2 - 2*x1 + x0) * (4*y2 - 2*y1 + y0)
// let e = w(inf) = x2 * y2 as t -> inf
// x0 + x2, avoiding temporaries
let p = &x0 + &x2;
// y0 + y2, avoiding temporaries
let q = &y0 + &y2;
// x2 - x1 + x0, avoiding temporaries
let p2 = &p - &x1;
// y2 - y1 + y0, avoiding temporaries
let q2 = &q - &y1;
// w(0)
let r0 = &x0 * &y0;
// w(inf)
let r4 = &x2 * &y2;
// w(1)
let r1 = (p + x1) * (q + y1);
// w(-1)
let r2 = &p2 * &q2;
// w(-2)
let r3 = ((p2 + x2) * 2 - x0) * ((q2 + y2) * 2 - y0);
// Evaluating these points gives us the following system of linear equations.
//
// 0 0 0 0 1 | a
// 1 1 1 1 1 | b
// 1 -1 1 -1 1 | c
// 16 -8 4 -2 1 | d
// 1 0 0 0 0 | e
//
// The solved equation (after gaussian elimination or similar)
// in terms of its coefficients:
//
// w0 = w(0)
// w1 = w(0)/2 + w(1)/3 - w(-1) + w(2)/6 - 2*w(inf)
// w2 = -w(0) + w(1)/2 + w(-1)/2 - w(inf)
// w3 = -w(0)/2 + w(1)/6 + w(-1)/2 - w(1)/6
// w4 = w(inf)
//
// This particular sequence is given by Bodrato and is an interpolation
// of the above equations.
let mut comp3: BigInt = (r3 - &r1) / 3;
let mut comp1: BigInt = (r1 - &r2) / 2;
let mut comp2: BigInt = r2 - &r0;
comp3 = (&comp2 - comp3) / 2 + &r4 * 2;
comp2 = comp2 + &comp1 - &r4;
comp1 = comp1 - &comp3;
// Recomposition. The coefficients of the polynomial are now known.
//
// Evaluate at w(t) where t is our given base to get the result.
let result = r0
+ (comp1 << 32 * i)
+ (comp2 << 2 * 32 * i)
+ (comp3 << 3 * 32 * i)
+ (r4 << 4 * 32 * i);
let result_pos = result.to_biguint().unwrap();
add2(&mut acc[..], &result_pos.data);
}
}
pub fn mul3(x: &[BigDigit], y: &[BigDigit]) -> BigUint {
let len = x.len() + y.len() + 1;
let mut prod = BigUint { data: vec![0; len] };
mac3(&mut prod.data[..], x, y);
prod.normalized()
}
pub fn scalar_mul(a: &mut [BigDigit], b: BigDigit) -> BigDigit {
let mut carry = 0;
for a in a.iter_mut() {
*a = mul_with_carry(*a, b, &mut carry);
}
carry as BigDigit
}
pub fn div_rem(mut u: BigUint, mut d: BigUint) -> (BigUint, BigUint) {
if d.is_zero() {
panic!()
}
if u.is_zero() {
return (Zero::zero(), Zero::zero());
}
if d.data.len() == 1 {
if d.data == [1] {
return (u, Zero::zero());
}
let (div, rem) = div_rem_digit(u, d.data[0]);
// reuse d
d.data.clear();
d += rem;
return (div, d);
}
// Required or the q_len calculation below can underflow:
match u.cmp(&d) {
Less => return (Zero::zero(), u),
Equal => {
u.set_one();
return (u, Zero::zero());
}
Greater => {} // Do nothing
}
// This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
//
// First, normalize the arguments so the highest bit in the highest digit of the divisor is
// set: the main loop uses the highest digit of the divisor for generating guesses, so we
// want it to be the largest number we can efficiently divide by.
//
let shift = d.data.last().unwrap().leading_zeros() as usize;
let (q, r) = if shift == 0 {
// no need to clone d
div_rem_core(u, &d)
} else {
div_rem_core(u << shift, &(d << shift))
};
// renormalize the remainder
(q, r >> shift)
}
pub fn div_rem_ref(u: &BigUint, d: &BigUint) -> (BigUint, BigUint) {
if d.is_zero() {
panic!()
}
if u.is_zero() {
return (Zero::zero(), Zero::zero());
}
if d.data.len() == 1 {
if d.data == [1] {
return (u.clone(), Zero::zero());
}
let (div, rem) = div_rem_digit(u.clone(), d.data[0]);
return (div, rem.into());
}
// Required or the q_len calculation below can underflow:
match u.cmp(d) {
Less => return (Zero::zero(), u.clone()),
Equal => return (One::one(), Zero::zero()),
Greater => {} // Do nothing
}
// This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
//
// First, normalize the arguments so the highest bit in the highest digit of the divisor is
// set: the main loop uses the highest digit of the divisor for generating guesses, so we
// want it to be the largest number we can efficiently divide by.
//
let shift = d.data.last().unwrap().leading_zeros() as usize;
let (q, r) = if shift == 0 {
// no need to clone d
div_rem_core(u.clone(), d)
} else {
div_rem_core(u << shift, &(d << shift))
};
// renormalize the remainder
(q, r >> shift)
}
/// an implementation of Knuth, TAOCP vol 2 section 4.3, algorithm D
///
/// # Correctness
///
/// This function requires the following conditions to run correctly and/or effectively
///
/// - `a > b`
/// - `d.data.len() > 1`
/// - `d.data.last().unwrap().leading_zeros() == 0`
fn div_rem_core(mut a: BigUint, b: &BigUint) -> (BigUint, BigUint) {
// The algorithm works by incrementally calculating "guesses", q0, for part of the
// remainder. Once we have any number q0 such that q0 * b <= a, we can set
//
// q += q0
// a -= q0 * b
//
// and then iterate until a < b. Then, (q, a) will be our desired quotient and remainder.
//
// q0, our guess, is calculated by dividing the last few digits of a by the last digit of b
// - this should give us a guess that is "close" to the actual quotient, but is possibly
// greater than the actual quotient. If q0 * b > a, we simply use iterated subtraction
// until we have a guess such that q0 * b <= a.
//
let bn = *b.data.last().unwrap();
let q_len = a.data.len() - b.data.len() + 1;
let mut q = BigUint {
data: vec![0; q_len],
};
// We reuse the same temporary to avoid hitting the allocator in our inner loop - this is
// sized to hold a0 (in the common case; if a particular digit of the quotient is zero a0
// can be bigger).
//
let mut tmp = BigUint {
data: Vec::with_capacity(2),
};
for j in (0..q_len).rev() {
/*
* When calculating our next guess q0, we don't need to consider the digits below j
* + b.data.len() - 1: we're guessing digit j of the quotient (i.e. q0 << j) from
* digit bn of the divisor (i.e. bn << (b.data.len() - 1) - so the product of those
* two numbers will be zero in all digits up to (j + b.data.len() - 1).
*/
let offset = j + b.data.len() - 1;
if offset >= a.data.len() {
continue;
}
/* just avoiding a heap allocation: */
let mut a0 = tmp;
a0.data.truncate(0);
a0.data.extend(a.data[offset..].iter().cloned());
/*
* q0 << j * big_digit::BITS is our actual quotient estimate - we do the shifts
* implicitly at the end, when adding and subtracting to a and q. Not only do we
* save the cost of the shifts, the rest of the arithmetic gets to work with
* smaller numbers.
*/
let (mut q0, _) = div_rem_digit(a0, bn);
let mut prod = b * &q0;
while cmp_slice(&prod.data[..], &a.data[j..]) == Greater {
let one: BigUint = One::one();
q0 = q0 - one;
prod = prod - b;
}
add2(&mut q.data[j..], &q0.data[..]);
sub2(&mut a.data[j..], &prod.data[..]);
a.normalize();
tmp = q0;
}
debug_assert!(&a < b);
(q.normalized(), a)
}
/// Find last set bit
/// fls(0) == 0, fls(u32::MAX) == 32
pub fn fls<T: traits::PrimInt>(v: T) -> usize {
mem::size_of::<T>() * 8 - v.leading_zeros() as usize
}
pub fn ilog2<T: traits::PrimInt>(v: T) -> usize {
fls(v) - 1
}
#[inline]
pub fn biguint_shl(n: Cow<BigUint>, bits: usize) -> BigUint {
let n_unit = bits / big_digit::BITS;
let mut data = match n_unit {
0 => n.into_owned().data,
_ => {
let len = n_unit + n.data.len() + 1;
let mut data = Vec::with_capacity(len);
data.extend(repeat(0).take(n_unit));
data.extend(n.data.iter().cloned());
data
}
};
let n_bits = bits % big_digit::BITS;
if n_bits > 0 {
let mut carry = 0;
for elem in data[n_unit..].iter_mut() {
let new_carry = *elem >> (big_digit::BITS - n_bits);
*elem = (*elem << n_bits) | carry;
carry = new_carry;
}
if carry != 0 {
data.push(carry);
}
}
BigUint::new(data)
}
#[inline]
pub fn biguint_shr(n: Cow<BigUint>, bits: usize) -> BigUint {
let n_unit = bits / big_digit::BITS;
if n_unit >= n.data.len() {
return Zero::zero();
}
let mut data = match n {
Cow::Borrowed(n) => n.data[n_unit..].to_vec(),
Cow::Owned(mut n) => {
n.data.drain(..n_unit);
n.data
}
};
let n_bits = bits % big_digit::BITS;
if n_bits > 0 {
let mut borrow = 0;
for elem in data.iter_mut().rev() {
let new_borrow = *elem << (big_digit::BITS - n_bits);
*elem = (*elem >> n_bits) | borrow;
borrow = new_borrow;
}
}
BigUint::new(data)
}
pub fn cmp_slice(a: &[BigDigit], b: &[BigDigit]) -> Ordering {
debug_assert!(a.last() != Some(&0));
debug_assert!(b.last() != Some(&0));
let (a_len, b_len) = (a.len(), b.len());
if a_len < b_len {
return Less;
}
if a_len > b_len {
return Greater;
}
for (&ai, &bi) in a.iter().rev().zip(b.iter().rev()) {
if ai < bi {
return Less;
}
if ai > bi {
return Greater;
}
}
return Equal;
}
#[cfg(test)]
mod algorithm_tests {
use big_digit::BigDigit;
use traits::Num;
use Sign::Plus;
use {BigInt, BigUint};
#[test]
fn test_sub_sign() {
use super::sub_sign;
fn sub_sign_i(a: &[BigDigit], b: &[BigDigit]) -> BigInt {
let (sign, val) = sub_sign(a, b);
BigInt::from_biguint(sign, val)
}
let a = BigUint::from_str_radix("265252859812191058636308480000000", 10).unwrap();
let b = BigUint::from_str_radix("26525285981219105863630848000000", 10).unwrap();
let a_i = BigInt::from_biguint(Plus, a.clone());
let b_i = BigInt::from_biguint(Plus, b.clone());
assert_eq!(sub_sign_i(&a.data[..], &b.data[..]), &a_i - &b_i);
assert_eq!(sub_sign_i(&b.data[..], &a.data[..]), &b_i - &a_i);
}
}

3084
third_party/rust/num-bigint-0.2.3/src/bigint.rs поставляемый

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -1,218 +0,0 @@
//! Randomization of big integers
use rand::distributions::uniform::{SampleUniform, UniformSampler};
use rand::prelude::*;
use rand::AsByteSliceMut;
use BigInt;
use BigUint;
use Sign::*;
use big_digit::BigDigit;
use bigint::{into_magnitude, magnitude};
use integer::Integer;
use traits::Zero;
pub trait RandBigInt {
/// Generate a random `BigUint` of the given bit size.
fn gen_biguint(&mut self, bit_size: usize) -> BigUint;
/// Generate a random BigInt of the given bit size.
fn gen_bigint(&mut self, bit_size: usize) -> BigInt;
/// Generate a random `BigUint` less than the given bound. Fails
/// when the bound is zero.
fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint;
/// Generate a random `BigUint` within the given range. The lower
/// bound is inclusive; the upper bound is exclusive. Fails when
/// the upper bound is not greater than the lower bound.
fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint;
/// Generate a random `BigInt` within the given range. The lower
/// bound is inclusive; the upper bound is exclusive. Fails when
/// the upper bound is not greater than the lower bound.
fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt;
}
impl<R: Rng + ?Sized> RandBigInt for R {
fn gen_biguint(&mut self, bit_size: usize) -> BigUint {
use super::big_digit::BITS;
let (digits, rem) = bit_size.div_rem(&BITS);
let mut data = vec![BigDigit::default(); digits + (rem > 0) as usize];
// `fill_bytes` is faster than many `gen::<u32>` calls
self.fill_bytes(data[..].as_byte_slice_mut());
// Swap bytes per the `Rng::fill` source. This might be
// unnecessary if reproducibility across architectures is not
// desired.
data.to_le();
if rem > 0 {
data[digits] >>= BITS - rem;
}
BigUint::new(data)
}
fn gen_bigint(&mut self, bit_size: usize) -> BigInt {
loop {
// Generate a random BigUint...
let biguint = self.gen_biguint(bit_size);
// ...and then randomly assign it a Sign...
let sign = if biguint.is_zero() {
// ...except that if the BigUint is zero, we need to try
// again with probability 0.5. This is because otherwise,
// the probability of generating a zero BigInt would be
// double that of any other number.
if self.gen() {
continue;
} else {
NoSign
}
} else if self.gen() {
Plus
} else {
Minus
};
return BigInt::from_biguint(sign, biguint);
}
}
fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint {
assert!(!bound.is_zero());
let bits = bound.bits();
loop {
let n = self.gen_biguint(bits);
if n < *bound {
return n;
}
}
}
fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint {
assert!(*lbound < *ubound);
if lbound.is_zero() {
self.gen_biguint_below(ubound)
} else {
lbound + self.gen_biguint_below(&(ubound - lbound))
}
}
fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt {
assert!(*lbound < *ubound);
if lbound.is_zero() {
BigInt::from(self.gen_biguint_below(magnitude(&ubound)))
} else if ubound.is_zero() {
lbound + BigInt::from(self.gen_biguint_below(magnitude(&lbound)))
} else {
let delta = ubound - lbound;
lbound + BigInt::from(self.gen_biguint_below(magnitude(&delta)))
}
}
}
/// The back-end implementing rand's `UniformSampler` for `BigUint`.
#[derive(Clone, Debug)]
pub struct UniformBigUint {
base: BigUint,
len: BigUint,
}
impl UniformSampler for UniformBigUint {
type X = BigUint;
#[inline]
fn new(low: Self::X, high: Self::X) -> Self {
assert!(low < high);
UniformBigUint {
len: high - &low,
base: low,
}
}
#[inline]
fn new_inclusive(low: Self::X, high: Self::X) -> Self {
assert!(low <= high);
Self::new(low, high + 1u32)
}
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
&self.base + rng.gen_biguint_below(&self.len)
}
#[inline]
fn sample_single<R: Rng + ?Sized>(low: Self::X, high: Self::X, rng: &mut R) -> Self::X {
rng.gen_biguint_range(&low, &high)
}
}
impl SampleUniform for BigUint {
type Sampler = UniformBigUint;
}
/// The back-end implementing rand's `UniformSampler` for `BigInt`.
#[derive(Clone, Debug)]
pub struct UniformBigInt {
base: BigInt,
len: BigUint,
}
impl UniformSampler for UniformBigInt {
type X = BigInt;
#[inline]
fn new(low: Self::X, high: Self::X) -> Self {
assert!(low < high);
UniformBigInt {
len: into_magnitude(high - &low),
base: low,
}
}
#[inline]
fn new_inclusive(low: Self::X, high: Self::X) -> Self {
assert!(low <= high);
Self::new(low, high + 1u32)
}
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
&self.base + BigInt::from(rng.gen_biguint_below(&self.len))
}
#[inline]
fn sample_single<R: Rng + ?Sized>(low: Self::X, high: Self::X, rng: &mut R) -> Self::X {
rng.gen_bigint_range(&low, &high)
}
}
impl SampleUniform for BigInt {
type Sampler = UniformBigInt;
}
/// A random distribution for `BigUint` and `BigInt` values of a particular bit size.
#[derive(Clone, Copy, Debug)]
pub struct RandomBits {
bits: usize,
}
impl RandomBits {
#[inline]
pub fn new(bits: usize) -> RandomBits {
RandomBits { bits }
}
}
impl Distribution<BigUint> for RandomBits {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> BigUint {
rng.gen_biguint(self.bits)
}
}
impl Distribution<BigInt> for RandomBits {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> BigInt {
rng.gen_bigint(self.bits)
}
}

3088
third_party/rust/num-bigint-0.2.3/src/biguint.rs поставляемый

Разница между файлами не показана из-за своего большого размера Загрузить разницу

206
third_party/rust/num-bigint-0.2.3/src/lib.rs поставляемый
Просмотреть файл

@ -1,206 +0,0 @@
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A Big integer (signed version: `BigInt`, unsigned version: `BigUint`).
//!
//! A `BigUint` is represented as a vector of `BigDigit`s.
//! A `BigInt` is a combination of `BigUint` and `Sign`.
//!
//! Common numerical operations are overloaded, so we can treat them
//! the same way we treat other numbers.
//!
//! ## Example
//!
//! ```rust
//! extern crate num_bigint;
//! extern crate num_traits;
//!
//! # fn main() {
//! use num_bigint::BigUint;
//! use num_traits::{Zero, One};
//! use std::mem::replace;
//!
//! // Calculate large fibonacci numbers.
//! fn fib(n: usize) -> BigUint {
//! let mut f0: BigUint = Zero::zero();
//! let mut f1: BigUint = One::one();
//! for _ in 0..n {
//! let f2 = f0 + &f1;
//! // This is a low cost way of swapping f0 with f1 and f1 with f2.
//! f0 = replace(&mut f1, f2);
//! }
//! f0
//! }
//!
//! // This is a very large number.
//! println!("fib(1000) = {}", fib(1000));
//! # }
//! ```
//!
//! It's easy to generate large random numbers:
//!
//! ```rust
//! # #[cfg(feature = "rand")]
//! extern crate rand;
//! extern crate num_bigint as bigint;
//!
//! # #[cfg(feature = "rand")]
//! # fn main() {
//! use bigint::{ToBigInt, RandBigInt};
//!
//! let mut rng = rand::thread_rng();
//! let a = rng.gen_bigint(1000);
//!
//! let low = -10000.to_bigint().unwrap();
//! let high = 10000.to_bigint().unwrap();
//! let b = rng.gen_bigint_range(&low, &high);
//!
//! // Probably an even larger number.
//! println!("{}", a * b);
//! # }
//!
//! # #[cfg(not(feature = "rand"))]
//! # fn main() {
//! # }
//! ```
//!
//! ## Compatibility
//!
//! The `num-bigint` crate is tested for rustc 1.15 and greater.
#![doc(html_root_url = "https://docs.rs/num-bigint/0.2")]
// We don't actually support `no_std` yet, and probably won't until `alloc` is stable. We're just
// reserving this ability with the "std" feature now, and compilation will fail without.
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "rand")]
extern crate rand;
#[cfg(feature = "serde")]
extern crate serde;
extern crate num_integer as integer;
extern crate num_traits as traits;
#[cfg(feature = "quickcheck")]
extern crate quickcheck;
use std::error::Error;
use std::fmt;
#[macro_use]
mod macros;
mod bigint;
mod biguint;
#[cfg(feature = "rand")]
mod bigrand;
#[cfg(target_pointer_width = "32")]
type UsizePromotion = u32;
#[cfg(target_pointer_width = "64")]
type UsizePromotion = u64;
#[cfg(target_pointer_width = "32")]
type IsizePromotion = i32;
#[cfg(target_pointer_width = "64")]
type IsizePromotion = i64;
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParseBigIntError {
kind: BigIntErrorKind,
}
#[derive(Debug, Clone, PartialEq, Eq)]
enum BigIntErrorKind {
Empty,
InvalidDigit,
}
impl ParseBigIntError {
fn __description(&self) -> &str {
use BigIntErrorKind::*;
match self.kind {
Empty => "cannot parse integer from empty string",
InvalidDigit => "invalid digit found in string",
}
}
fn empty() -> Self {
ParseBigIntError {
kind: BigIntErrorKind::Empty,
}
}
fn invalid() -> Self {
ParseBigIntError {
kind: BigIntErrorKind::InvalidDigit,
}
}
}
impl fmt::Display for ParseBigIntError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.__description().fmt(f)
}
}
impl Error for ParseBigIntError {
fn description(&self) -> &str {
self.__description()
}
}
pub use biguint::BigUint;
pub use biguint::ToBigUint;
pub use bigint::BigInt;
pub use bigint::Sign;
pub use bigint::ToBigInt;
#[cfg(feature = "rand")]
pub use bigrand::{RandBigInt, RandomBits, UniformBigInt, UniformBigUint};
mod big_digit {
/// A `BigDigit` is a `BigUint`'s composing element.
pub type BigDigit = u32;
/// A `DoubleBigDigit` is the internal type used to do the computations. Its
/// size is the double of the size of `BigDigit`.
pub type DoubleBigDigit = u64;
/// A `SignedDoubleBigDigit` is the signed version of `DoubleBigDigit`.
pub type SignedDoubleBigDigit = i64;
// `DoubleBigDigit` size dependent
pub const BITS: usize = 32;
const LO_MASK: DoubleBigDigit = (-1i32 as DoubleBigDigit) >> BITS;
#[inline]
fn get_hi(n: DoubleBigDigit) -> BigDigit {
(n >> BITS) as BigDigit
}
#[inline]
fn get_lo(n: DoubleBigDigit) -> BigDigit {
(n & LO_MASK) as BigDigit
}
/// Split one `DoubleBigDigit` into two `BigDigit`s.
#[inline]
pub fn from_doublebigdigit(n: DoubleBigDigit) -> (BigDigit, BigDigit) {
(get_hi(n), get_lo(n))
}
/// Join two `BigDigit`s into one `DoubleBigDigit`
#[inline]
pub fn to_doublebigdigit(hi: BigDigit, lo: BigDigit) -> DoubleBigDigit {
DoubleBigDigit::from(lo) | (DoubleBigDigit::from(hi) << BITS)
}
}

Просмотреть файл

@ -1,445 +0,0 @@
#![allow(unknown_lints)] // older rustc doesn't know `unused_macros`
#![allow(unused_macros)]
macro_rules! forward_val_val_binop {
(impl $imp:ident for $res:ty, $method:ident) => {
impl $imp<$res> for $res {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
// forward to val-ref
$imp::$method(self, &other)
}
}
};
}
macro_rules! forward_val_val_binop_commutative {
(impl $imp:ident for $res:ty, $method:ident) => {
impl $imp<$res> for $res {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
// forward to val-ref, with the larger capacity as val
if self.capacity() >= other.capacity() {
$imp::$method(self, &other)
} else {
$imp::$method(other, &self)
}
}
}
};
}
macro_rules! forward_ref_val_binop {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a> $imp<$res> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
// forward to ref-ref
$imp::$method(self, &other)
}
}
};
}
macro_rules! forward_ref_val_binop_commutative {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a> $imp<$res> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
// reverse, forward to val-ref
$imp::$method(other, self)
}
}
};
}
macro_rules! forward_val_ref_binop {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a> $imp<&'a $res> for $res {
type Output = $res;
#[inline]
fn $method(self, other: &$res) -> $res {
// forward to ref-ref
$imp::$method(&self, other)
}
}
};
}
macro_rules! forward_ref_ref_binop {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a, 'b> $imp<&'b $res> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: &$res) -> $res {
// forward to val-ref
$imp::$method(self.clone(), other)
}
}
};
}
macro_rules! forward_ref_ref_binop_commutative {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a, 'b> $imp<&'b $res> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: &$res) -> $res {
// forward to val-ref, choosing the larger to clone
if self.len() >= other.len() {
$imp::$method(self.clone(), other)
} else {
$imp::$method(other.clone(), self)
}
}
}
};
}
macro_rules! forward_val_assign {
(impl $imp:ident for $res:ty, $method:ident) => {
impl $imp<$res> for $res {
#[inline]
fn $method(&mut self, other: $res) {
self.$method(&other);
}
}
};
}
macro_rules! forward_val_assign_scalar {
(impl $imp:ident for $res:ty, $scalar:ty, $method:ident) => {
impl $imp<$res> for $scalar {
#[inline]
fn $method(&mut self, other: $res) {
self.$method(&other);
}
}
};
}
/// use this if val_val_binop is already implemented and the reversed order is required
macro_rules! forward_scalar_val_val_binop_commutative {
(impl $imp:ident < $scalar:ty > for $res:ty, $method:ident) => {
impl $imp<$res> for $scalar {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
$imp::$method(other, self)
}
}
};
}
// Forward scalar to ref-val, when reusing storage is not helpful
macro_rules! forward_scalar_val_val_binop_to_ref_val {
(impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
impl $imp<$scalar> for $res {
type Output = $res;
#[inline]
fn $method(self, other: $scalar) -> $res {
$imp::$method(&self, other)
}
}
impl $imp<$res> for $scalar {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
$imp::$method(self, &other)
}
}
};
}
macro_rules! forward_scalar_ref_ref_binop_to_ref_val {
(impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
impl<'a, 'b> $imp<&'b $scalar> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: &$scalar) -> $res {
$imp::$method(self, *other)
}
}
impl<'a, 'b> $imp<&'a $res> for &'b $scalar {
type Output = $res;
#[inline]
fn $method(self, other: &$res) -> $res {
$imp::$method(*self, other)
}
}
};
}
macro_rules! forward_scalar_val_ref_binop_to_ref_val {
(impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
impl<'a> $imp<&'a $scalar> for $res {
type Output = $res;
#[inline]
fn $method(self, other: &$scalar) -> $res {
$imp::$method(&self, *other)
}
}
impl<'a> $imp<$res> for &'a $scalar {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
$imp::$method(*self, &other)
}
}
};
}
macro_rules! forward_scalar_val_ref_binop_to_val_val {
(impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
impl<'a> $imp<&'a $scalar> for $res {
type Output = $res;
#[inline]
fn $method(self, other: &$scalar) -> $res {
$imp::$method(self, *other)
}
}
impl<'a> $imp<$res> for &'a $scalar {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
$imp::$method(*self, other)
}
}
};
}
macro_rules! forward_scalar_ref_val_binop_to_val_val {
(impl $imp:ident < $scalar:ty > for $res:ty, $method:ident) => {
impl<'a> $imp<$scalar> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: $scalar) -> $res {
$imp::$method(self.clone(), other)
}
}
impl<'a> $imp<&'a $res> for $scalar {
type Output = $res;
#[inline]
fn $method(self, other: &$res) -> $res {
$imp::$method(self, other.clone())
}
}
};
}
macro_rules! forward_scalar_ref_ref_binop_to_val_val {
(impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
impl<'a, 'b> $imp<&'b $scalar> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: &$scalar) -> $res {
$imp::$method(self.clone(), *other)
}
}
impl<'a, 'b> $imp<&'a $res> for &'b $scalar {
type Output = $res;
#[inline]
fn $method(self, other: &$res) -> $res {
$imp::$method(*self, other.clone())
}
}
};
}
macro_rules! promote_scalars {
(impl $imp:ident<$promo:ty> for $res:ty, $method:ident, $( $scalar:ty ),*) => {
$(
forward_all_scalar_binop_to_val_val!(impl $imp<$scalar> for $res, $method);
impl $imp<$scalar> for $res {
type Output = $res;
#[cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))]
#[cfg_attr(feature = "cargo-clippy", allow(cast_lossless))]
#[inline]
fn $method(self, other: $scalar) -> $res {
$imp::$method(self, other as $promo)
}
}
impl $imp<$res> for $scalar {
type Output = $res;
#[cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))]
#[cfg_attr(feature = "cargo-clippy", allow(cast_lossless))]
#[inline]
fn $method(self, other: $res) -> $res {
$imp::$method(self as $promo, other)
}
}
)*
}
}
macro_rules! promote_scalars_assign {
(impl $imp:ident<$promo:ty> for $res:ty, $method:ident, $( $scalar:ty ),*) => {
$(
impl $imp<$scalar> for $res {
#[cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))]
#[cfg_attr(feature = "cargo-clippy", allow(cast_lossless))]
#[inline]
fn $method(&mut self, other: $scalar) {
self.$method(other as $promo);
}
}
)*
}
}
macro_rules! promote_unsigned_scalars {
(impl $imp:ident for $res:ty, $method:ident) => {
promote_scalars!(impl $imp<u32> for $res, $method, u8, u16);
promote_scalars!(impl $imp<UsizePromotion> for $res, $method, usize);
}
}
macro_rules! promote_unsigned_scalars_assign {
(impl $imp:ident for $res:ty, $method:ident) => {
promote_scalars_assign!(impl $imp<u32> for $res, $method, u8, u16);
promote_scalars_assign!(impl $imp<UsizePromotion> for $res, $method, usize);
}
}
macro_rules! promote_signed_scalars {
(impl $imp:ident for $res:ty, $method:ident) => {
promote_scalars!(impl $imp<i32> for $res, $method, i8, i16);
promote_scalars!(impl $imp<IsizePromotion> for $res, $method, isize);
}
}
macro_rules! promote_signed_scalars_assign {
(impl $imp:ident for $res:ty, $method:ident) => {
promote_scalars_assign!(impl $imp<i32> for $res, $method, i8, i16);
promote_scalars_assign!(impl $imp<UsizePromotion> for $res, $method, isize);
}
}
// Forward everything to ref-ref, when reusing storage is not helpful
macro_rules! forward_all_binop_to_ref_ref {
(impl $imp:ident for $res:ty, $method:ident) => {
forward_val_val_binop!(impl $imp for $res, $method);
forward_val_ref_binop!(impl $imp for $res, $method);
forward_ref_val_binop!(impl $imp for $res, $method);
};
}
// Forward everything to val-ref, so LHS storage can be reused
macro_rules! forward_all_binop_to_val_ref {
(impl $imp:ident for $res:ty, $method:ident) => {
forward_val_val_binop!(impl $imp for $res, $method);
forward_ref_val_binop!(impl $imp for $res, $method);
forward_ref_ref_binop!(impl $imp for $res, $method);
};
}
// Forward everything to val-ref, commutatively, so either LHS or RHS storage can be reused
macro_rules! forward_all_binop_to_val_ref_commutative {
(impl $imp:ident for $res:ty, $method:ident) => {
forward_val_val_binop_commutative!(impl $imp for $res, $method);
forward_ref_val_binop_commutative!(impl $imp for $res, $method);
forward_ref_ref_binop_commutative!(impl $imp for $res, $method);
};
}
macro_rules! forward_all_scalar_binop_to_ref_val {
(impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
forward_scalar_val_val_binop_to_ref_val!(impl $imp<$scalar> for $res, $method);
forward_scalar_val_ref_binop_to_ref_val!(impl $imp<$scalar> for $res, $method);
forward_scalar_ref_ref_binop_to_ref_val!(impl $imp<$scalar> for $res, $method);
}
}
macro_rules! forward_all_scalar_binop_to_val_val {
(impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
forward_scalar_val_ref_binop_to_val_val!(impl $imp<$scalar> for $res, $method);
forward_scalar_ref_val_binop_to_val_val!(impl $imp<$scalar> for $res, $method);
forward_scalar_ref_ref_binop_to_val_val!(impl $imp<$scalar> for $res, $method);
}
}
macro_rules! forward_all_scalar_binop_to_val_val_commutative {
(impl $imp:ident<$scalar:ty> for $res:ty, $method:ident) => {
forward_scalar_val_val_binop_commutative!(impl $imp<$scalar> for $res, $method);
forward_all_scalar_binop_to_val_val!(impl $imp<$scalar> for $res, $method);
}
}
macro_rules! promote_all_scalars {
(impl $imp:ident for $res:ty, $method:ident) => {
promote_unsigned_scalars!(impl $imp for $res, $method);
promote_signed_scalars!(impl $imp for $res, $method);
}
}
macro_rules! promote_all_scalars_assign {
(impl $imp:ident for $res:ty, $method:ident) => {
promote_unsigned_scalars_assign!(impl $imp for $res, $method);
promote_signed_scalars_assign!(impl $imp for $res, $method);
}
}
macro_rules! impl_sum_iter_type {
($res:ty) => {
impl<T> Sum<T> for $res
where
$res: Add<T, Output = $res>,
{
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = T>,
{
iter.fold(Zero::zero(), <$res>::add)
}
}
};
}
macro_rules! impl_product_iter_type {
($res:ty) => {
impl<T> Product<T> for $res
where
$res: Mul<T, Output = $res>,
{
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = T>,
{
iter.fold(One::one(), <$res>::mul)
}
}
};
}

129
third_party/rust/num-bigint-0.2.3/src/monty.rs поставляемый
Просмотреть файл

@ -1,129 +0,0 @@
use integer::Integer;
use traits::Zero;
use biguint::BigUint;
struct MontyReducer<'a> {
n: &'a BigUint,
n0inv: u32,
}
// Calculate the modular inverse of `num`, using Extended GCD.
//
// Reference:
// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.20
fn inv_mod_u32(num: u32) -> u32 {
// num needs to be relatively prime to 2**32 -- i.e. it must be odd.
assert!(num % 2 != 0);
let mut a: i64 = i64::from(num);
let mut b: i64 = i64::from(u32::max_value()) + 1;
// ExtendedGcd
// Input: positive integers a and b
// Output: integers (g, u, v) such that g = gcd(a, b) = ua + vb
// As we don't need v for modular inverse, we don't calculate it.
// 1: (u, w) <- (1, 0)
let mut u = 1;
let mut w = 0;
// 3: while b != 0
while b != 0 {
// 4: (q, r) <- DivRem(a, b)
let q = a / b;
let r = a % b;
// 5: (a, b) <- (b, r)
a = b;
b = r;
// 6: (u, w) <- (w, u - qw)
let m = u - w * q;
u = w;
w = m;
}
assert!(a == 1);
// Downcasting acts like a mod 2^32 too.
u as u32
}
impl<'a> MontyReducer<'a> {
fn new(n: &'a BigUint) -> Self {
let n0inv = inv_mod_u32(n.data[0]);
MontyReducer { n: n, n0inv: n0inv }
}
}
// Montgomery Reduction
//
// Reference:
// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 2.6
fn monty_redc(a: BigUint, mr: &MontyReducer) -> BigUint {
let mut c = a.data;
let n = &mr.n.data;
let n_size = n.len();
// Allocate sufficient work space
c.resize(2 * n_size + 2, 0);
// β is the size of a word, in this case 32 bits. So "a mod β" is
// equivalent to masking a to 32 bits.
// mu <- -N^(-1) mod β
let mu = 0u32.wrapping_sub(mr.n0inv);
// 1: for i = 0 to (n-1)
for i in 0..n_size {
// 2: q_i <- mu*c_i mod β
let q_i = c[i].wrapping_mul(mu);
// 3: C <- C + q_i * N * β^i
super::algorithms::mac_digit(&mut c[i..], n, q_i);
}
// 4: R <- C * β^(-n)
// This is an n-word bitshift, equivalent to skipping n words.
let ret = BigUint::new(c[n_size..].to_vec());
// 5: if R >= β^n then return R-N else return R.
if &ret < mr.n {
ret
} else {
ret - mr.n
}
}
// Montgomery Multiplication
fn monty_mult(a: BigUint, b: &BigUint, mr: &MontyReducer) -> BigUint {
monty_redc(a * b, mr)
}
// Montgomery Squaring
fn monty_sqr(a: BigUint, mr: &MontyReducer) -> BigUint {
// TODO: Replace with an optimised squaring function
monty_redc(&a * &a, mr)
}
pub fn monty_modpow(a: &BigUint, exp: &BigUint, modulus: &BigUint) -> BigUint {
let mr = MontyReducer::new(modulus);
// Calculate the Montgomery parameter
let mut v = vec![0; modulus.data.len()];
v.push(1);
let r = BigUint::new(v);
// Map the base to the Montgomery domain
let mut apri = a * &r % modulus;
// Binary exponentiation
let mut ans = &r % modulus;
let mut e = exp.clone();
while !e.is_zero() {
if e.is_odd() {
ans = monty_mult(ans, &apri, &mr);
}
apri = monty_sqr(apri, &mr);
e = e >> 1;
}
// Map the result back to the residues domain
monty_redc(ans, &mr)
}

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -1,181 +0,0 @@
extern crate num_bigint;
extern crate num_traits;
use num_bigint::{BigInt, Sign, ToBigInt};
use num_traits::ToPrimitive;
use std::{i32, i64, u32};
enum ValueVec {
N,
P(&'static [u32]),
M(&'static [u32]),
}
use ValueVec::*;
impl ToBigInt for ValueVec {
fn to_bigint(&self) -> Option<BigInt> {
match self {
&N => Some(BigInt::from_slice(Sign::NoSign, &[])),
&P(s) => Some(BigInt::from_slice(Sign::Plus, s)),
&M(s) => Some(BigInt::from_slice(Sign::Minus, s)),
}
}
}
// a, !a
const NOT_VALUES: &'static [(ValueVec, ValueVec)] = &[
(N, M(&[1])),
(P(&[1]), M(&[2])),
(P(&[2]), M(&[3])),
(P(&[!0 - 2]), M(&[!0 - 1])),
(P(&[!0 - 1]), M(&[!0])),
(P(&[!0]), M(&[0, 1])),
(P(&[0, 1]), M(&[1, 1])),
(P(&[1, 1]), M(&[2, 1])),
];
// a, b, a & b, a | b, a ^ b
const BITWISE_VALUES: &'static [(ValueVec, ValueVec, ValueVec, ValueVec, ValueVec)] = &[
(N, N, N, N, N),
(N, P(&[1]), N, P(&[1]), P(&[1])),
(N, P(&[!0]), N, P(&[!0]), P(&[!0])),
(N, P(&[0, 1]), N, P(&[0, 1]), P(&[0, 1])),
(N, M(&[1]), N, M(&[1]), M(&[1])),
(N, M(&[!0]), N, M(&[!0]), M(&[!0])),
(N, M(&[0, 1]), N, M(&[0, 1]), M(&[0, 1])),
(P(&[1]), P(&[!0]), P(&[1]), P(&[!0]), P(&[!0 - 1])),
(P(&[!0]), P(&[!0]), P(&[!0]), P(&[!0]), N),
(P(&[!0]), P(&[1, 1]), P(&[1]), P(&[!0, 1]), P(&[!0 - 1, 1])),
(P(&[1]), M(&[!0]), P(&[1]), M(&[!0]), M(&[0, 1])),
(P(&[!0]), M(&[1]), P(&[!0]), M(&[1]), M(&[0, 1])),
(P(&[!0]), M(&[!0]), P(&[1]), M(&[1]), M(&[2])),
(P(&[!0]), M(&[1, 1]), P(&[!0]), M(&[1, 1]), M(&[0, 2])),
(P(&[1, 1]), M(&[!0]), P(&[1, 1]), M(&[!0]), M(&[0, 2])),
(M(&[1]), M(&[!0]), M(&[!0]), M(&[1]), P(&[!0 - 1])),
(M(&[!0]), M(&[!0]), M(&[!0]), M(&[!0]), N),
(M(&[!0]), M(&[1, 1]), M(&[!0, 1]), M(&[1]), P(&[!0 - 1, 1])),
];
const I32_MIN: i64 = i32::MIN as i64;
const I32_MAX: i64 = i32::MAX as i64;
const U32_MAX: i64 = u32::MAX as i64;
// some corner cases
const I64_VALUES: &'static [i64] = &[
i64::MIN,
i64::MIN + 1,
i64::MIN + 2,
i64::MIN + 3,
-U32_MAX - 3,
-U32_MAX - 2,
-U32_MAX - 1,
-U32_MAX,
-U32_MAX + 1,
-U32_MAX + 2,
-U32_MAX + 3,
I32_MIN - 3,
I32_MIN - 2,
I32_MIN - 1,
I32_MIN,
I32_MIN + 1,
I32_MIN + 2,
I32_MIN + 3,
-3,
-2,
-1,
0,
1,
2,
3,
I32_MAX - 3,
I32_MAX - 2,
I32_MAX - 1,
I32_MAX,
I32_MAX + 1,
I32_MAX + 2,
I32_MAX + 3,
U32_MAX - 3,
U32_MAX - 2,
U32_MAX - 1,
U32_MAX,
U32_MAX + 1,
U32_MAX + 2,
U32_MAX + 3,
i64::MAX - 3,
i64::MAX - 2,
i64::MAX - 1,
i64::MAX,
];
#[test]
fn test_not() {
for &(ref a, ref not) in NOT_VALUES.iter() {
let a = a.to_bigint().unwrap();
let not = not.to_bigint().unwrap();
// sanity check for tests that fit in i64
if let (Some(prim_a), Some(prim_not)) = (a.to_i64(), not.to_i64()) {
assert_eq!(!prim_a, prim_not);
}
assert_eq!(!a.clone(), not, "!{:x}", a);
assert_eq!(!not.clone(), a, "!{:x}", not);
}
}
#[test]
fn test_not_i64() {
for &prim_a in I64_VALUES.iter() {
let a = prim_a.to_bigint().unwrap();
let not = (!prim_a).to_bigint().unwrap();
assert_eq!(!a.clone(), not, "!{:x}", a);
}
}
#[test]
fn test_bitwise() {
for &(ref a, ref b, ref and, ref or, ref xor) in BITWISE_VALUES.iter() {
let a = a.to_bigint().unwrap();
let b = b.to_bigint().unwrap();
let and = and.to_bigint().unwrap();
let or = or.to_bigint().unwrap();
let xor = xor.to_bigint().unwrap();
// sanity check for tests that fit in i64
if let (Some(prim_a), Some(prim_b)) = (a.to_i64(), b.to_i64()) {
if let Some(prim_and) = and.to_i64() {
assert_eq!(prim_a & prim_b, prim_and);
}
if let Some(prim_or) = or.to_i64() {
assert_eq!(prim_a | prim_b, prim_or);
}
if let Some(prim_xor) = xor.to_i64() {
assert_eq!(prim_a ^ prim_b, prim_xor);
}
}
assert_eq!(a.clone() & &b, and, "{:x} & {:x}", a, b);
assert_eq!(b.clone() & &a, and, "{:x} & {:x}", b, a);
assert_eq!(a.clone() | &b, or, "{:x} | {:x}", a, b);
assert_eq!(b.clone() | &a, or, "{:x} | {:x}", b, a);
assert_eq!(a.clone() ^ &b, xor, "{:x} ^ {:x}", a, b);
assert_eq!(b.clone() ^ &a, xor, "{:x} ^ {:x}", b, a);
}
}
#[test]
fn test_bitwise_i64() {
for &prim_a in I64_VALUES.iter() {
let a = prim_a.to_bigint().unwrap();
for &prim_b in I64_VALUES.iter() {
let b = prim_b.to_bigint().unwrap();
let and = (prim_a & prim_b).to_bigint().unwrap();
let or = (prim_a | prim_b).to_bigint().unwrap();
let xor = (prim_a ^ prim_b).to_bigint().unwrap();
assert_eq!(a.clone() & &b, and, "{:x} & {:x}", a, b);
assert_eq!(a.clone() | &b, or, "{:x} | {:x}", a, b);
assert_eq!(a.clone() ^ &b, xor, "{:x} ^ {:x}", a, b);
}
}
}

Просмотреть файл

@ -1,145 +0,0 @@
extern crate num_bigint;
extern crate num_traits;
use num_bigint::BigInt;
use num_bigint::Sign::Plus;
use num_traits::{Signed, ToPrimitive, Zero};
use std::ops::Neg;
mod consts;
use consts::*;
#[macro_use]
mod macros;
#[test]
fn test_scalar_add() {
fn check(x: &BigInt, y: &BigInt, z: &BigInt) {
let (x, y, z) = (x.clone(), y.clone(), z.clone());
assert_signed_scalar_op!(x + y == z);
}
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let (na, nb, nc) = (-&a, -&b, -&c);
check(&a, &b, &c);
check(&b, &a, &c);
check(&c, &na, &b);
check(&c, &nb, &a);
check(&a, &nc, &nb);
check(&b, &nc, &na);
check(&na, &nb, &nc);
check(&a, &na, &Zero::zero());
}
}
#[test]
fn test_scalar_sub() {
fn check(x: &BigInt, y: &BigInt, z: &BigInt) {
let (x, y, z) = (x.clone(), y.clone(), z.clone());
assert_signed_scalar_op!(x - y == z);
}
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let (na, nb, nc) = (-&a, -&b, -&c);
check(&c, &a, &b);
check(&c, &b, &a);
check(&nb, &a, &nc);
check(&na, &b, &nc);
check(&b, &na, &c);
check(&a, &nb, &c);
check(&nc, &na, &nb);
check(&a, &a, &Zero::zero());
}
}
#[test]
fn test_scalar_mul() {
fn check(x: &BigInt, y: &BigInt, z: &BigInt) {
let (x, y, z) = (x.clone(), y.clone(), z.clone());
assert_signed_scalar_op!(x * y == z);
}
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let (na, nb, nc) = (-&a, -&b, -&c);
check(&a, &b, &c);
check(&b, &a, &c);
check(&na, &nb, &c);
check(&na, &b, &nc);
check(&nb, &a, &nc);
}
}
#[test]
fn test_scalar_div_rem() {
fn check_sub(a: &BigInt, b: u32, ans_q: &BigInt, ans_r: &BigInt) {
let (q, r) = (a / b, a % b);
if !r.is_zero() {
assert_eq!(r.sign(), a.sign());
}
assert!(r.abs() <= From::from(b));
assert!(*a == b * &q + &r);
assert!(q == *ans_q);
assert!(r == *ans_r);
let (a, b, ans_q, ans_r) = (a.clone(), b.clone(), ans_q.clone(), ans_r.clone());
assert_op!(a / b == ans_q);
assert_op!(a % b == ans_r);
if b <= i32::max_value() as u32 {
let nb = -(b as i32);
assert_op!(a / nb == -ans_q.clone());
assert_op!(a % nb == ans_r);
}
}
fn check(a: &BigInt, b: u32, q: &BigInt, r: &BigInt) {
check_sub(a, b, q, r);
check_sub(&a.neg(), b, &q.neg(), &r.neg());
}
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
if a_vec.len() == 1 && a_vec[0] != 0 {
let a = a_vec[0];
check(&c, a, &b, &Zero::zero());
}
if b_vec.len() == 1 && b_vec[0] != 0 {
let b = b_vec[0];
check(&c, b, &a, &Zero::zero());
}
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let c = BigInt::from_slice(Plus, c_vec);
let d = BigInt::from_slice(Plus, d_vec);
if b_vec.len() == 1 && b_vec[0] != 0 {
let b = b_vec[0];
check(&a, b, &c, &d);
}
}
}

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -1,109 +0,0 @@
extern crate num_bigint;
extern crate num_traits;
use num_bigint::BigUint;
use num_traits::{ToPrimitive, Zero};
mod consts;
use consts::*;
#[macro_use]
mod macros;
#[test]
fn test_scalar_add() {
fn check(x: &BigUint, y: &BigUint, z: &BigUint) {
let (x, y, z) = (x.clone(), y.clone(), z.clone());
assert_unsigned_scalar_op!(x + y == z);
}
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
check(&a, &b, &c);
check(&b, &a, &c);
}
}
#[test]
fn test_scalar_sub() {
fn check(x: &BigUint, y: &BigUint, z: &BigUint) {
let (x, y, z) = (x.clone(), y.clone(), z.clone());
assert_unsigned_scalar_op!(x - y == z);
}
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
check(&c, &a, &b);
check(&c, &b, &a);
}
}
#[test]
fn test_scalar_mul() {
fn check(x: &BigUint, y: &BigUint, z: &BigUint) {
let (x, y, z) = (x.clone(), y.clone(), z.clone());
assert_unsigned_scalar_op!(x * y == z);
}
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
check(&a, &b, &c);
check(&b, &a, &c);
}
}
#[test]
fn test_scalar_rem_noncommutative() {
assert_eq!(5u8 % BigUint::from(7u8), 5u8.into());
assert_eq!(BigUint::from(5u8) % 7u8, 5u8.into());
}
#[test]
fn test_scalar_div_rem() {
fn check(x: &BigUint, y: &BigUint, z: &BigUint, r: &BigUint) {
let (x, y, z, r) = (x.clone(), y.clone(), z.clone(), r.clone());
assert_unsigned_scalar_op!(x / y == z);
assert_unsigned_scalar_op!(x % y == r);
}
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
if !a.is_zero() {
check(&c, &a, &b, &Zero::zero());
}
if !b.is_zero() {
check(&c, &b, &a, &Zero::zero());
}
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
let d = BigUint::from_slice(d_vec);
if !b.is_zero() {
check(&a, &b, &c, &d);
assert_unsigned_scalar_op!(a / b == c);
assert_unsigned_scalar_op!(a % b == d);
}
}
}

Просмотреть файл

@ -1,56 +0,0 @@
#![allow(unused)]
pub const N1: u32 = -1i32 as u32;
pub const N2: u32 = -2i32 as u32;
pub const SUM_TRIPLES: &'static [(&'static [u32], &'static [u32], &'static [u32])] = &[
(&[], &[], &[]),
(&[], &[1], &[1]),
(&[1], &[1], &[2]),
(&[1], &[1, 1], &[2, 1]),
(&[1], &[N1], &[0, 1]),
(&[1], &[N1, N1], &[0, 0, 1]),
(&[N1, N1], &[N1, N1], &[N2, N1, 1]),
(&[1, 1, 1], &[N1, N1], &[0, 1, 2]),
(&[2, 2, 1], &[N1, N2], &[1, 1, 2]),
(&[1, 2, 2, 1], &[N1, N2], &[0, 1, 3, 1]),
];
pub const M: u32 = ::std::u32::MAX;
pub const MUL_TRIPLES: &'static [(&'static [u32], &'static [u32], &'static [u32])] = &[
(&[], &[], &[]),
(&[], &[1], &[]),
(&[2], &[], &[]),
(&[1], &[1], &[1]),
(&[2], &[3], &[6]),
(&[1], &[1, 1, 1], &[1, 1, 1]),
(&[1, 2, 3], &[3], &[3, 6, 9]),
(&[1, 1, 1], &[N1], &[N1, N1, N1]),
(&[1, 2, 3], &[N1], &[N1, N2, N2, 2]),
(&[1, 2, 3, 4], &[N1], &[N1, N2, N2, N2, 3]),
(&[N1], &[N1], &[1, N2]),
(&[N1, N1], &[N1], &[1, N1, N2]),
(&[N1, N1, N1], &[N1], &[1, N1, N1, N2]),
(&[N1, N1, N1, N1], &[N1], &[1, N1, N1, N1, N2]),
(&[M / 2 + 1], &[2], &[0, 1]),
(&[0, M / 2 + 1], &[2], &[0, 0, 1]),
(&[1, 2], &[1, 2, 3], &[1, 4, 7, 6]),
(&[N1, N1], &[N1, N1, N1], &[1, 0, N1, N2, N1]),
(&[N1, N1, N1], &[N1, N1, N1, N1], &[1, 0, 0, N1, N2, N1, N1]),
(&[0, 0, 1], &[1, 2, 3], &[0, 0, 1, 2, 3]),
(&[0, 0, 1], &[0, 0, 0, 1], &[0, 0, 0, 0, 0, 1]),
];
pub const DIV_REM_QUADRUPLES: &'static [(
&'static [u32],
&'static [u32],
&'static [u32],
&'static [u32],
)] = &[
(&[1], &[2], &[], &[1]),
(&[3], &[2], &[1], &[1]),
(&[1, 1], &[2], &[M / 2 + 1], &[1]),
(&[1, 1, 1], &[2], &[M / 2 + 1, M / 2 + 1], &[1]),
(&[0, 1], &[N1], &[1], &[1]),
(&[N1, N1], &[N2], &[2, 1], &[3]),
];

Просмотреть файл

@ -1,70 +0,0 @@
#![allow(unused)]
/// Assert that an op works for all val/ref combinations
macro_rules! assert_op {
($left:ident $op:tt $right:ident == $expected:expr) => {
assert_eq!((&$left) $op (&$right), $expected);
assert_eq!((&$left) $op $right.clone(), $expected);
assert_eq!($left.clone() $op (&$right), $expected);
assert_eq!($left.clone() $op $right.clone(), $expected);
};
}
/// Assert that an assign-op works for all val/ref combinations
macro_rules! assert_assign_op {
($left:ident $op:tt $right:ident == $expected:expr) => {{
let mut left = $left.clone();
assert_eq!({ left $op &$right; left}, $expected);
let mut left = $left.clone();
assert_eq!({ left $op $right.clone(); left}, $expected);
}};
}
/// Assert that an op works for scalar left or right
macro_rules! assert_scalar_op {
(($($to:ident),*) $left:ident $op:tt $right:ident == $expected:expr) => {
$(
if let Some(left) = $left.$to() {
assert_op!(left $op $right == $expected);
}
if let Some(right) = $right.$to() {
assert_op!($left $op right == $expected);
}
)*
};
}
#[cfg(not(has_i128))]
macro_rules! assert_unsigned_scalar_op {
($left:ident $op:tt $right:ident == $expected:expr) => {
assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize)
$left $op $right == $expected);
};
}
#[cfg(has_i128)]
macro_rules! assert_unsigned_scalar_op {
($left:ident $op:tt $right:ident == $expected:expr) => {
assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize, to_u128)
$left $op $right == $expected);
};
}
#[cfg(not(has_i128))]
macro_rules! assert_signed_scalar_op {
($left:ident $op:tt $right:ident == $expected:expr) => {
assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize,
to_i8, to_i16, to_i32, to_i64, to_isize)
$left $op $right == $expected);
};
}
#[cfg(has_i128)]
macro_rules! assert_signed_scalar_op {
($left:ident $op:tt $right:ident == $expected:expr) => {
assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize, to_u128,
to_i8, to_i16, to_i32, to_i64, to_isize, to_i128)
$left $op $right == $expected);
};
}

Просмотреть файл

@ -1,150 +0,0 @@
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
static BIG_B: &'static str = "\
efac3c0a_0de55551_fee0bfe4_67fa017a_1a898fa1_6ca57cb1\
ca9e3248_cacc09a9_b99d6abc_38418d0f_82ae4238_d9a68832\
aadec7c1_ac5fed48_7a56a71b_67ac59d5_afb28022_20d9592d\
247c4efc_abbd9b75_586088ee_1dc00dc4_232a8e15_6e8191dd\
675b6ae0_c80f5164_752940bc_284b7cee_885c1e10_e495345b\
8fbe9cfd_e5233fe1_19459d0b_d64be53c_27de5a02_a829976b\
33096862_82dad291_bd38b6a9_be396646_ddaf8039_a2573c39\
1b14e8bc_2cb53e48_298c047e_d9879e9c_5a521076_f0e27df3\
990e1659_d3d8205b_6443ebc0_9918ebee_6764f668_9f2b2be3\
b59cbc76_d76d0dfc_d737c3ec_0ccf9c00_ad0554bf_17e776ad\
b4edf9cc_6ce540be_76229093_5c53893b";
static BIG_E: &'static str = "\
be0e6ea6_08746133_e0fbc1bf_82dba91e_e2b56231_a81888d2\
a833a1fc_f7ff002a_3c486a13_4f420bf3_a5435be9_1a5c8391\
774d6e6c_085d8357_b0c97d4d_2bb33f7c_34c68059_f78d2541\
eacc8832_426f1816_d3be001e_b69f9242_51c7708e_e10efe98\
449c9a4a_b55a0f23_9d797410_515da00d_3ea07970_4478a2ca\
c3d5043c_bd9be1b4_6dce479d_4302d344_84a939e6_0ab5ada7\
12ae34b2_30cc473c_9f8ee69d_2cac5970_29f5bf18_bc8203e4\
f3e895a2_13c94f1e_24c73d77_e517e801_53661fdd_a2ce9e47\
a73dd7f8_2f2adb1e_3f136bf7_8ae5f3b8_08730de1_a4eff678\
e77a06d0_19a522eb_cbefba2a_9caf7736_b157c5c6_2d192591\
17946850_2ddb1822_117b68a0_32f7db88";
// This modulus is the prime from the 2048-bit MODP DH group:
// https://tools.ietf.org/html/rfc3526#section-3
static BIG_M: &'static str = "\
FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\
29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\
EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\
E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\
EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\
C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\
83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\
670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\
E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\
DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\
15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF";
static BIG_R: &'static str = "\
a1468311_6e56edc9_7a98228b_5e924776_0dd7836e_caabac13\
eda5373b_4752aa65_a1454850_40dc770e_30aa8675_6be7d3a8\
9d3085e4_da5155cf_b451ef62_54d0da61_cf2b2c87_f495e096\
055309f7_77802bbb_37271ba8_1313f1b5_075c75d1_024b6c77\
fdb56f17_b05bce61_e527ebfd_2ee86860_e9907066_edd526e7\
93d289bf_6726b293_41b0de24_eff82424_8dfd374b_4ec59542\
35ced2b2_6b195c90_10042ffb_8f58ce21_bc10ec42_64fda779\
d352d234_3d4eaea6_a86111ad_a37e9555_43ca78ce_2885bed7\
5a30d182_f1cf6834_dc5b6e27_1a41ac34_a2e91e11_33363ff0\
f88a7b04_900227c9_f6e6d06b_7856b4bb_4e354d61_060db6c8\
109c4735_6e7db425_7b5d74c7_0b709508";
mod biguint {
use num_bigint::BigUint;
use num_integer::Integer;
use num_traits::Num;
fn check_modpow<T: Into<BigUint>>(b: T, e: T, m: T, r: T) {
let b: BigUint = b.into();
let e: BigUint = e.into();
let m: BigUint = m.into();
let r: BigUint = r.into();
assert_eq!(b.modpow(&e, &m), r);
let even_m = &m << 1;
let even_modpow = b.modpow(&e, &even_m);
assert!(even_modpow < even_m);
assert_eq!(even_modpow.mod_floor(&m), r);
}
#[test]
fn test_modpow() {
check_modpow::<u32>(1, 0, 11, 1);
check_modpow::<u32>(0, 15, 11, 0);
check_modpow::<u32>(3, 7, 11, 9);
check_modpow::<u32>(5, 117, 19, 1);
}
#[test]
fn test_modpow_big() {
let b = BigUint::from_str_radix(super::BIG_B, 16).unwrap();
let e = BigUint::from_str_radix(super::BIG_E, 16).unwrap();
let m = BigUint::from_str_radix(super::BIG_M, 16).unwrap();
let r = BigUint::from_str_radix(super::BIG_R, 16).unwrap();
assert_eq!(b.modpow(&e, &m), r);
let even_m = &m << 1;
let even_modpow = b.modpow(&e, &even_m);
assert!(even_modpow < even_m);
assert_eq!(even_modpow % m, r);
}
}
mod bigint {
use num_bigint::BigInt;
use num_integer::Integer;
use num_traits::{Num, One, Signed, Zero};
fn check_modpow<T: Into<BigInt>>(b: T, e: T, m: T, r: T) {
fn check(b: &BigInt, e: &BigInt, m: &BigInt, r: &BigInt) {
assert_eq!(&b.modpow(e, m), r);
let even_m = m << 1;
let even_modpow = b.modpow(e, m);
assert!(even_modpow.abs() < even_m.abs());
assert_eq!(&even_modpow.mod_floor(&m), r);
// the sign of the result follows the modulus like `mod_floor`, not `rem`
assert_eq!(b.modpow(&BigInt::one(), m), b.mod_floor(m));
}
let b: BigInt = b.into();
let e: BigInt = e.into();
let m: BigInt = m.into();
let r: BigInt = r.into();
let neg_r = if r.is_zero() { BigInt::zero() } else { &m - &r };
check(&b, &e, &m, &r);
check(&-&b, &e, &m, &neg_r);
check(&b, &e, &-&m, &-neg_r);
check(&-b, &e, &-m, &-r);
}
#[test]
fn test_modpow() {
check_modpow(1, 0, 11, 1);
check_modpow(0, 15, 11, 0);
check_modpow(3, 7, 11, 9);
check_modpow(5, 117, 19, 1);
}
#[test]
fn test_modpow_big() {
let b = BigInt::from_str_radix(super::BIG_B, 16).unwrap();
let e = BigInt::from_str_radix(super::BIG_E, 16).unwrap();
let m = BigInt::from_str_radix(super::BIG_M, 16).unwrap();
let r = BigInt::from_str_radix(super::BIG_R, 16).unwrap();
check_modpow(b, e, m, r);
}
}

Просмотреть файл

@ -1,186 +0,0 @@
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
#[cfg(feature = "rand")]
extern crate rand;
mod biguint {
use num_bigint::BigUint;
use num_traits::{One, Pow, Zero};
use std::{i32, u32};
fn check<T: Into<BigUint>>(x: T, n: u32) {
let x: BigUint = x.into();
let root = x.nth_root(n);
println!("check {}.nth_root({}) = {}", x, n, root);
if n == 2 {
assert_eq!(root, x.sqrt())
} else if n == 3 {
assert_eq!(root, x.cbrt())
}
let lo = root.pow(n);
assert!(lo <= x);
assert_eq!(lo.nth_root(n), root);
if !lo.is_zero() {
assert_eq!((&lo - 1u32).nth_root(n), &root - 1u32);
}
let hi = (&root + 1u32).pow(n);
assert!(hi > x);
assert_eq!(hi.nth_root(n), &root + 1u32);
assert_eq!((&hi - 1u32).nth_root(n), root);
}
#[test]
fn test_sqrt() {
check(99u32, 2);
check(100u32, 2);
check(120u32, 2);
}
#[test]
fn test_cbrt() {
check(8u32, 3);
check(26u32, 3);
}
#[test]
fn test_nth_root() {
check(0u32, 1);
check(10u32, 1);
check(100u32, 4);
}
#[test]
#[should_panic]
fn test_nth_root_n_is_zero() {
check(4u32, 0);
}
#[test]
fn test_nth_root_big() {
let x = BigUint::from(123_456_789_u32);
let expected = BigUint::from(6u32);
assert_eq!(x.nth_root(10), expected);
check(x, 10);
}
#[test]
fn test_nth_root_googol() {
let googol = BigUint::from(10u32).pow(100u32);
// perfect divisors of 100
for &n in &[2, 4, 5, 10, 20, 25, 50, 100] {
let expected = BigUint::from(10u32).pow(100u32 / n);
assert_eq!(googol.nth_root(n), expected);
check(googol.clone(), n);
}
}
#[test]
fn test_nth_root_twos() {
const EXP: u32 = 12;
const LOG2: usize = 1 << EXP;
let x = BigUint::one() << LOG2;
// the perfect divisors are just powers of two
for exp in 1..EXP + 1 {
let n = 2u32.pow(exp);
let expected = BigUint::one() << (LOG2 / n as usize);
assert_eq!(x.nth_root(n), expected);
check(x.clone(), n);
}
// degenerate cases should return quickly
assert!(x.nth_root(x.bits() as u32).is_one());
assert!(x.nth_root(i32::MAX as u32).is_one());
assert!(x.nth_root(u32::MAX).is_one());
}
#[cfg(feature = "rand")]
#[test]
fn test_roots_rand() {
use num_bigint::RandBigInt;
use rand::distributions::Uniform;
use rand::{thread_rng, Rng};
let mut rng = thread_rng();
let bit_range = Uniform::new(0, 2048);
let sample_bits: Vec<_> = rng.sample_iter(&bit_range).take(100).collect();
for bits in sample_bits {
let x = rng.gen_biguint(bits);
for n in 2..11 {
check(x.clone(), n);
}
check(x.clone(), 100);
}
}
#[test]
fn test_roots_rand1() {
// A random input that found regressions
let s = "575981506858479247661989091587544744717244516135539456183849\
986593934723426343633698413178771587697273822147578889823552\
182702908597782734558103025298880194023243541613924361007059\
353344183590348785832467726433749431093350684849462759540710\
026019022227591412417064179299354183441181373862905039254106\
4781867";
let x: BigUint = s.parse().unwrap();
check(x.clone(), 2);
check(x.clone(), 3);
check(x.clone(), 10);
check(x.clone(), 100);
}
}
mod bigint {
use num_bigint::BigInt;
use num_traits::{Pow, Signed};
fn check(x: i64, n: u32) {
let big_x = BigInt::from(x);
let res = big_x.nth_root(n);
if n == 2 {
assert_eq!(&res, &big_x.sqrt())
} else if n == 3 {
assert_eq!(&res, &big_x.cbrt())
}
if big_x.is_negative() {
assert!(res.pow(n) >= big_x);
assert!((res - 1u32).pow(n) < big_x);
} else {
assert!(res.pow(n) <= big_x);
assert!((res + 1u32).pow(n) > big_x);
}
}
#[test]
fn test_nth_root() {
check(-100, 3);
}
#[test]
#[should_panic]
fn test_nth_root_x_neg_n_even() {
check(-100, 4);
}
#[test]
#[should_panic]
fn test_sqrt_x_neg() {
check(-4, 2);
}
#[test]
fn test_cbrt() {
check(8, 3);
check(-8, 3);
}
}

Просмотреть файл

@ -1 +1 @@
{"files":{"Cargo.toml":"7aa575d1baa6278a46c9702151962c48ba036e0858735cb785854bc5fe0c8d45","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"80ffdcb01563610a5c0eab802eeec39cbb21054f47a9df550f8495a7e861eb40","RELEASES.md":"566c43d664f1d6a242632febb661005fda9a479882673925093a5b688159393d","benches/bigint.rs":"e0388d1880c4ff508b2f871c5b70f058999dd8c6a703c16e8ea69f0a8e1ba50d","benches/factorial.rs":"ed1d276a780e7e5fe79121b941c22a00c2854dbf92fd8a5372619853ba0c13b7","benches/gcd.rs":"2b433e5699b45e5fb23e77ab025a07e16e3eb9a49c47207b477551542fc4ff1e","benches/roots.rs":"967161d58d1977452ec7fa988a41848d575008a3e148eb048bc049c884d98f5f","benches/shootout-pidigits.rs":"c2a48133f5b679928f7e3f4e764c78aaa8c5b811f58b86fe57fae8c63cb07136","build.rs":"93c67318349abcc216b64973dfb12055e9eb2e1fb6631b2a1b3728f298f8e07c","src/algorithms.rs":"df10d5784da66ad6984fac2845a4611fbb893d384994618561804263acce3a76","src/bigint.rs":"78f8bf8fbd6c06d0a628dd560cc143428200fba7aeedb3c939ea2ce9d70ec3e6","src/bigrand.rs":"f2d16738d6811d6cc0999e4ba3e9477074115e665ac68a550106d5e926176f84","src/biguint.rs":"5c54978e84bd1344c2e1558b44ab196d52d92fc727dae3684ab2981843b804f1","src/lib.rs":"e43f5cbfa4736e71e78bb6ce72aa3da4867ceac225cc945405b2cad51d0e577e","src/macros.rs":"800239723d637c3ea1d6beb6a62b38a2300bd4c69c20dc0d50855ad6a8b31e70","src/monty.rs":"91688835e0fd409df72c3df5e07e2a114982578f03dd62721c02f36d5fc64ac6","tests/bigint.rs":"deb1e882093a0fa67d3b9a360c6e282fa45b75fb2681e60ce549ef074008c086","tests/bigint_bitwise.rs":"e6a2f76fa1eb919e7c513d7e30a8a2a963841a295a71103462fb8ab9792419b5","tests/bigint_scalar.rs":"5d6131e021f96d476f7949fa2b302581bd9254e91efde1bf2926cdd5e8dffcdb","tests/biguint.rs":"6e390bcc037b04210edb7a81ff87df705edd0afa439c44ac8cf369ca4fef55bd","tests/biguint_scalar.rs":"f16450c0dfcaf23b6fb85669b3de7c2bb6f594a65e3cdf91014b2e49c941cc95","tests/consts/mod.rs":"e20bc49a7cc95077242cbe4016b37745ea986c779d2385cb367fbfe44f15ff94","tests/macros/mod.rs":"1a8f9f015e5caaac60ce9ccff01a75ae489801c3ede6e7b9b3c5079b6efefc9c","tests/modpow.rs":"f1e4ed4fe466b544d7c4e57d0a0dc7d1c97b430b4805cae12f0915b8c40ab66f","tests/roots.rs":"a3bc2de170a0f6297cc8d8830d608db537ca102ccf204fd4fb8e2d92675622d8"},"package":"b7f3fc75e3697059fb1bc465e3d8cca6cf92f56854f201158b3f9c77d5a3cfa0"} {"files":{"Cargo.toml":"ba1041ccca008388ab7d7432ae63b811d8e744c8fa9e50f371bfbeb78acd1995","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"25f684f15b0ed6ea216c3831e567a9b5dc02b78ff7e579e0d7323305db75218c","RELEASES.md":"5a3045437dc1850ae4e39acd14f2660ed7bace9b0c4d7dae3950f049dbfd4d65","benches/bigint.rs":"252c0dc1f220a6fbdc151e729069260c2f5909516467ceb873e412e5691d7042","benches/factorial.rs":"d536f5584987847f10321b94175a0d8fd2beb14b7c814ec28eef1f96ca081fbe","benches/gcd.rs":"7ec5ce7174e1d31bd08ccc5670f5a32a5c084f258d7980cd6d02e0a8bb5562c4","benches/roots.rs":"3f87db894c379122aee5cd8520c7c759c26d8a9649ac47f45d1bf4d560e1cb07","benches/shootout-pidigits.rs":"985b76d6dba05c396efe4da136c6a0bb2c02bcf5b05cbb346f0f802a891629bb","bors.toml":"1c81ede536a37edd30fe4e622ff0531b25372403ac9475a5d6c50f14156565a2","build.rs":"56d4fbb7a55750e61d2074df2735a31995c1decbd988c0e722926235e0fed487","ci/rustup.sh":"c976bb2756da3876363b01fdbf06c13de20df421e5add45e4017c4df42ed06a6","ci/test_full.sh":"a0ac26b85809eb43edd813c9dc88f34a1a8227b7618f4bede89c8f2ac9a4c05a","src/algorithms.rs":"8827c46df051214d1d0e7670680ca9f4834eae678ed340c86b5ea32fddbc7c3c","src/bigint.rs":"7f113fdc034c566bc8475ff0a7d136aa8250cae047b4356084e6797a15f968e1","src/bigrand.rs":"d2f72b8833f367dd8990b4b026f302d838144c5a4de942135d39a3a9932f137d","src/biguint.rs":"b95bfcf84e3f831fb07982aa4b058cd16a524eaa493946eed8e8c5fb8d65797a","src/lib.rs":"d5cc50306f73f07555e7d3413edd2ca5c7d54cbc80a2e83844d77fb8750ae314","src/macros.rs":"2e763517922d960c06e3ac4d319b1d81e66dffadfde8fdf300ff8b8bb95bd8cd","src/monty.rs":"6a867846b7f6af9115add2fd59fccd0651c71dd7f2316e8fb9c812ff3c27da12","tests/bigint.rs":"f7df454f085a862ad5a98e3a802303a3fdf06275a7a1b92074b40b76a715bed2","tests/bigint_bitwise.rs":"dc9436c8f200f2b0ac08cefb23bb8e39c4e688e9026a506a678416c3d573128b","tests/bigint_scalar.rs":"aa176ed102cafd425a215a93460806914d8f3ac288c98ec3e56772fa17379838","tests/biguint.rs":"9ae79f96d1a3beca5be95dffe9d79dc3436f886edc6cae51faf4203c3e0c4681","tests/biguint_scalar.rs":"9cc6f2bf2fe77f34b09eb2266c23aded3b27a60dc1859eb60d3013164292467e","tests/consts/mod.rs":"f9ea5f40733e2f5f432803d830be9db929d91e5e5efd8510b07c6ced2fe554be","tests/macros/mod.rs":"2789b680dd14a770d5ceef430018be0ada85098d69e218c61c17214084c4f763","tests/modpow.rs":"f14cdea11e355a371b314cc866dfa13281a3226706ab2cf01c1485273afde300","tests/quickcheck.rs":"6d6c1ec244b2384a8b34e989870aef8bcedccf6cc46e2626b29a032703bef03c","tests/rand.rs":"08370135bd78432660cfcd708a9ea852022d555bc92c1f3c482fabd17faa64a0","tests/roots.rs":"9ec1bdb0cd1c72402a41e5470325a5276af75979b7fc0f0b63e7bbbb9f3505b2","tests/serde.rs":"79d7a0347207b3a3666af67d2ed97fa34f2922732121a3cb8f5b9f990846acfa","tests/torture.rs":"9fe4897580c0ebe2b7062f5b0b890b4b03510daa45c9236f0edba7144f9eb6f8"},"package":"f9c3f34cdd24f334cb265d9bf8bfa8a241920d026916785747a92f0e55541a1a"}

26
third_party/rust/num-bigint/Cargo.toml поставляемый
Просмотреть файл

@ -11,12 +11,10 @@
# will likely look very different (and much more reasonable) # will likely look very different (and much more reasonable)
[package] [package]
edition = "2018"
name = "num-bigint" name = "num-bigint"
version = "0.3.0" version = "0.2.3"
authors = ["The Rust Project Developers"] authors = ["The Rust Project Developers"]
build = "build.rs" build = "build.rs"
exclude = ["/bors.toml", "/ci/*", "/.github/*"]
description = "Big integer implementation for Rust" description = "Big integer implementation for Rust"
homepage = "https://github.com/rust-num/num-bigint" homepage = "https://github.com/rust-num/num-bigint"
documentation = "https://docs.rs/num-bigint" documentation = "https://docs.rs/num-bigint"
@ -44,32 +42,40 @@ name = "roots"
name = "shootout-pidigits" name = "shootout-pidigits"
harness = false harness = false
[dependencies.num-integer] [dependencies.num-integer]
version = "0.1.42" version = "0.1.39"
features = ["i128"]
default-features = false default-features = false
[dependencies.num-traits] [dependencies.num-traits]
version = "0.2.11" version = "0.2.7"
features = ["i128"]
default-features = false default-features = false
[dependencies.quickcheck] [dependencies.quickcheck]
version = "0.9" version = "0.8"
optional = true
default-features = false
[dependencies.quickcheck_macros]
version = "0.8"
optional = true optional = true
default-features = false default-features = false
[dependencies.rand] [dependencies.rand]
version = "0.7" version = "0.5"
features = ["std"]
optional = true optional = true
default-features = false default-features = false
[dependencies.serde] [dependencies.serde]
version = "1.0" version = "1.0"
features = ["std"]
optional = true optional = true
default-features = false default-features = false
[dev-dependencies.serde_test]
version = "1.0"
[build-dependencies.autocfg] [build-dependencies.autocfg]
version = "1" version = "0.1.2"
[features] [features]
default = ["std"] default = ["std"]
i128 = ["num-integer/i128", "num-traits/i128"]
std = ["num-integer/std", "num-traits/std"] std = ["num-integer/std", "num-traits/std"]

41
third_party/rust/num-bigint/README.md поставляемый
Просмотреть файл

@ -2,8 +2,8 @@
[![crate](https://img.shields.io/crates/v/num-bigint.svg)](https://crates.io/crates/num-bigint) [![crate](https://img.shields.io/crates/v/num-bigint.svg)](https://crates.io/crates/num-bigint)
[![documentation](https://docs.rs/num-bigint/badge.svg)](https://docs.rs/num-bigint) [![documentation](https://docs.rs/num-bigint/badge.svg)](https://docs.rs/num-bigint)
[![minimum rustc 1.31](https://img.shields.io/badge/rustc-1.31+-red.svg)](https://rust-lang.github.io/rfcs/2495-min-rust-version.html) ![minimum rustc 1.15](https://img.shields.io/badge/rustc-1.15+-red.svg)
[![build status](https://github.com/rust-num/num-bigint/workflows/master/badge.svg)](https://github.com/rust-num/num-bigint/actions) [![Travis status](https://travis-ci.org/rust-num/num-bigint.svg?branch=master)](https://travis-ci.org/rust-num/num-bigint)
Big integer types for Rust, `BigInt` and `BigUint`. Big integer types for Rust, `BigInt` and `BigUint`.
@ -13,28 +13,25 @@ Add this to your `Cargo.toml`:
```toml ```toml
[dependencies] [dependencies]
num-bigint = "0.3" num-bigint = "0.2"
```
and this to your crate root:
```rust
extern crate num_bigint;
``` ```
## Features ## Features
The `std` crate feature is enabled by default, and is mandatory before Rust The `std` crate feature is mandatory and enabled by default. If you depend on
1.36 and the stabilized `alloc` crate. If you depend on `num-bigint` with `num-bigint` with `default-features = false`, you must manually enable the
`default-features = false`, you must manually enable the `std` feature yourself `std` feature yourself. In the future, we hope to support `#![no_std]` with
if your compiler is not new enough. the `alloc` crate when `std` is not enabled.
### Random Generation Implementations for `i128` and `u128` are only available with Rust 1.26 and
later. The build script automatically detects this, but you can make it
`num-bigint` supports the generation of random big integers when the `rand` mandatory by enabling the `i128` crate feature.
feature is enabled. To enable it include rand as
```toml
rand = "0.7"
num-bigint = { version = "0.3", features = ["rand"] }
```
Note that you must use the version of `rand` that `num-bigint` is compatible
with: `0.7`.
## Releases ## Releases
@ -42,7 +39,7 @@ Release notes are available in [RELEASES.md](RELEASES.md).
## Compatibility ## Compatibility
The `num-bigint` crate is tested for rustc 1.31 and greater. The `num-bigint` crate is tested for rustc 1.15 and greater.
## Alternatives ## Alternatives
@ -52,9 +49,9 @@ table offers a brief comparison to a few alternatives.
| Crate | License | Min rustc | Implementation | | Crate | License | Min rustc | Implementation |
| :--------------- | :------------- | :-------- | :------------- | | :--------------- | :------------- | :-------- | :------------- |
| **`num-bigint`** | MIT/Apache-2.0 | 1.31 | pure rust | | **`num-bigint`** | MIT/Apache-2.0 | 1.15 | pure rust |
| [`ramp`] | Apache-2.0 | nightly | rust and inline assembly | | [`ramp`] | Apache-2.0 | nightly | rust and inline assembly |
| [`rug`] | LGPL-3.0+ | 1.37 | bundles [GMP] via [`gmp-mpfr-sys`] | | [`rug`] | LGPL-3.0+ | 1.31 | bundles [GMP] via [`gmp-mpfr-sys`] |
| [`rust-gmp`] | MIT | stable? | links to [GMP] | | [`rust-gmp`] | MIT | stable? | links to [GMP] |
| [`apint`] | MIT/Apache-2.0 | 1.26 | pure rust (unfinished) | | [`apint`] | MIT/Apache-2.0 | 1.26 | pure rust (unfinished) |

71
third_party/rust/num-bigint/RELEASES.md поставляемый
Просмотреть файл

@ -1,74 +1,3 @@
# Release 0.3.0 (2020-06-12)
### Enhancements
- [The internal `BigDigit` may now be either `u32` or `u64`][62], although that
implementation detail is not exposed in the API. For now, this is chosen to
match the target pointer size, but may change in the future.
- [No-`std` is now supported with the `alloc` crate on Rust 1.36][101].
- [`Pow` is now implemented for bigint values][137], not just references.
- [`TryFrom` is now implemented on Rust 1.34 and later][123], converting signed
integers to unsigned, and narrowing big integers to primitives.
- [`Shl` and `Shr` are now implemented for a variety of shift types][142].
- A new `trailing_zeros()` returns the number of consecutive zeros from the
least significant bit.
- The new `BigInt::magnitude` and `into_parts` methods give access to its
`BigUint` part as the magnitude.
### Breaking Changes
- `num-bigint` now requires Rust 1.31 or greater.
- The "i128" opt-in feature was removed, now always available.
- [Updated public dependences][110]:
- `rand` support has been updated to 0.7, requiring Rust 1.32.
- `quickcheck` support has been updated to 0.9, requiring Rust 1.34.
- [Removed `impl Neg for BigUint`][145], which only ever panicked.
- [Bit counts are now `u64` instead of `usize`][143].
**Contributors**: @cuviper, @dignifiedquire, @hansihe,
@kpcyrd, @milesand, @tech6hutch
[62]: https://github.com/rust-num/num-bigint/pull/62
[101]: https://github.com/rust-num/num-bigint/pull/101
[110]: https://github.com/rust-num/num-bigint/pull/110
[123]: https://github.com/rust-num/num-bigint/pull/123
[137]: https://github.com/rust-num/num-bigint/pull/137
[142]: https://github.com/rust-num/num-bigint/pull/142
[143]: https://github.com/rust-num/num-bigint/pull/143
[145]: https://github.com/rust-num/num-bigint/pull/145
# Release 0.2.6 (2020-01-27)
- [Fix the promotion of negative `isize` in `BigInt` assign-ops][133].
**Contributors**: @cuviper, @HactarCE
[133]: https://github.com/rust-num/num-bigint/pull/133
# Release 0.2.5 (2020-01-09)
- [Updated the `autocfg` build dependency to 1.0][126].
**Contributors**: @cuviper, @tspiteri
[126]: https://github.com/rust-num/num-bigint/pull/126
# Release 0.2.4 (2020-01-01)
- [The new `BigUint::to_u32_digits` method][104] returns the number as a
little-endian vector of base-2<sup>32</sup> digits. The same method on
`BigInt` also returns the sign.
- [`BigUint::modpow` now applies a modulus even for exponent 1][113], which
also affects `BigInt::modpow`.
- [`BigInt::modpow` now returns the correct sign for negative bases with even
exponents][114].
[104]: https://github.com/rust-num/num-bigint/pull/104
[113]: https://github.com/rust-num/num-bigint/pull/113
[114]: https://github.com/rust-num/num-bigint/pull/114
**Contributors**: @alex-ozdemir, @cuviper, @dingelish, @Speedy37, @youknowone
# Release 0.2.3 (2019-09-03) # Release 0.2.3 (2019-09-03)
- [`Pow` is now implemented for `BigUint` exponents][77]. - [`Pow` is now implemented for `BigUint` exponents][77].

99
third_party/rust/num-bigint/benches/bigint.rs поставляемый
Просмотреть файл

@ -1,12 +1,15 @@
#![feature(test)] #![feature(test)]
#![cfg(feature = "rand")] #![cfg(feature = "rand")]
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
extern crate rand;
extern crate test; extern crate test;
use num_bigint::{BigInt, BigUint, RandBigInt}; use num_bigint::{BigInt, BigUint, RandBigInt};
use num_traits::{FromPrimitive, Num, One, Zero}; use num_traits::{FromPrimitive, Num, One, Pow, Zero};
use rand::rngs::StdRng; use rand::{SeedableRng, StdRng};
use rand::SeedableRng;
use std::mem::replace; use std::mem::replace;
use test::Bencher; use test::Bencher;
@ -18,7 +21,7 @@ fn get_rng() -> StdRng {
SeedableRng::from_seed(seed) SeedableRng::from_seed(seed)
} }
fn multiply_bench(b: &mut Bencher, xbits: u64, ybits: u64) { fn multiply_bench(b: &mut Bencher, xbits: usize, ybits: usize) {
let mut rng = get_rng(); let mut rng = get_rng();
let x = rng.gen_bigint(xbits); let x = rng.gen_bigint(xbits);
let y = rng.gen_bigint(ybits); let y = rng.gen_bigint(ybits);
@ -26,7 +29,7 @@ fn multiply_bench(b: &mut Bencher, xbits: u64, ybits: u64) {
b.iter(|| &x * &y); b.iter(|| &x * &y);
} }
fn divide_bench(b: &mut Bencher, xbits: u64, ybits: u64) { fn divide_bench(b: &mut Bencher, xbits: usize, ybits: usize) {
let mut rng = get_rng(); let mut rng = get_rng();
let x = rng.gen_bigint(xbits); let x = rng.gen_bigint(xbits);
let y = rng.gen_bigint(ybits); let y = rng.gen_bigint(ybits);
@ -34,7 +37,7 @@ fn divide_bench(b: &mut Bencher, xbits: u64, ybits: u64) {
b.iter(|| &x / &y); b.iter(|| &x / &y);
} }
fn remainder_bench(b: &mut Bencher, xbits: u64, ybits: u64) { fn remainder_bench(b: &mut Bencher, xbits: usize, ybits: usize) {
let mut rng = get_rng(); let mut rng = get_rng();
let x = rng.gen_bigint(xbits); let x = rng.gen_bigint(xbits);
let y = rng.gen_bigint(ybits); let y = rng.gen_bigint(ybits);
@ -44,9 +47,9 @@ fn remainder_bench(b: &mut Bencher, xbits: u64, ybits: u64) {
fn factorial(n: usize) -> BigUint { fn factorial(n: usize) -> BigUint {
let mut f: BigUint = One::one(); let mut f: BigUint = One::one();
for i in 1..=n { for i in 1..(n + 1) {
let bu: BigUint = FromPrimitive::from_usize(i).unwrap(); let bu: BigUint = FromPrimitive::from_usize(i).unwrap();
f += bu; f = f * bu;
} }
f f
} }
@ -68,7 +71,7 @@ fn fib2(n: usize) -> BigUint {
let mut f0: BigUint = Zero::zero(); let mut f0: BigUint = Zero::zero();
let mut f1: BigUint = One::one(); let mut f1: BigUint = One::one();
for _ in 0..n { for _ in 0..n {
f1 += &f0; f1 = f1 + &f0;
f0 = &f1 - f0; f0 = &f1 - f0;
} }
f0 f0
@ -109,11 +112,6 @@ fn divide_2(b: &mut Bencher) {
divide_bench(b, 1 << 16, 1 << 12); divide_bench(b, 1 << 16, 1 << 12);
} }
#[bench]
fn divide_big_little(b: &mut Bencher) {
divide_bench(b, 1 << 16, 1 << 4);
}
#[bench] #[bench]
fn remainder_0(b: &mut Bencher) { fn remainder_0(b: &mut Bencher) {
remainder_bench(b, 1 << 8, 1 << 6); remainder_bench(b, 1 << 8, 1 << 6);
@ -129,11 +127,6 @@ fn remainder_2(b: &mut Bencher) {
remainder_bench(b, 1 << 16, 1 << 12); remainder_bench(b, 1 << 16, 1 << 12);
} }
#[bench]
fn remainder_big_little(b: &mut Bencher) {
remainder_bench(b, 1 << 16, 1 << 4);
}
#[bench] #[bench]
fn factorial_100(b: &mut Bencher) { fn factorial_100(b: &mut Bencher) {
b.iter(|| factorial(100)); b.iter(|| factorial(100));
@ -245,7 +238,7 @@ fn from_str_radix_36(b: &mut Bencher) {
from_str_radix_bench(b, 36); from_str_radix_bench(b, 36);
} }
fn rand_bench(b: &mut Bencher, bits: u64) { fn rand_bench(b: &mut Bencher, bits: usize) {
let mut rng = get_rng(); let mut rng = get_rng();
b.iter(|| rng.gen_bigint(bits)); b.iter(|| rng.gen_bigint(bits));
@ -293,24 +286,22 @@ fn rand_131072(b: &mut Bencher) {
#[bench] #[bench]
fn shl(b: &mut Bencher) { fn shl(b: &mut Bencher) {
let n = BigUint::one() << 1000u32; let n = BigUint::one() << 1000;
let mut m = n.clone();
b.iter(|| { b.iter(|| {
m.clone_from(&n); let mut m = n.clone();
for i in 0..50 { for i in 0..50 {
m <<= i; m = m << i;
} }
}) })
} }
#[bench] #[bench]
fn shr(b: &mut Bencher) { fn shr(b: &mut Bencher) {
let n = BigUint::one() << 2000u32; let n = BigUint::one() << 2000;
let mut m = n.clone();
b.iter(|| { b.iter(|| {
m.clone_from(&n); let mut m = n.clone();
for i in 0..50 { for i in 0..50 {
m >>= i; m = m >> i;
} }
}) })
} }
@ -329,49 +320,31 @@ fn hash(b: &mut Bencher) {
#[bench] #[bench]
fn pow_bench(b: &mut Bencher) { fn pow_bench(b: &mut Bencher) {
b.iter(|| { b.iter(|| {
let upper = 100_u32; let upper = 100_usize;
let mut i_big = BigUint::from(1u32); for i in 2..upper + 1 {
for _i in 2..=upper { for j in 2..upper + 1 {
i_big += 1u32; let i_big = BigUint::from_usize(i).unwrap();
for j in 2..=upper {
i_big.pow(j); i_big.pow(j);
} }
} }
}); });
} }
#[bench]
fn pow_bench_bigexp(b: &mut Bencher) {
use num_traits::Pow;
b.iter(|| {
let upper = 100_u32;
let mut i_big = BigUint::from(1u32);
for _i in 2..=upper {
i_big += 1u32;
let mut j_big = BigUint::from(1u32);
for _j in 2..=upper {
j_big += 1u32;
Pow::pow(&i_big, &j_big);
}
}
});
}
/// This modulus is the prime from the 2048-bit MODP DH group: /// This modulus is the prime from the 2048-bit MODP DH group:
/// https://tools.ietf.org/html/rfc3526#section-3 /// https://tools.ietf.org/html/rfc3526#section-3
const RFC3526_2048BIT_MODP_GROUP: &str = "\ const RFC3526_2048BIT_MODP_GROUP: &'static str =
FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\ "\
29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\ FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\
EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\ 29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\
E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\ EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\
EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\ E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\
C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\ EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\
83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\ C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\
670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\ 83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\
E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\ 670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\
DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\ E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\
15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF"; DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\
15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF";
#[bench] #[bench]
fn modpow(b: &mut Bencher) { fn modpow(b: &mut Bencher) {

Просмотреть файл

@ -1,5 +1,7 @@
#![feature(test)] #![feature(test)]
extern crate num_bigint;
extern crate num_traits;
extern crate test; extern crate test;
use num_bigint::BigUint; use num_bigint::BigUint;

11
third_party/rust/num-bigint/benches/gcd.rs поставляемый
Просмотреть файл

@ -1,13 +1,16 @@
#![feature(test)] #![feature(test)]
#![cfg(feature = "rand")] #![cfg(feature = "rand")]
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
extern crate rand;
extern crate test; extern crate test;
use num_bigint::{BigUint, RandBigInt}; use num_bigint::{BigUint, RandBigInt};
use num_integer::Integer; use num_integer::Integer;
use num_traits::Zero; use num_traits::Zero;
use rand::rngs::StdRng; use rand::{SeedableRng, StdRng};
use rand::SeedableRng;
use test::Bencher; use test::Bencher;
fn get_rng() -> StdRng { fn get_rng() -> StdRng {
@ -18,7 +21,7 @@ fn get_rng() -> StdRng {
SeedableRng::from_seed(seed) SeedableRng::from_seed(seed)
} }
fn bench(b: &mut Bencher, bits: u64, gcd: fn(&BigUint, &BigUint) -> BigUint) { fn bench(b: &mut Bencher, bits: usize, gcd: fn(&BigUint, &BigUint) -> BigUint) {
let mut rng = get_rng(); let mut rng = get_rng();
let x = rng.gen_biguint(bits); let x = rng.gen_biguint(bits);
let y = rng.gen_biguint(bits); let y = rng.gen_biguint(bits);
@ -37,7 +40,7 @@ fn euclid(x: &BigUint, y: &BigUint) -> BigUint {
m = n % &temp; m = n % &temp;
n = temp; n = temp;
} }
n return n;
} }
#[bench] #[bench]

13
third_party/rust/num-bigint/benches/roots.rs поставляемый
Просмотреть файл

@ -1,11 +1,14 @@
#![feature(test)] #![feature(test)]
#![cfg(feature = "rand")] #![cfg(feature = "rand")]
extern crate num_bigint;
extern crate num_traits;
extern crate rand;
extern crate test; extern crate test;
use num_bigint::{BigUint, RandBigInt}; use num_bigint::{BigUint, RandBigInt};
use rand::rngs::StdRng; use num_traits::Pow;
use rand::SeedableRng; use rand::{SeedableRng, StdRng};
use test::Bencher; use test::Bencher;
// The `big64` cases demonstrate the speed of cases where the value // The `big64` cases demonstrate the speed of cases where the value
@ -43,7 +46,7 @@ fn check(x: &BigUint, n: u32) {
assert_eq!((&hi - 1u32).nth_root(n), root); assert_eq!((&hi - 1u32).nth_root(n), root);
} }
fn bench_sqrt(b: &mut Bencher, bits: u64) { fn bench_sqrt(b: &mut Bencher, bits: usize) {
let x = get_rng().gen_biguint(bits); let x = get_rng().gen_biguint(bits);
eprintln!("bench_sqrt({})", x); eprintln!("bench_sqrt({})", x);
@ -71,7 +74,7 @@ fn big4k_sqrt(b: &mut Bencher) {
bench_sqrt(b, 4096); bench_sqrt(b, 4096);
} }
fn bench_cbrt(b: &mut Bencher, bits: u64) { fn bench_cbrt(b: &mut Bencher, bits: usize) {
let x = get_rng().gen_biguint(bits); let x = get_rng().gen_biguint(bits);
eprintln!("bench_cbrt({})", x); eprintln!("bench_cbrt({})", x);
@ -99,7 +102,7 @@ fn big4k_cbrt(b: &mut Bencher) {
bench_cbrt(b, 4096); bench_cbrt(b, 4096);
} }
fn bench_nth_root(b: &mut Bencher, bits: u64, n: u32) { fn bench_nth_root(b: &mut Bencher, bits: usize, n: u32) {
let x = get_rng().gen_biguint(bits); let x = get_rng().gen_biguint(bits);
eprintln!("bench_{}th_root({})", n, x); eprintln!("bench_{}th_root({})", n, x);

Просмотреть файл

@ -38,6 +38,10 @@
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE. // OF THE POSSIBILITY OF SUCH DAMAGE.
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
use std::io; use std::io;
use std::str::FromStr; use std::str::FromStr;
@ -94,7 +98,7 @@ fn pidigits(n: isize, out: &mut dyn io::Write) -> io::Result<()> {
let mut k = 0; let mut k = 0;
let mut context = Context::new(); let mut context = Context::new();
for i in 1..=n { for i in 1..(n + 1) {
let mut d; let mut d;
loop { loop {
k += 1; k += 1;
@ -107,7 +111,7 @@ fn pidigits(n: isize, out: &mut dyn io::Write) -> io::Result<()> {
write!(out, "{}", d)?; write!(out, "{}", d)?;
if i % 10 == 0 { if i % 10 == 0 {
writeln!(out, "\t:{}", i)?; write!(out, "\t:{}\n", i)?;
} }
context.eliminate_digit(d); context.eliminate_digit(d);
@ -118,7 +122,7 @@ fn pidigits(n: isize, out: &mut dyn io::Write) -> io::Result<()> {
for _ in m..10 { for _ in m..10 {
write!(out, " ")?; write!(out, " ")?;
} }
writeln!(out, "\t:{}", n)?; write!(out, "\t:{}\n", n)?;
} }
Ok(()) Ok(())
} }

Просмотреть файл

71
third_party/rust/num-bigint/build.rs поставляемый
Просмотреть файл

@ -1,71 +1,14 @@
extern crate autocfg;
use std::env; use std::env;
use std::error::Error;
use std::fs::File;
use std::io::Write;
use std::path::Path;
fn main() { fn main() {
let pointer_width = env::var("CARGO_CFG_TARGET_POINTER_WIDTH");
if pointer_width.as_ref().map(String::as_str) == Ok("64") {
autocfg::emit("u64_digit");
}
let ac = autocfg::new(); let ac = autocfg::new();
if ac.probe_path("std::convert::TryFrom") || ac.probe_path("core::convert::TryFrom") { if ac.probe_type("i128") {
autocfg::emit("has_try_from"); println!("cargo:rustc-cfg=has_i128");
} else if env::var_os("CARGO_FEATURE_I128").is_some() {
panic!("i128 support was not detected!");
} }
autocfg::rerun_path("build.rs"); autocfg::rerun_path(file!());
write_radix_bases().unwrap();
}
/// Write tables of the greatest power of each radix for the given bit size. These are returned
/// from `biguint::get_radix_base` to batch the multiplication/division of radix conversions on
/// full `BigUint` values, operating on primitive integers as much as possible.
///
/// e.g. BASES_16[3] = (59049, 10) // 3¹⁰ fits in u16, but 3¹¹ is too big
/// BASES_32[3] = (3486784401, 20)
/// BASES_64[3] = (12157665459056928801, 40)
///
/// Powers of two are not included, just zeroed, as they're implemented with shifts.
fn write_radix_bases() -> Result<(), Box<dyn Error>> {
let out_dir = env::var("OUT_DIR")?;
let dest_path = Path::new(&out_dir).join("radix_bases.rs");
let mut f = File::create(&dest_path)?;
for &bits in &[16, 32, 64] {
let max = if bits < 64 {
(1 << bits) - 1
} else {
std::u64::MAX
};
writeln!(f, "#[deny(overflowing_literals)]")?;
writeln!(
f,
"pub(crate) static BASES_{bits}: [(u{bits}, usize); 257] = [",
bits = bits
)?;
for radix in 0u64..257 {
let (base, power) = if radix == 0 || radix.is_power_of_two() {
(0, 0)
} else {
let mut power = 1;
let mut base = radix;
while let Some(b) = base.checked_mul(radix) {
if b > max {
break;
}
base = b;
power += 1;
}
(base, power)
};
writeln!(f, " ({}, {}), // {}", base, power, radix)?;
}
writeln!(f, "];")?;
}
Ok(())
} }

Просмотреть файл

Просмотреть файл

270
third_party/rust/num-bigint/src/algorithms.rs поставляемый
Просмотреть файл

@ -1,18 +1,18 @@
use crate::std_alloc::{Cow, Vec}; use std::borrow::Cow;
use core::cmp; use std::cmp;
use core::cmp::Ordering::{self, Equal, Greater, Less}; use std::cmp::Ordering::{self, Equal, Greater, Less};
use core::iter::repeat; use std::iter::repeat;
use core::mem; use std::mem;
use num_traits::{One, PrimInt, Zero}; use traits;
use traits::{One, Zero};
use crate::biguint::biguint_from_vec; use biguint::BigUint;
use crate::biguint::BigUint;
use crate::bigint::BigInt; use bigint::BigInt;
use crate::bigint::Sign; use bigint::Sign;
use crate::bigint::Sign::{Minus, NoSign, Plus}; use bigint::Sign::{Minus, NoSign, Plus};
use crate::big_digit::{self, BigDigit, DoubleBigDigit, SignedDoubleBigDigit}; use big_digit::{self, BigDigit, DoubleBigDigit, SignedDoubleBigDigit};
// Generic functions for add/subtract/multiply with carry/borrow: // Generic functions for add/subtract/multiply with carry/borrow:
@ -37,12 +37,7 @@ fn sbb(a: BigDigit, b: BigDigit, acc: &mut SignedDoubleBigDigit) -> BigDigit {
} }
#[inline] #[inline]
pub(crate) fn mac_with_carry( pub fn mac_with_carry(a: BigDigit, b: BigDigit, c: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit {
a: BigDigit,
b: BigDigit,
c: BigDigit,
acc: &mut DoubleBigDigit,
) -> BigDigit {
*acc += DoubleBigDigit::from(a); *acc += DoubleBigDigit::from(a);
*acc += DoubleBigDigit::from(b) * DoubleBigDigit::from(c); *acc += DoubleBigDigit::from(b) * DoubleBigDigit::from(c);
let lo = *acc as BigDigit; let lo = *acc as BigDigit;
@ -51,7 +46,7 @@ pub(crate) fn mac_with_carry(
} }
#[inline] #[inline]
pub(crate) fn mul_with_carry(a: BigDigit, b: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit { pub fn mul_with_carry(a: BigDigit, b: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit {
*acc += DoubleBigDigit::from(a) * DoubleBigDigit::from(b); *acc += DoubleBigDigit::from(a) * DoubleBigDigit::from(b);
let lo = *acc as BigDigit; let lo = *acc as BigDigit;
*acc >>= big_digit::BITS; *acc >>= big_digit::BITS;
@ -73,67 +68,31 @@ fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigi
((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit) ((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit)
} }
/// For small divisors, we can divide without promoting to `DoubleBigDigit` by pub fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) {
/// using half-size pieces of digit, like long-division.
#[inline]
fn div_half(rem: BigDigit, digit: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) {
use crate::big_digit::{HALF, HALF_BITS};
use num_integer::Integer;
debug_assert!(rem < divisor && divisor <= HALF);
let (hi, rem) = ((rem << HALF_BITS) | (digit >> HALF_BITS)).div_rem(&divisor);
let (lo, rem) = ((rem << HALF_BITS) | (digit & HALF)).div_rem(&divisor);
((hi << HALF_BITS) | lo, rem)
}
#[inline]
pub(crate) fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) {
let mut rem = 0; let mut rem = 0;
if b <= big_digit::HALF { for d in a.data.iter_mut().rev() {
for d in a.data.iter_mut().rev() { let (q, r) = div_wide(rem, *d, b);
let (q, r) = div_half(rem, *d, b); *d = q;
*d = q; rem = r;
rem = r;
}
} else {
for d in a.data.iter_mut().rev() {
let (q, r) = div_wide(rem, *d, b);
*d = q;
rem = r;
}
} }
(a.normalized(), rem) (a.normalized(), rem)
} }
#[inline] pub fn rem_digit(a: &BigUint, b: BigDigit) -> BigDigit {
pub(crate) fn rem_digit(a: &BigUint, b: BigDigit) -> BigDigit { let mut rem: DoubleBigDigit = 0;
let mut rem = 0; for &digit in a.data.iter().rev() {
rem = (rem << big_digit::BITS) + DoubleBigDigit::from(digit);
if b <= big_digit::HALF { rem %= DoubleBigDigit::from(b);
for &digit in a.data.iter().rev() {
let (_, r) = div_half(rem, digit, b);
rem = r;
}
} else {
for &digit in a.data.iter().rev() {
let (_, r) = div_wide(rem, digit, b);
rem = r;
}
} }
rem rem as BigDigit
} }
/// Two argument addition of raw slices, `a += b`, returning the carry. // Only for the Add impl:
///
/// This is used when the data `Vec` might need to resize to push a non-zero carry, so we perform
/// the addition first hoping that it will fit.
///
/// The caller _must_ ensure that `a` is at least as long as `b`.
#[inline] #[inline]
pub(crate) fn __add2(a: &mut [BigDigit], b: &[BigDigit]) -> BigDigit { pub fn __add2(a: &mut [BigDigit], b: &[BigDigit]) -> BigDigit {
debug_assert!(a.len() >= b.len()); debug_assert!(a.len() >= b.len());
let mut carry = 0; let mut carry = 0;
@ -160,13 +119,13 @@ pub(crate) fn __add2(a: &mut [BigDigit], b: &[BigDigit]) -> BigDigit {
/// ///
/// The caller _must_ ensure that a is big enough to store the result - typically this means /// The caller _must_ ensure that a is big enough to store the result - typically this means
/// resizing a to max(a.len(), b.len()) + 1, to fit a possible carry. /// resizing a to max(a.len(), b.len()) + 1, to fit a possible carry.
pub(crate) fn add2(a: &mut [BigDigit], b: &[BigDigit]) { pub fn add2(a: &mut [BigDigit], b: &[BigDigit]) {
let carry = __add2(a, b); let carry = __add2(a, b);
debug_assert!(carry == 0); debug_assert!(carry == 0);
} }
pub(crate) fn sub2(a: &mut [BigDigit], b: &[BigDigit]) { pub fn sub2(a: &mut [BigDigit], b: &[BigDigit]) {
let mut borrow = 0; let mut borrow = 0;
let len = cmp::min(a.len(), b.len()); let len = cmp::min(a.len(), b.len());
@ -195,7 +154,7 @@ pub(crate) fn sub2(a: &mut [BigDigit], b: &[BigDigit]) {
// Only for the Sub impl. `a` and `b` must have same length. // Only for the Sub impl. `a` and `b` must have same length.
#[inline] #[inline]
pub(crate) fn __sub2rev(a: &[BigDigit], b: &mut [BigDigit]) -> BigDigit { pub fn __sub2rev(a: &[BigDigit], b: &mut [BigDigit]) -> BigDigit {
debug_assert!(b.len() == a.len()); debug_assert!(b.len() == a.len());
let mut borrow = 0; let mut borrow = 0;
@ -207,7 +166,7 @@ pub(crate) fn __sub2rev(a: &[BigDigit], b: &mut [BigDigit]) -> BigDigit {
borrow as BigDigit borrow as BigDigit
} }
pub(crate) fn sub2rev(a: &[BigDigit], b: &mut [BigDigit]) { pub fn sub2rev(a: &[BigDigit], b: &mut [BigDigit]) {
debug_assert!(b.len() >= a.len()); debug_assert!(b.len() >= a.len());
let len = cmp::min(a.len(), b.len()); let len = cmp::min(a.len(), b.len());
@ -225,7 +184,7 @@ pub(crate) fn sub2rev(a: &[BigDigit], b: &mut [BigDigit]) {
); );
} }
pub(crate) fn sub_sign(a: &[BigDigit], b: &[BigDigit]) -> (Sign, BigUint) { pub fn sub_sign(a: &[BigDigit], b: &[BigDigit]) -> (Sign, BigUint) {
// Normalize: // Normalize:
let a = &a[..a.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)]; let a = &a[..a.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
let b = &b[..b.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)]; let b = &b[..b.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
@ -234,12 +193,12 @@ pub(crate) fn sub_sign(a: &[BigDigit], b: &[BigDigit]) -> (Sign, BigUint) {
Greater => { Greater => {
let mut a = a.to_vec(); let mut a = a.to_vec();
sub2(&mut a, b); sub2(&mut a, b);
(Plus, biguint_from_vec(a)) (Plus, BigUint::new(a))
} }
Less => { Less => {
let mut b = b.to_vec(); let mut b = b.to_vec();
sub2(&mut b, a); sub2(&mut b, a);
(Minus, biguint_from_vec(b)) (Minus, BigUint::new(b))
} }
_ => (NoSign, Zero::zero()), _ => (NoSign, Zero::zero()),
} }
@ -247,7 +206,7 @@ pub(crate) fn sub_sign(a: &[BigDigit], b: &[BigDigit]) -> (Sign, BigUint) {
/// Three argument multiply accumulate: /// Three argument multiply accumulate:
/// acc += b * c /// acc += b * c
pub(crate) fn mac_digit(acc: &mut [BigDigit], b: &[BigDigit], c: BigDigit) { pub fn mac_digit(acc: &mut [BigDigit], b: &[BigDigit], c: BigDigit) {
if c == 0 { if c == 0 {
return; return;
} }
@ -266,10 +225,6 @@ pub(crate) fn mac_digit(acc: &mut [BigDigit], b: &[BigDigit], c: BigDigit) {
} }
} }
fn bigint_from_slice(slice: &[BigDigit]) -> BigInt {
BigInt::from(biguint_from_vec(slice.to_vec()))
}
/// Three argument multiply accumulate: /// Three argument multiply accumulate:
/// acc += b * c /// acc += b * c
fn mac3(acc: &mut [BigDigit], b: &[BigDigit], c: &[BigDigit]) { fn mac3(acc: &mut [BigDigit], b: &[BigDigit], c: &[BigDigit]) {
@ -432,14 +387,14 @@ fn mac3(acc: &mut [BigDigit], b: &[BigDigit], c: &[BigDigit]) {
// in place of multiplications. // in place of multiplications.
// //
// x(t) = x2*t^2 + x1*t + x0 // x(t) = x2*t^2 + x1*t + x0
let x0 = bigint_from_slice(&x[..x0_len]); let x0 = BigInt::from_slice(Plus, &x[..x0_len]);
let x1 = bigint_from_slice(&x[x0_len..x0_len + x1_len]); let x1 = BigInt::from_slice(Plus, &x[x0_len..x0_len + x1_len]);
let x2 = bigint_from_slice(&x[x0_len + x1_len..]); let x2 = BigInt::from_slice(Plus, &x[x0_len + x1_len..]);
// y(t) = y2*t^2 + y1*t + y0 // y(t) = y2*t^2 + y1*t + y0
let y0 = bigint_from_slice(&y[..y0_len]); let y0 = BigInt::from_slice(Plus, &y[..y0_len]);
let y1 = bigint_from_slice(&y[y0_len..y0_len + y1_len]); let y1 = BigInt::from_slice(Plus, &y[y0_len..y0_len + y1_len]);
let y2 = bigint_from_slice(&y[y0_len + y1_len..]); let y2 = BigInt::from_slice(Plus, &y[y0_len + y1_len..]);
// Let w(t) = x(t) * y(t) // Let w(t) = x(t) * y(t)
// //
@ -515,24 +470,23 @@ fn mac3(acc: &mut [BigDigit], b: &[BigDigit], c: &[BigDigit]) {
let mut comp1: BigInt = (r1 - &r2) / 2; let mut comp1: BigInt = (r1 - &r2) / 2;
let mut comp2: BigInt = r2 - &r0; let mut comp2: BigInt = r2 - &r0;
comp3 = (&comp2 - comp3) / 2 + &r4 * 2; comp3 = (&comp2 - comp3) / 2 + &r4 * 2;
comp2 += &comp1 - &r4; comp2 = comp2 + &comp1 - &r4;
comp1 -= &comp3; comp1 = comp1 - &comp3;
// Recomposition. The coefficients of the polynomial are now known. // Recomposition. The coefficients of the polynomial are now known.
// //
// Evaluate at w(t) where t is our given base to get the result. // Evaluate at w(t) where t is our given base to get the result.
let bits = u64::from(big_digit::BITS) * i as u64;
let result = r0 let result = r0
+ (comp1 << bits) + (comp1 << 32 * i)
+ (comp2 << (2 * bits)) + (comp2 << 2 * 32 * i)
+ (comp3 << (3 * bits)) + (comp3 << 3 * 32 * i)
+ (r4 << (4 * bits)); + (r4 << 4 * 32 * i);
let result_pos = result.to_biguint().unwrap(); let result_pos = result.to_biguint().unwrap();
add2(&mut acc[..], &result_pos.data); add2(&mut acc[..], &result_pos.data);
} }
} }
pub(crate) fn mul3(x: &[BigDigit], y: &[BigDigit]) -> BigUint { pub fn mul3(x: &[BigDigit], y: &[BigDigit]) -> BigUint {
let len = x.len() + y.len() + 1; let len = x.len() + y.len() + 1;
let mut prod = BigUint { data: vec![0; len] }; let mut prod = BigUint { data: vec![0; len] };
@ -540,7 +494,7 @@ pub(crate) fn mul3(x: &[BigDigit], y: &[BigDigit]) -> BigUint {
prod.normalized() prod.normalized()
} }
pub(crate) fn scalar_mul(a: &mut [BigDigit], b: BigDigit) -> BigDigit { pub fn scalar_mul(a: &mut [BigDigit], b: BigDigit) -> BigDigit {
let mut carry = 0; let mut carry = 0;
for a in a.iter_mut() { for a in a.iter_mut() {
*a = mul_with_carry(*a, b, &mut carry); *a = mul_with_carry(*a, b, &mut carry);
@ -548,9 +502,9 @@ pub(crate) fn scalar_mul(a: &mut [BigDigit], b: BigDigit) -> BigDigit {
carry as BigDigit carry as BigDigit
} }
pub(crate) fn div_rem(mut u: BigUint, mut d: BigUint) -> (BigUint, BigUint) { pub fn div_rem(mut u: BigUint, mut d: BigUint) -> (BigUint, BigUint) {
if d.is_zero() { if d.is_zero() {
panic!("attempt to divide by zero") panic!()
} }
if u.is_zero() { if u.is_zero() {
return (Zero::zero(), Zero::zero()); return (Zero::zero(), Zero::zero());
@ -584,7 +538,6 @@ pub(crate) fn div_rem(mut u: BigUint, mut d: BigUint) -> (BigUint, BigUint) {
// want it to be the largest number we can efficiently divide by. // want it to be the largest number we can efficiently divide by.
// //
let shift = d.data.last().unwrap().leading_zeros() as usize; let shift = d.data.last().unwrap().leading_zeros() as usize;
let (q, r) = if shift == 0 { let (q, r) = if shift == 0 {
// no need to clone d // no need to clone d
div_rem_core(u, &d) div_rem_core(u, &d)
@ -595,9 +548,9 @@ pub(crate) fn div_rem(mut u: BigUint, mut d: BigUint) -> (BigUint, BigUint) {
(q, r >> shift) (q, r >> shift)
} }
pub(crate) fn div_rem_ref(u: &BigUint, d: &BigUint) -> (BigUint, BigUint) { pub fn div_rem_ref(u: &BigUint, d: &BigUint) -> (BigUint, BigUint) {
if d.is_zero() { if d.is_zero() {
panic!("attempt to divide by zero") panic!()
} }
if u.is_zero() { if u.is_zero() {
return (Zero::zero(), Zero::zero()); return (Zero::zero(), Zero::zero());
@ -702,8 +655,9 @@ fn div_rem_core(mut a: BigUint, b: &BigUint) -> (BigUint, BigUint) {
let mut prod = b * &q0; let mut prod = b * &q0;
while cmp_slice(&prod.data[..], &a.data[j..]) == Greater { while cmp_slice(&prod.data[..], &a.data[j..]) == Greater {
q0 -= 1u32; let one: BigUint = One::one();
prod -= b; q0 = q0 - one;
prod = prod - b;
} }
add2(&mut q.data[j..], &q0.data[..]); add2(&mut q.data[j..], &q0.data[..]);
@ -713,53 +667,41 @@ fn div_rem_core(mut a: BigUint, b: &BigUint) -> (BigUint, BigUint) {
tmp = q0; tmp = q0;
} }
debug_assert!(a < *b); debug_assert!(&a < b);
(q.normalized(), a) (q.normalized(), a)
} }
/// Find last set bit /// Find last set bit
/// fls(0) == 0, fls(u32::MAX) == 32 /// fls(0) == 0, fls(u32::MAX) == 32
pub(crate) fn fls<T: PrimInt>(v: T) -> u8 { pub fn fls<T: traits::PrimInt>(v: T) -> usize {
mem::size_of::<T>() as u8 * 8 - v.leading_zeros() as u8 mem::size_of::<T>() * 8 - v.leading_zeros() as usize
} }
pub(crate) fn ilog2<T: PrimInt>(v: T) -> u8 { pub fn ilog2<T: traits::PrimInt>(v: T) -> usize {
fls(v) - 1 fls(v) - 1
} }
#[inline] #[inline]
pub(crate) fn biguint_shl<T: PrimInt>(n: Cow<'_, BigUint>, shift: T) -> BigUint { pub fn biguint_shl(n: Cow<BigUint>, bits: usize) -> BigUint {
if shift < T::zero() { let n_unit = bits / big_digit::BITS;
panic!("attempt to shift left with negative"); let mut data = match n_unit {
}
if n.is_zero() {
return n.into_owned();
}
let bits = T::from(big_digit::BITS).unwrap();
let digits = (shift / bits).to_usize().expect("capacity overflow");
let shift = (shift % bits).to_u8().unwrap();
biguint_shl2(n, digits, shift)
}
fn biguint_shl2(n: Cow<'_, BigUint>, digits: usize, shift: u8) -> BigUint {
let mut data = match digits {
0 => n.into_owned().data, 0 => n.into_owned().data,
_ => { _ => {
let len = digits.saturating_add(n.data.len() + 1); let len = n_unit + n.data.len() + 1;
let mut data = Vec::with_capacity(len); let mut data = Vec::with_capacity(len);
data.extend(repeat(0).take(digits)); data.extend(repeat(0).take(n_unit));
data.extend(n.data.iter()); data.extend(n.data.iter().cloned());
data data
} }
}; };
if shift > 0 { let n_bits = bits % big_digit::BITS;
if n_bits > 0 {
let mut carry = 0; let mut carry = 0;
let carry_shift = big_digit::BITS as u8 - shift; for elem in data[n_unit..].iter_mut() {
for elem in data[digits..].iter_mut() { let new_carry = *elem >> (big_digit::BITS - n_bits);
let new_carry = *elem >> carry_shift; *elem = (*elem << n_bits) | carry;
*elem = (*elem << shift) | carry;
carry = new_carry; carry = new_carry;
} }
if carry != 0 { if carry != 0 {
@ -767,65 +709,65 @@ fn biguint_shl2(n: Cow<'_, BigUint>, digits: usize, shift: u8) -> BigUint {
} }
} }
biguint_from_vec(data) BigUint::new(data)
} }
#[inline] #[inline]
pub(crate) fn biguint_shr<T: PrimInt>(n: Cow<'_, BigUint>, shift: T) -> BigUint { pub fn biguint_shr(n: Cow<BigUint>, bits: usize) -> BigUint {
if shift < T::zero() { let n_unit = bits / big_digit::BITS;
panic!("attempt to shift right with negative"); if n_unit >= n.data.len() {
} return Zero::zero();
if n.is_zero() {
return n.into_owned();
}
let bits = T::from(big_digit::BITS).unwrap();
let digits = (shift / bits).to_usize().unwrap_or(core::usize::MAX);
let shift = (shift % bits).to_u8().unwrap();
biguint_shr2(n, digits, shift)
}
fn biguint_shr2(n: Cow<'_, BigUint>, digits: usize, shift: u8) -> BigUint {
if digits >= n.data.len() {
let mut n = n.into_owned();
n.set_zero();
return n;
} }
let mut data = match n { let mut data = match n {
Cow::Borrowed(n) => n.data[digits..].to_vec(), Cow::Borrowed(n) => n.data[n_unit..].to_vec(),
Cow::Owned(mut n) => { Cow::Owned(mut n) => {
n.data.drain(..digits); n.data.drain(..n_unit);
n.data n.data
} }
}; };
if shift > 0 { let n_bits = bits % big_digit::BITS;
if n_bits > 0 {
let mut borrow = 0; let mut borrow = 0;
let borrow_shift = big_digit::BITS as u8 - shift;
for elem in data.iter_mut().rev() { for elem in data.iter_mut().rev() {
let new_borrow = *elem << borrow_shift; let new_borrow = *elem << (big_digit::BITS - n_bits);
*elem = (*elem >> shift) | borrow; *elem = (*elem >> n_bits) | borrow;
borrow = new_borrow; borrow = new_borrow;
} }
} }
biguint_from_vec(data) BigUint::new(data)
} }
pub(crate) fn cmp_slice(a: &[BigDigit], b: &[BigDigit]) -> Ordering { pub fn cmp_slice(a: &[BigDigit], b: &[BigDigit]) -> Ordering {
debug_assert!(a.last() != Some(&0)); debug_assert!(a.last() != Some(&0));
debug_assert!(b.last() != Some(&0)); debug_assert!(b.last() != Some(&0));
match Ord::cmp(&a.len(), &b.len()) { let (a_len, b_len) = (a.len(), b.len());
Equal => Iterator::cmp(a.iter().rev(), b.iter().rev()), if a_len < b_len {
other => other, return Less;
} }
if a_len > b_len {
return Greater;
}
for (&ai, &bi) in a.iter().rev().zip(b.iter().rev()) {
if ai < bi {
return Less;
}
if ai > bi {
return Greater;
}
}
return Equal;
} }
#[cfg(test)] #[cfg(test)]
mod algorithm_tests { mod algorithm_tests {
use crate::big_digit::BigDigit; use big_digit::BigDigit;
use crate::{BigInt, BigUint}; use traits::Num;
use num_traits::Num; use Sign::Plus;
use {BigInt, BigUint};
#[test] #[test]
fn test_sub_sign() { fn test_sub_sign() {
@ -838,8 +780,8 @@ mod algorithm_tests {
let a = BigUint::from_str_radix("265252859812191058636308480000000", 10).unwrap(); let a = BigUint::from_str_radix("265252859812191058636308480000000", 10).unwrap();
let b = BigUint::from_str_radix("26525285981219105863630848000000", 10).unwrap(); let b = BigUint::from_str_radix("26525285981219105863630848000000", 10).unwrap();
let a_i = BigInt::from(a.clone()); let a_i = BigInt::from_biguint(Plus, a.clone());
let b_i = BigInt::from(b.clone()); let b_i = BigInt::from_biguint(Plus, b.clone());
assert_eq!(sub_sign_i(&a.data[..], &b.data[..]), &a_i - &b_i); assert_eq!(sub_sign_i(&a.data[..], &b.data[..]), &a_i - &b_i);
assert_eq!(sub_sign_i(&b.data[..], &a.data[..]), &b_i - &a_i); assert_eq!(sub_sign_i(&b.data[..], &a.data[..]), &b_i - &a_i);

1074
third_party/rust/num-bigint/src/bigint.rs поставляемый

Разница между файлами не показана из-за своего большого размера Загрузить разницу

146
third_party/rust/num-bigint/src/bigrand.rs поставляемый
Просмотреть файл

@ -1,27 +1,25 @@
//! Randomization of big integers //! Randomization of big integers
use rand::distributions::uniform::{SampleBorrow, SampleUniform, UniformSampler}; use rand::distributions::uniform::{SampleUniform, UniformSampler};
use rand::prelude::*; use rand::prelude::*;
use rand::AsByteSliceMut;
use crate::BigInt; use BigInt;
use crate::BigUint; use BigUint;
use crate::Sign::*; use Sign::*;
use crate::bigint::{into_magnitude, magnitude}; use big_digit::BigDigit;
use crate::biguint::biguint_from_vec; use bigint::{into_magnitude, magnitude};
use num_integer::Integer; use integer::Integer;
use num_traits::{ToPrimitive, Zero}; use traits::Zero;
/// A trait for sampling random big integers.
///
/// The `rand` feature must be enabled to use this. See crate-level documentation for details.
pub trait RandBigInt { pub trait RandBigInt {
/// Generate a random `BigUint` of the given bit size. /// Generate a random `BigUint` of the given bit size.
fn gen_biguint(&mut self, bit_size: u64) -> BigUint; fn gen_biguint(&mut self, bit_size: usize) -> BigUint;
/// Generate a random BigInt of the given bit size. /// Generate a random BigInt of the given bit size.
fn gen_bigint(&mut self, bit_size: u64) -> BigInt; fn gen_bigint(&mut self, bit_size: usize) -> BigInt;
/// Generate a random `BigUint` less than the given bound. Fails /// Generate a random `BigUint` less than the given bound. Fails
/// when the bound is zero. /// when the bound is zero.
@ -38,54 +36,24 @@ pub trait RandBigInt {
fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt; fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt;
} }
fn gen_bits<R: Rng + ?Sized>(rng: &mut R, data: &mut [u32], rem: u64) {
// `fill` is faster than many `gen::<u32>` calls
rng.fill(data);
if rem > 0 {
let last = data.len() - 1;
data[last] >>= 32 - rem;
}
}
impl<R: Rng + ?Sized> RandBigInt for R { impl<R: Rng + ?Sized> RandBigInt for R {
#[cfg(not(u64_digit))] fn gen_biguint(&mut self, bit_size: usize) -> BigUint {
fn gen_biguint(&mut self, bit_size: u64) -> BigUint { use super::big_digit::BITS;
let (digits, rem) = bit_size.div_rem(&32); let (digits, rem) = bit_size.div_rem(&BITS);
let len = (digits + (rem > 0) as u64) let mut data = vec![BigDigit::default(); digits + (rem > 0) as usize];
.to_usize() // `fill_bytes` is faster than many `gen::<u32>` calls
.expect("capacity overflow"); self.fill_bytes(data[..].as_byte_slice_mut());
let mut data = vec![0u32; len]; // Swap bytes per the `Rng::fill` source. This might be
gen_bits(self, &mut data, rem); // unnecessary if reproducibility across architectures is not
biguint_from_vec(data) // desired.
data.to_le();
if rem > 0 {
data[digits] >>= BITS - rem;
}
BigUint::new(data)
} }
#[cfg(u64_digit)] fn gen_bigint(&mut self, bit_size: usize) -> BigInt {
fn gen_biguint(&mut self, bit_size: u64) -> BigUint {
use core::slice;
let (digits, rem) = bit_size.div_rem(&32);
let len = (digits + (rem > 0) as u64)
.to_usize()
.expect("capacity overflow");
let native_digits = bit_size.div_ceil(&64);
let native_len = native_digits.to_usize().expect("capacity overflow");
let mut data = vec![0u64; native_len];
unsafe {
// Generate bits in a `&mut [u32]` slice for value stability
let ptr = data.as_mut_ptr() as *mut u32;
debug_assert!(native_len * 2 >= len);
let data = slice::from_raw_parts_mut(ptr, len);
gen_bits(self, data, rem);
}
#[cfg(target_endian = "big")]
for digit in &mut data {
// swap u32 digits into u64 endianness
*digit = (*digit << 32) | (*digit >> 32);
}
biguint_from_vec(data)
}
fn gen_bigint(&mut self, bit_size: u64) -> BigInt {
loop { loop {
// Generate a random BigUint... // Generate a random BigUint...
let biguint = self.gen_biguint(bit_size); let biguint = self.gen_biguint(bit_size);
@ -153,28 +121,16 @@ impl UniformSampler for UniformBigUint {
type X = BigUint; type X = BigUint;
#[inline] #[inline]
fn new<B1, B2>(low_b: B1, high_b: B2) -> Self fn new(low: Self::X, high: Self::X) -> Self {
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = low_b.borrow();
let high = high_b.borrow();
assert!(low < high); assert!(low < high);
UniformBigUint { UniformBigUint {
len: high - low, len: high - &low,
base: low.clone(), base: low,
} }
} }
#[inline] #[inline]
fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self fn new_inclusive(low: Self::X, high: Self::X) -> Self {
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = low_b.borrow();
let high = high_b.borrow();
assert!(low <= high); assert!(low <= high);
Self::new(low, high + 1u32) Self::new(low, high + 1u32)
} }
@ -185,12 +141,8 @@ impl UniformSampler for UniformBigUint {
} }
#[inline] #[inline]
fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) -> Self::X fn sample_single<R: Rng + ?Sized>(low: Self::X, high: Self::X, rng: &mut R) -> Self::X {
where rng.gen_biguint_range(&low, &high)
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
rng.gen_biguint_range(low.borrow(), high.borrow())
} }
} }
@ -209,28 +161,16 @@ impl UniformSampler for UniformBigInt {
type X = BigInt; type X = BigInt;
#[inline] #[inline]
fn new<B1, B2>(low_b: B1, high_b: B2) -> Self fn new(low: Self::X, high: Self::X) -> Self {
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = low_b.borrow();
let high = high_b.borrow();
assert!(low < high); assert!(low < high);
UniformBigInt { UniformBigInt {
len: into_magnitude(high - low), len: into_magnitude(high - &low),
base: low.clone(), base: low,
} }
} }
#[inline] #[inline]
fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self fn new_inclusive(low: Self::X, high: Self::X) -> Self {
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = low_b.borrow();
let high = high_b.borrow();
assert!(low <= high); assert!(low <= high);
Self::new(low, high + 1u32) Self::new(low, high + 1u32)
} }
@ -241,12 +181,8 @@ impl UniformSampler for UniformBigInt {
} }
#[inline] #[inline]
fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) -> Self::X fn sample_single<R: Rng + ?Sized>(low: Self::X, high: Self::X, rng: &mut R) -> Self::X {
where rng.gen_bigint_range(&low, &high)
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
rng.gen_bigint_range(low.borrow(), high.borrow())
} }
} }
@ -255,16 +191,14 @@ impl SampleUniform for BigInt {
} }
/// A random distribution for `BigUint` and `BigInt` values of a particular bit size. /// A random distribution for `BigUint` and `BigInt` values of a particular bit size.
///
/// The `rand` feature must be enabled to use this. See crate-level documentation for details.
#[derive(Clone, Copy, Debug)] #[derive(Clone, Copy, Debug)]
pub struct RandomBits { pub struct RandomBits {
bits: u64, bits: usize,
} }
impl RandomBits { impl RandomBits {
#[inline] #[inline]
pub fn new(bits: u64) -> RandomBits { pub fn new(bits: usize) -> RandomBits {
RandomBits { bits } RandomBits { bits }
} }
} }

1578
third_party/rust/num-bigint/src/biguint.rs поставляемый

Разница между файлами не показана из-за своего большого размера Загрузить разницу

174
third_party/rust/num-bigint/src/lib.rs поставляемый
Просмотреть файл

@ -19,6 +19,9 @@
//! ## Example //! ## Example
//! //!
//! ```rust //! ```rust
//! extern crate num_bigint;
//! extern crate num_traits;
//!
//! # fn main() { //! # fn main() {
//! use num_bigint::BigUint; //! use num_bigint::BigUint;
//! use num_traits::{Zero, One}; //! use num_traits::{Zero, One};
@ -43,8 +46,14 @@
//! //!
//! It's easy to generate large random numbers: //! It's easy to generate large random numbers:
//! //!
//! ```rust,ignore //! ```rust
//! use num_bigint::{ToBigInt, RandBigInt}; //! # #[cfg(feature = "rand")]
//! extern crate rand;
//! extern crate num_bigint as bigint;
//!
//! # #[cfg(feature = "rand")]
//! # fn main() {
//! use bigint::{ToBigInt, RandBigInt};
//! //!
//! let mut rng = rand::thread_rng(); //! let mut rng = rand::thread_rng();
//! let a = rng.gen_bigint(1000); //! let a = rng.gen_bigint(1000);
@ -55,67 +64,34 @@
//! //!
//! // Probably an even larger number. //! // Probably an even larger number.
//! println!("{}", a * b); //! println!("{}", a * b);
//! # }
//!
//! # #[cfg(not(feature = "rand"))]
//! # fn main() {
//! # }
//! ``` //! ```
//! //!
//! See the "Features" section for instructions for enabling random number generation.
//!
//! ## Features
//!
//! The `std` crate feature is enabled by default, and is mandatory before Rust
//! 1.36 and the stabilized `alloc` crate. If you depend on `num-bigint` with
//! `default-features = false`, you must manually enable the `std` feature yourself
//! if your compiler is not new enough.
//!
//! ### Random Generation
//!
//! `num-bigint` supports the generation of random big integers when the `rand`
//! feature is enabled. To enable it include rand as
//!
//! ```toml
//! rand = "0.7"
//! num-bigint = { version = "0.3", features = ["rand"] }
//! ```
//!
//! Note that you must use the version of `rand` that `num-bigint` is compatible
//! with: `0.7`.
//!
//!
//! ## Compatibility //! ## Compatibility
//! //!
//! The `num-bigint` crate is tested for rustc 1.31 and greater. //! The `num-bigint` crate is tested for rustc 1.15 and greater.
#![doc(html_root_url = "https://docs.rs/num-bigint/0.3")] #![doc(html_root_url = "https://docs.rs/num-bigint/0.2")]
#![no_std] // We don't actually support `no_std` yet, and probably won't until `alloc` is stable. We're just
// reserving this ability with the "std" feature now, and compilation will fail without.
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "std")] #[cfg(feature = "rand")]
#[macro_use] extern crate rand;
extern crate std; #[cfg(feature = "serde")]
extern crate serde;
#[cfg(feature = "std")] extern crate num_integer as integer;
mod std_alloc { extern crate num_traits as traits;
pub(crate) use std::borrow::Cow; #[cfg(feature = "quickcheck")]
#[cfg(feature = "quickcheck")] extern crate quickcheck;
pub(crate) use std::boxed::Box;
pub(crate) use std::string::String;
pub(crate) use std::vec::Vec;
}
#[cfg(not(feature = "std"))]
#[macro_use]
extern crate alloc;
#[cfg(not(feature = "std"))]
mod std_alloc {
pub(crate) use alloc::borrow::Cow;
#[cfg(feature = "quickcheck")]
pub(crate) use alloc::boxed::Box;
pub(crate) use alloc::string::String;
pub(crate) use alloc::vec::Vec;
}
use core::fmt;
#[cfg(feature = "std")]
use std::error::Error; use std::error::Error;
use std::fmt;
#[macro_use] #[macro_use]
mod macros; mod macros;
@ -149,7 +125,7 @@ enum BigIntErrorKind {
impl ParseBigIntError { impl ParseBigIntError {
fn __description(&self) -> &str { fn __description(&self) -> &str {
use crate::BigIntErrorKind::*; use BigIntErrorKind::*;
match self.kind { match self.kind {
Empty => "cannot parse integer from empty string", Empty => "cannot parse integer from empty string",
InvalidDigit => "invalid digit found in string", InvalidDigit => "invalid digit found in string",
@ -170,102 +146,42 @@ impl ParseBigIntError {
} }
impl fmt::Display for ParseBigIntError { impl fmt::Display for ParseBigIntError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.__description().fmt(f) self.__description().fmt(f)
} }
} }
#[cfg(feature = "std")]
impl Error for ParseBigIntError { impl Error for ParseBigIntError {
fn description(&self) -> &str { fn description(&self) -> &str {
self.__description() self.__description()
} }
} }
/// The error type returned when a checked conversion regarding big integer fails. pub use biguint::BigUint;
#[cfg(has_try_from)] pub use biguint::ToBigUint;
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct TryFromBigIntError<T> {
original: T,
}
#[cfg(has_try_from)] pub use bigint::BigInt;
impl<T> TryFromBigIntError<T> { pub use bigint::Sign;
fn new(original: T) -> Self { pub use bigint::ToBigInt;
TryFromBigIntError { original }
}
fn __description(&self) -> &str {
"out of range conversion regarding big integer attempted"
}
/// Extract the original value, if available. The value will be available
/// if the type before conversion was either [`BigInt`] or [`BigUint`].
///
/// [`BigInt`]: struct.BigInt.html
/// [`BigUint`]: struct.BigUint.html
pub fn into_original(self) -> T {
self.original
}
}
#[cfg(all(feature = "std", has_try_from))]
impl<T> std::error::Error for TryFromBigIntError<T>
where
T: fmt::Debug,
{
fn description(&self) -> &str {
self.__description()
}
}
#[cfg(has_try_from)]
impl<T> fmt::Display for TryFromBigIntError<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.__description().fmt(f)
}
}
pub use crate::biguint::BigUint;
pub use crate::biguint::ToBigUint;
pub use crate::bigint::BigInt;
pub use crate::bigint::Sign;
pub use crate::bigint::ToBigInt;
#[cfg(feature = "rand")] #[cfg(feature = "rand")]
pub use crate::bigrand::{RandBigInt, RandomBits, UniformBigInt, UniformBigUint}; pub use bigrand::{RandBigInt, RandomBits, UniformBigInt, UniformBigUint};
mod big_digit { mod big_digit {
/// A `BigDigit` is a `BigUint`'s composing element. /// A `BigDigit` is a `BigUint`'s composing element.
#[cfg(not(u64_digit))] pub type BigDigit = u32;
pub(crate) type BigDigit = u32;
#[cfg(u64_digit)]
pub(crate) type BigDigit = u64;
/// A `DoubleBigDigit` is the internal type used to do the computations. Its /// A `DoubleBigDigit` is the internal type used to do the computations. Its
/// size is the double of the size of `BigDigit`. /// size is the double of the size of `BigDigit`.
#[cfg(not(u64_digit))] pub type DoubleBigDigit = u64;
pub(crate) type DoubleBigDigit = u64;
#[cfg(u64_digit)]
pub(crate) type DoubleBigDigit = u128;
/// A `SignedDoubleBigDigit` is the signed version of `DoubleBigDigit`. /// A `SignedDoubleBigDigit` is the signed version of `DoubleBigDigit`.
#[cfg(not(u64_digit))] pub type SignedDoubleBigDigit = i64;
pub(crate) type SignedDoubleBigDigit = i64;
#[cfg(u64_digit)]
pub(crate) type SignedDoubleBigDigit = i128;
// `DoubleBigDigit` size dependent // `DoubleBigDigit` size dependent
#[cfg(not(u64_digit))] pub const BITS: usize = 32;
pub(crate) const BITS: u8 = 32;
#[cfg(u64_digit)]
pub(crate) const BITS: u8 = 64;
pub(crate) const HALF_BITS: u8 = BITS / 2; const LO_MASK: DoubleBigDigit = (-1i32 as DoubleBigDigit) >> BITS;
pub(crate) const HALF: BigDigit = (1 << HALF_BITS) - 1;
const LO_MASK: DoubleBigDigit = (1 << BITS) - 1;
#[inline] #[inline]
fn get_hi(n: DoubleBigDigit) -> BigDigit { fn get_hi(n: DoubleBigDigit) -> BigDigit {
@ -278,13 +194,13 @@ mod big_digit {
/// Split one `DoubleBigDigit` into two `BigDigit`s. /// Split one `DoubleBigDigit` into two `BigDigit`s.
#[inline] #[inline]
pub(crate) fn from_doublebigdigit(n: DoubleBigDigit) -> (BigDigit, BigDigit) { pub fn from_doublebigdigit(n: DoubleBigDigit) -> (BigDigit, BigDigit) {
(get_hi(n), get_lo(n)) (get_hi(n), get_lo(n))
} }
/// Join two `BigDigit`s into one `DoubleBigDigit` /// Join two `BigDigit`s into one `DoubleBigDigit`
#[inline] #[inline]
pub(crate) fn to_doublebigdigit(hi: BigDigit, lo: BigDigit) -> DoubleBigDigit { pub fn to_doublebigdigit(hi: BigDigit, lo: BigDigit) -> DoubleBigDigit {
DoubleBigDigit::from(lo) | (DoubleBigDigit::from(hi) << BITS) DoubleBigDigit::from(lo) | (DoubleBigDigit::from(hi) << BITS)
} }
} }

12
third_party/rust/num-bigint/src/macros.rs поставляемый
Просмотреть файл

@ -1,3 +1,4 @@
#![allow(unknown_lints)] // older rustc doesn't know `unused_macros`
#![allow(unused_macros)] #![allow(unused_macros)]
macro_rules! forward_val_val_binop { macro_rules! forward_val_val_binop {
@ -283,7 +284,8 @@ macro_rules! promote_scalars {
impl $imp<$scalar> for $res { impl $imp<$scalar> for $res {
type Output = $res; type Output = $res;
#[allow(clippy::cast_lossless)] #[cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))]
#[cfg_attr(feature = "cargo-clippy", allow(cast_lossless))]
#[inline] #[inline]
fn $method(self, other: $scalar) -> $res { fn $method(self, other: $scalar) -> $res {
$imp::$method(self, other as $promo) $imp::$method(self, other as $promo)
@ -293,7 +295,8 @@ macro_rules! promote_scalars {
impl $imp<$res> for $scalar { impl $imp<$res> for $scalar {
type Output = $res; type Output = $res;
#[allow(clippy::cast_lossless)] #[cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))]
#[cfg_attr(feature = "cargo-clippy", allow(cast_lossless))]
#[inline] #[inline]
fn $method(self, other: $res) -> $res { fn $method(self, other: $res) -> $res {
$imp::$method(self as $promo, other) $imp::$method(self as $promo, other)
@ -306,7 +309,8 @@ macro_rules! promote_scalars_assign {
(impl $imp:ident<$promo:ty> for $res:ty, $method:ident, $( $scalar:ty ),*) => { (impl $imp:ident<$promo:ty> for $res:ty, $method:ident, $( $scalar:ty ),*) => {
$( $(
impl $imp<$scalar> for $res { impl $imp<$scalar> for $res {
#[allow(clippy::cast_lossless)] #[cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))]
#[cfg_attr(feature = "cargo-clippy", allow(cast_lossless))]
#[inline] #[inline]
fn $method(&mut self, other: $scalar) { fn $method(&mut self, other: $scalar) {
self.$method(other as $promo); self.$method(other as $promo);
@ -340,7 +344,7 @@ macro_rules! promote_signed_scalars {
macro_rules! promote_signed_scalars_assign { macro_rules! promote_signed_scalars_assign {
(impl $imp:ident for $res:ty, $method:ident) => { (impl $imp:ident for $res:ty, $method:ident) => {
promote_scalars_assign!(impl $imp<i32> for $res, $method, i8, i16); promote_scalars_assign!(impl $imp<i32> for $res, $method, i8, i16);
promote_scalars_assign!(impl $imp<IsizePromotion> for $res, $method, isize); promote_scalars_assign!(impl $imp<UsizePromotion> for $res, $method, isize);
} }
} }

310
third_party/rust/num-bigint/src/monty.rs поставляемый
Просмотреть файл

@ -1,223 +1,129 @@
use crate::std_alloc::Vec; use integer::Integer;
use core::mem; use traits::Zero;
use core::ops::Shl;
use num_traits::{One, Zero};
use crate::big_digit::{self, BigDigit, DoubleBigDigit, SignedDoubleBigDigit}; use biguint::BigUint;
use crate::biguint::BigUint;
struct MontyReducer { struct MontyReducer<'a> {
n0inv: BigDigit, n: &'a BigUint,
n0inv: u32,
} }
// k0 = -m**-1 mod 2**BITS. Algorithm from: Dumas, J.G. "On Newton–Raphson // Calculate the modular inverse of `num`, using Extended GCD.
// Iteration for Multiplicative Inverses Modulo Prime Powers". //
fn inv_mod_alt(b: BigDigit) -> BigDigit { // Reference:
assert_ne!(b & 1, 0); // Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.20
fn inv_mod_u32(num: u32) -> u32 {
// num needs to be relatively prime to 2**32 -- i.e. it must be odd.
assert!(num % 2 != 0);
let mut k0 = 2 - b as SignedDoubleBigDigit; let mut a: i64 = i64::from(num);
let mut t = (b - 1) as SignedDoubleBigDigit; let mut b: i64 = i64::from(u32::max_value()) + 1;
let mut i = 1;
while i < big_digit::BITS {
t = t.wrapping_mul(t);
k0 = k0.wrapping_mul(t + 1);
i <<= 1; // ExtendedGcd
// Input: positive integers a and b
// Output: integers (g, u, v) such that g = gcd(a, b) = ua + vb
// As we don't need v for modular inverse, we don't calculate it.
// 1: (u, w) <- (1, 0)
let mut u = 1;
let mut w = 0;
// 3: while b != 0
while b != 0 {
// 4: (q, r) <- DivRem(a, b)
let q = a / b;
let r = a % b;
// 5: (a, b) <- (b, r)
a = b;
b = r;
// 6: (u, w) <- (w, u - qw)
let m = u - w * q;
u = w;
w = m;
} }
-k0 as BigDigit
assert!(a == 1);
// Downcasting acts like a mod 2^32 too.
u as u32
} }
impl MontyReducer { impl<'a> MontyReducer<'a> {
fn new(n: &BigUint) -> Self { fn new(n: &'a BigUint) -> Self {
let n0inv = inv_mod_alt(n.data[0]); let n0inv = inv_mod_u32(n.data[0]);
MontyReducer { n0inv } MontyReducer { n: n, n0inv: n0inv }
} }
} }
/// Computes z mod m = x * y * 2 ** (-n*_W) mod m // Montgomery Reduction
/// assuming k = -1/m mod 2**_W //
/// See Gueron, "Efficient Software Implementations of Modular Exponentiation". // Reference:
/// https://eprint.iacr.org/2011/239.pdf // Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 2.6
/// In the terminology of that paper, this is an "Almost Montgomery Multiplication": fn monty_redc(a: BigUint, mr: &MontyReducer) -> BigUint {
/// x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result let mut c = a.data;
/// z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m. let n = &mr.n.data;
fn montgomery(x: &BigUint, y: &BigUint, m: &BigUint, k: BigDigit, n: usize) -> BigUint { let n_size = n.len();
// This code assumes x, y, m are all the same length, n.
// (required by addMulVVW and the for loop).
// It also assumes that x, y are already reduced mod m,
// or else the result will not be properly reduced.
assert!(
x.data.len() == n && y.data.len() == n && m.data.len() == n,
"{:?} {:?} {:?} {}",
x,
y,
m,
n
);
let mut z = BigUint::zero(); // Allocate sufficient work space
z.data.resize(n * 2, 0); c.resize(2 * n_size + 2, 0);
let mut c: BigDigit = 0; // β is the size of a word, in this case 32 bits. So "a mod β" is
for i in 0..n { // equivalent to masking a to 32 bits.
let c2 = add_mul_vvw(&mut z.data[i..n + i], &x.data, y.data[i]); // mu <- -N^(-1) mod β
let t = z.data[i].wrapping_mul(k); let mu = 0u32.wrapping_sub(mr.n0inv);
let c3 = add_mul_vvw(&mut z.data[i..n + i], &m.data, t);
let cx = c.wrapping_add(c2); // 1: for i = 0 to (n-1)
let cy = cx.wrapping_add(c3); for i in 0..n_size {
z.data[n + i] = cy; // 2: q_i <- mu*c_i mod β
if cx < c2 || cy < c3 { let q_i = c[i].wrapping_mul(mu);
c = 1;
} else { // 3: C <- C + q_i * N * β^i
c = 0; super::algorithms::mac_digit(&mut c[i..], n, q_i);
}
} }
if c == 0 { // 4: R <- C * β^(-n)
z.data = z.data[n..].to_vec(); // This is an n-word bitshift, equivalent to skipping n words.
let ret = BigUint::new(c[n_size..].to_vec());
// 5: if R >= β^n then return R-N else return R.
if &ret < mr.n {
ret
} else { } else {
{ ret - mr.n
let (mut first, second) = z.data.split_at_mut(n); }
sub_vv(&mut first, &second, &m.data); }
// Montgomery Multiplication
fn monty_mult(a: BigUint, b: &BigUint, mr: &MontyReducer) -> BigUint {
monty_redc(a * b, mr)
}
// Montgomery Squaring
fn monty_sqr(a: BigUint, mr: &MontyReducer) -> BigUint {
// TODO: Replace with an optimised squaring function
monty_redc(&a * &a, mr)
}
pub fn monty_modpow(a: &BigUint, exp: &BigUint, modulus: &BigUint) -> BigUint {
let mr = MontyReducer::new(modulus);
// Calculate the Montgomery parameter
let mut v = vec![0; modulus.data.len()];
v.push(1);
let r = BigUint::new(v);
// Map the base to the Montgomery domain
let mut apri = a * &r % modulus;
// Binary exponentiation
let mut ans = &r % modulus;
let mut e = exp.clone();
while !e.is_zero() {
if e.is_odd() {
ans = monty_mult(ans, &apri, &mr);
} }
z.data = z.data[..n].to_vec(); apri = monty_sqr(apri, &mr);
e = e >> 1;
} }
z // Map the result back to the residues domain
} monty_redc(ans, &mr)
#[inline(always)]
fn add_mul_vvw(z: &mut [BigDigit], x: &[BigDigit], y: BigDigit) -> BigDigit {
let mut c = 0;
for (zi, xi) in z.iter_mut().zip(x.iter()) {
let (z1, z0) = mul_add_www(*xi, y, *zi);
let (c_, zi_) = add_ww(z0, c, 0);
*zi = zi_;
c = c_ + z1;
}
c
}
/// The resulting carry c is either 0 or 1.
#[inline(always)]
fn sub_vv(z: &mut [BigDigit], x: &[BigDigit], y: &[BigDigit]) -> BigDigit {
let mut c = 0;
for (i, (xi, yi)) in x.iter().zip(y.iter()).enumerate().take(z.len()) {
let zi = xi.wrapping_sub(*yi).wrapping_sub(c);
z[i] = zi;
// see "Hacker's Delight", section 2-12 (overflow detection)
c = ((yi & !xi) | ((yi | !xi) & zi)) >> (big_digit::BITS - 1)
}
c
}
/// z1<<_W + z0 = x+y+c, with c == 0 or 1
#[inline(always)]
fn add_ww(x: BigDigit, y: BigDigit, c: BigDigit) -> (BigDigit, BigDigit) {
let yc = y.wrapping_add(c);
let z0 = x.wrapping_add(yc);
let z1 = if z0 < x || yc < y { 1 } else { 0 };
(z1, z0)
}
/// z1 << _W + z0 = x * y + c
#[inline(always)]
fn mul_add_www(x: BigDigit, y: BigDigit, c: BigDigit) -> (BigDigit, BigDigit) {
let z = x as DoubleBigDigit * y as DoubleBigDigit + c as DoubleBigDigit;
((z >> big_digit::BITS) as BigDigit, z as BigDigit)
}
/// Calculates x ** y mod m using a fixed, 4-bit window.
pub(crate) fn monty_modpow(x: &BigUint, y: &BigUint, m: &BigUint) -> BigUint {
assert!(m.data[0] & 1 == 1);
let mr = MontyReducer::new(m);
let num_words = m.data.len();
let mut x = x.clone();
// We want the lengths of x and m to be equal.
// It is OK if x >= m as long as len(x) == len(m).
if x.data.len() > num_words {
x %= m;
// Note: now len(x) <= numWords, not guaranteed ==.
}
if x.data.len() < num_words {
x.data.resize(num_words, 0);
}
// rr = 2**(2*_W*len(m)) mod m
let mut rr = BigUint::one();
rr = (rr.shl(2 * num_words as u64 * u64::from(big_digit::BITS))) % m;
if rr.data.len() < num_words {
rr.data.resize(num_words, 0);
}
// one = 1, with equal length to that of m
let mut one = BigUint::one();
one.data.resize(num_words, 0);
let n = 4;
// powers[i] contains x^i
let mut powers = Vec::with_capacity(1 << n);
powers.push(montgomery(&one, &rr, m, mr.n0inv, num_words));
powers.push(montgomery(&x, &rr, m, mr.n0inv, num_words));
for i in 2..1 << n {
let r = montgomery(&powers[i - 1], &powers[1], m, mr.n0inv, num_words);
powers.push(r);
}
// initialize z = 1 (Montgomery 1)
let mut z = powers[0].clone();
z.data.resize(num_words, 0);
let mut zz = BigUint::zero();
zz.data.resize(num_words, 0);
// same windowed exponent, but with Montgomery multiplications
for i in (0..y.data.len()).rev() {
let mut yi = y.data[i];
let mut j = 0;
while j < big_digit::BITS {
if i != y.data.len() - 1 || j != 0 {
zz = montgomery(&z, &z, m, mr.n0inv, num_words);
z = montgomery(&zz, &zz, m, mr.n0inv, num_words);
zz = montgomery(&z, &z, m, mr.n0inv, num_words);
z = montgomery(&zz, &zz, m, mr.n0inv, num_words);
}
zz = montgomery(
&z,
&powers[(yi >> (big_digit::BITS - n)) as usize],
m,
mr.n0inv,
num_words,
);
mem::swap(&mut z, &mut zz);
yi <<= n;
j += n;
}
}
// convert to regular number
zz = montgomery(&z, &one, m, mr.n0inv, num_words);
zz.normalize();
// One last reduction, just in case.
// See golang.org/issue/13907.
if zz >= *m {
// Common case is m has high bit set; in that case,
// since zz is the same length as m, there can be just
// one multiple of m to remove. Just subtract.
// We think that the subtract should be sufficient in general,
// so do that unconditionally, but double-check,
// in case our beliefs are wrong.
// The div is not expected to be reached.
zz -= m;
if zz >= *m {
zz %= m;
}
}
zz.normalize();
zz
} }

282
third_party/rust/num-bigint/tests/bigint.rs поставляемый
Просмотреть файл

@ -1,3 +1,9 @@
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
#[cfg(feature = "rand")]
extern crate rand;
use num_bigint::BigUint; use num_bigint::BigUint;
use num_bigint::Sign::{Minus, NoSign, Plus}; use num_bigint::Sign::{Minus, NoSign, Plus};
use num_bigint::{BigInt, ToBigInt}; use num_bigint::{BigInt, ToBigInt};
@ -8,15 +14,16 @@ use std::hash::{BuildHasher, Hash, Hasher};
use std::iter::repeat; use std::iter::repeat;
use std::ops::Neg; use std::ops::Neg;
use std::{f32, f64}; use std::{f32, f64};
#[cfg(has_i128)]
use std::{i128, u128}; use std::{i128, u128};
use std::{i16, i32, i64, i8, isize}; use std::{i16, i32, i64, i8, isize};
use std::{u16, u32, u64, u8, usize}; use std::{u16, u32, u64, u8, usize};
use num_integer::Integer; use num_integer::Integer;
use num_traits::{pow, FromPrimitive, Num, One, Pow, Signed, ToPrimitive, Zero}; use num_traits::{Float, FromPrimitive, Num, One, Pow, Signed, ToPrimitive, Zero};
mod consts; mod consts;
use crate::consts::*; use consts::*;
#[macro_use] #[macro_use]
mod macros; mod macros;
@ -33,8 +40,8 @@ fn test_from_bytes_be() {
check("AA", "16705"); check("AA", "16705");
check("AB", "16706"); check("AB", "16706");
check("Hello world!", "22405534230753963835153736737"); check("Hello world!", "22405534230753963835153736737");
assert_eq!(BigInt::from_bytes_be(Plus, &[]), BigInt::zero()); assert_eq!(BigInt::from_bytes_be(Plus, &[]), Zero::zero());
assert_eq!(BigInt::from_bytes_be(Minus, &[]), BigInt::zero()); assert_eq!(BigInt::from_bytes_be(Minus, &[]), Zero::zero());
} }
#[test] #[test]
@ -68,8 +75,8 @@ fn test_from_bytes_le() {
check("AA", "16705"); check("AA", "16705");
check("BA", "16706"); check("BA", "16706");
check("!dlrow olleH", "22405534230753963835153736737"); check("!dlrow olleH", "22405534230753963835153736737");
assert_eq!(BigInt::from_bytes_le(Plus, &[]), BigInt::zero()); assert_eq!(BigInt::from_bytes_le(Plus, &[]), Zero::zero());
assert_eq!(BigInt::from_bytes_le(Minus, &[]), BigInt::zero()); assert_eq!(BigInt::from_bytes_le(Minus, &[]), Zero::zero());
} }
#[test] #[test]
@ -287,6 +294,7 @@ fn test_convert_i64() {
} }
#[test] #[test]
#[cfg(has_i128)]
fn test_convert_i128() { fn test_convert_i128() {
fn check(b1: BigInt, i: i128) { fn check(b1: BigInt, i: i128) {
let b2: BigInt = FromPrimitive::from_i128(i).unwrap(); let b2: BigInt = FromPrimitive::from_i128(i).unwrap();
@ -344,6 +352,7 @@ fn test_convert_u64() {
} }
#[test] #[test]
#[cfg(has_i128)]
fn test_convert_u128() { fn test_convert_u128() {
fn check(b1: BigInt, u: u128) { fn check(b1: BigInt, u: u128) {
let b2: BigInt = FromPrimitive::from_u128(u).unwrap(); let b2: BigInt = FromPrimitive::from_u128(u).unwrap();
@ -370,7 +379,6 @@ fn test_convert_u128() {
} }
#[test] #[test]
#[allow(clippy::float_cmp)]
fn test_convert_f32() { fn test_convert_f32() {
fn check(b1: &BigInt, f: f32) { fn check(b1: &BigInt, f: f32) {
let b2 = BigInt::from_f32(f).unwrap(); let b2 = BigInt::from_f32(f).unwrap();
@ -384,14 +392,14 @@ fn test_convert_f32() {
check(&BigInt::zero(), 0.0); check(&BigInt::zero(), 0.0);
check(&BigInt::one(), 1.0); check(&BigInt::one(), 1.0);
check(&BigInt::from(u16::MAX), pow(2.0_f32, 16) - 1.0); check(&BigInt::from(u16::MAX), 2.0.powi(16) - 1.0);
check(&BigInt::from(1u64 << 32), pow(2.0_f32, 32)); check(&BigInt::from(1u64 << 32), 2.0.powi(32));
check(&BigInt::from_slice(Plus, &[0, 0, 1]), pow(2.0_f32, 64)); check(&BigInt::from_slice(Plus, &[0, 0, 1]), 2.0.powi(64));
check( check(
&((BigInt::one() << 100) + (BigInt::one() << 123)), &((BigInt::one() << 100) + (BigInt::one() << 123)),
pow(2.0_f32, 100) + pow(2.0_f32, 123), 2.0.powi(100) + 2.0.powi(123),
); );
check(&(BigInt::one() << 127), pow(2.0_f32, 127)); check(&(BigInt::one() << 127), 2.0.powi(127));
check(&(BigInt::from((1u64 << 24) - 1) << (128 - 24)), f32::MAX); check(&(BigInt::from((1u64 << 24) - 1) << (128 - 24)), f32::MAX);
// keeping all 24 digits with the bits at different offsets to the BigDigits // keeping all 24 digits with the bits at different offsets to the BigDigits
@ -401,7 +409,7 @@ fn test_convert_f32() {
for _ in 0..64 { for _ in 0..64 {
check(&b, f); check(&b, f);
f *= 2.0; f *= 2.0;
b <<= 1; b = b << 1;
} }
// this number when rounded to f64 then f32 isn't the same as when rounded straight to f32 // this number when rounded to f64 then f32 isn't the same as when rounded straight to f32
@ -418,7 +426,7 @@ fn test_convert_f32() {
for _ in 0..64 { for _ in 0..64 {
assert_eq!(b.to_f32(), Some(f)); assert_eq!(b.to_f32(), Some(f));
f *= 2.0; f *= 2.0;
b <<= 1; b = b << 1;
} }
// rounding // rounding
@ -446,20 +454,19 @@ fn test_convert_f32() {
assert_eq!(BigInt::from_f32(f32::NEG_INFINITY), None); assert_eq!(BigInt::from_f32(f32::NEG_INFINITY), None);
// largest BigInt that will round to a finite f32 value // largest BigInt that will round to a finite f32 value
let big_num = (BigInt::one() << 128u8) - 1u8 - (BigInt::one() << (128u8 - 25)); let big_num = (BigInt::one() << 128) - BigInt::one() - (BigInt::one() << (128 - 25));
assert_eq!(big_num.to_f32(), Some(f32::MAX)); assert_eq!(big_num.to_f32(), Some(f32::MAX));
assert_eq!((&big_num + 1u8).to_f32(), None); assert_eq!((&big_num + BigInt::one()).to_f32(), None);
assert_eq!((-&big_num).to_f32(), Some(f32::MIN)); assert_eq!((-&big_num).to_f32(), Some(f32::MIN));
assert_eq!(((-&big_num) - 1u8).to_f32(), None); assert_eq!(((-&big_num) - BigInt::one()).to_f32(), None);
assert_eq!(((BigInt::one() << 128u8) - 1u8).to_f32(), None); assert_eq!(((BigInt::one() << 128) - BigInt::one()).to_f32(), None);
assert_eq!((BigInt::one() << 128u8).to_f32(), None); assert_eq!((BigInt::one() << 128).to_f32(), None);
assert_eq!((-((BigInt::one() << 128u8) - 1u8)).to_f32(), None); assert_eq!((-((BigInt::one() << 128) - BigInt::one())).to_f32(), None);
assert_eq!((-(BigInt::one() << 128u8)).to_f32(), None); assert_eq!((-(BigInt::one() << 128)).to_f32(), None);
} }
#[test] #[test]
#[allow(clippy::float_cmp)]
fn test_convert_f64() { fn test_convert_f64() {
fn check(b1: &BigInt, f: f64) { fn check(b1: &BigInt, f: f64) {
let b2 = BigInt::from_f64(f).unwrap(); let b2 = BigInt::from_f64(f).unwrap();
@ -473,14 +480,14 @@ fn test_convert_f64() {
check(&BigInt::zero(), 0.0); check(&BigInt::zero(), 0.0);
check(&BigInt::one(), 1.0); check(&BigInt::one(), 1.0);
check(&BigInt::from(u32::MAX), pow(2.0_f64, 32) - 1.0); check(&BigInt::from(u32::MAX), 2.0.powi(32) - 1.0);
check(&BigInt::from(1u64 << 32), pow(2.0_f64, 32)); check(&BigInt::from(1u64 << 32), 2.0.powi(32));
check(&BigInt::from_slice(Plus, &[0, 0, 1]), pow(2.0_f64, 64)); check(&BigInt::from_slice(Plus, &[0, 0, 1]), 2.0.powi(64));
check( check(
&((BigInt::one() << 100) + (BigInt::one() << 152)), &((BigInt::one() << 100) + (BigInt::one() << 152)),
pow(2.0_f64, 100) + pow(2.0_f64, 152), 2.0.powi(100) + 2.0.powi(152),
); );
check(&(BigInt::one() << 1023), pow(2.0_f64, 1023)); check(&(BigInt::one() << 1023), 2.0.powi(1023));
check(&(BigInt::from((1u64 << 53) - 1) << (1024 - 53)), f64::MAX); check(&(BigInt::from((1u64 << 53) - 1) << (1024 - 53)), f64::MAX);
// keeping all 53 digits with the bits at different offsets to the BigDigits // keeping all 53 digits with the bits at different offsets to the BigDigits
@ -490,7 +497,7 @@ fn test_convert_f64() {
for _ in 0..128 { for _ in 0..128 {
check(&b, f); check(&b, f);
f *= 2.0; f *= 2.0;
b <<= 1; b = b << 1;
} }
// test rounding up with the bits at different offsets to the BigDigits // test rounding up with the bits at different offsets to the BigDigits
@ -499,7 +506,7 @@ fn test_convert_f64() {
for _ in 0..128 { for _ in 0..128 {
assert_eq!(b.to_f64(), Some(f)); assert_eq!(b.to_f64(), Some(f));
f *= 2.0; f *= 2.0;
b <<= 1; b = b << 1;
} }
// rounding // rounding
@ -527,16 +534,16 @@ fn test_convert_f64() {
assert_eq!(BigInt::from_f64(f64::NEG_INFINITY), None); assert_eq!(BigInt::from_f64(f64::NEG_INFINITY), None);
// largest BigInt that will round to a finite f64 value // largest BigInt that will round to a finite f64 value
let big_num = (BigInt::one() << 1024u16) - 1u8 - (BigInt::one() << (1024u16 - 54)); let big_num = (BigInt::one() << 1024) - BigInt::one() - (BigInt::one() << (1024 - 54));
assert_eq!(big_num.to_f64(), Some(f64::MAX)); assert_eq!(big_num.to_f64(), Some(f64::MAX));
assert_eq!((&big_num + 1u8).to_f64(), None); assert_eq!((&big_num + BigInt::one()).to_f64(), None);
assert_eq!((-&big_num).to_f64(), Some(f64::MIN)); assert_eq!((-&big_num).to_f64(), Some(f64::MIN));
assert_eq!(((-&big_num) - 1u8).to_f64(), None); assert_eq!(((-&big_num) - BigInt::one()).to_f64(), None);
assert_eq!(((BigInt::one() << 1024u16) - 1u8).to_f64(), None); assert_eq!(((BigInt::one() << 1024) - BigInt::one()).to_f64(), None);
assert_eq!((BigInt::one() << 1024u16).to_f64(), None); assert_eq!((BigInt::one() << 1024).to_f64(), None);
assert_eq!((-((BigInt::one() << 1024u16) - 1u8)).to_f64(), None); assert_eq!((-((BigInt::one() << 1024) - BigInt::one())).to_f64(), None);
assert_eq!((-(BigInt::one() << 1024u16)).to_f64(), None); assert_eq!((-(BigInt::one() << 1024)).to_f64(), None);
} }
#[test] #[test]
@ -571,6 +578,7 @@ fn test_convert_from_uint() {
check!(u16, BigInt::from_slice(Plus, &[u16::MAX as u32])); check!(u16, BigInt::from_slice(Plus, &[u16::MAX as u32]));
check!(u32, BigInt::from_slice(Plus, &[u32::MAX])); check!(u32, BigInt::from_slice(Plus, &[u32::MAX]));
check!(u64, BigInt::from_slice(Plus, &[u32::MAX, u32::MAX])); check!(u64, BigInt::from_slice(Plus, &[u32::MAX, u32::MAX]));
#[cfg(has_i128)]
check!( check!(
u128, u128,
BigInt::from_slice(Plus, &[u32::MAX, u32::MAX, u32::MAX, u32::MAX]) BigInt::from_slice(Plus, &[u32::MAX, u32::MAX, u32::MAX, u32::MAX])
@ -612,6 +620,7 @@ fn test_convert_from_int() {
BigInt::from_slice(Minus, &[0, 1 << 31]), BigInt::from_slice(Minus, &[0, 1 << 31]),
BigInt::from_slice(Plus, &[u32::MAX, i32::MAX as u32]) BigInt::from_slice(Plus, &[u32::MAX, i32::MAX as u32])
); );
#[cfg(has_i128)]
check!( check!(
i128, i128,
BigInt::from_slice(Minus, &[0, 0, 0, 1 << 31]), BigInt::from_slice(Minus, &[0, 0, 0, 1 << 31]),
@ -650,7 +659,7 @@ fn test_add() {
assert_op!(a + nc == nb); assert_op!(a + nc == nb);
assert_op!(b + nc == na); assert_op!(b + nc == na);
assert_op!(na + nb == nc); assert_op!(na + nb == nc);
assert_op!(a + na == BigInt::zero()); assert_op!(a + na == Zero::zero());
assert_assign_op!(a += b == c); assert_assign_op!(a += b == c);
assert_assign_op!(b += a == c); assert_assign_op!(b += a == c);
@ -659,7 +668,7 @@ fn test_add() {
assert_assign_op!(a += nc == nb); assert_assign_op!(a += nc == nb);
assert_assign_op!(b += nc == na); assert_assign_op!(b += nc == na);
assert_assign_op!(na += nb == nc); assert_assign_op!(na += nb == nc);
assert_assign_op!(a += na == BigInt::zero()); assert_assign_op!(a += na == Zero::zero());
} }
} }
@ -679,7 +688,7 @@ fn test_sub() {
assert_op!(b - na == c); assert_op!(b - na == c);
assert_op!(a - nb == c); assert_op!(a - nb == c);
assert_op!(nc - na == nb); assert_op!(nc - na == nb);
assert_op!(a - a == BigInt::zero()); assert_op!(a - a == Zero::zero());
assert_assign_op!(c -= a == b); assert_assign_op!(c -= a == b);
assert_assign_op!(c -= b == a); assert_assign_op!(c -= b == a);
@ -688,7 +697,7 @@ fn test_sub() {
assert_assign_op!(b -= na == c); assert_assign_op!(b -= na == c);
assert_assign_op!(a -= nb == c); assert_assign_op!(a -= nb == c);
assert_assign_op!(nc -= na == nb); assert_assign_op!(nc -= na == nb);
assert_assign_op!(a -= a == BigInt::zero()); assert_assign_op!(a -= a == Zero::zero());
} }
} }
@ -732,8 +741,6 @@ fn test_mul() {
fn test_div_mod_floor() { fn test_div_mod_floor() {
fn check_sub(a: &BigInt, b: &BigInt, ans_d: &BigInt, ans_m: &BigInt) { fn check_sub(a: &BigInt, b: &BigInt, ans_d: &BigInt, ans_m: &BigInt) {
let (d, m) = a.div_mod_floor(b); let (d, m) = a.div_mod_floor(b);
assert_eq!(d, a.div_floor(b));
assert_eq!(m, a.mod_floor(b));
if !m.is_zero() { if !m.is_zero() {
assert_eq!(m.sign(), b.sign()); assert_eq!(m.sign(), b.sign());
} }
@ -837,53 +844,6 @@ fn test_div_rem() {
} }
} }
#[test]
fn test_div_ceil() {
fn check_sub(a: &BigInt, b: &BigInt, ans_d: &BigInt) {
assert_eq!(a.div_ceil(b), *ans_d);
}
fn check(a: &BigInt, b: &BigInt, d: &BigInt, m: &BigInt) {
if m.is_zero() {
check_sub(a, b, d);
check_sub(a, &b.neg(), &d.neg());
check_sub(&a.neg(), b, &d.neg());
check_sub(&a.neg(), &b.neg(), d);
} else {
check_sub(a, b, &(d + 1));
check_sub(a, &b.neg(), &d.neg());
check_sub(&a.neg(), b, &d.neg());
check_sub(&a.neg(), &b.neg(), &(d + 1));
}
}
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
if !a.is_zero() {
check(&c, &a, &b, &Zero::zero());
}
if !b.is_zero() {
check(&c, &b, &a, &Zero::zero());
}
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let d = BigInt::from_slice(Plus, d_vec);
if !b.is_zero() {
check(&a, &b, &c, &d);
}
}
}
#[test] #[test]
fn test_checked_add() { fn test_checked_add() {
for elm in SUM_TRIPLES.iter() { for elm in SUM_TRIPLES.iter() {
@ -899,7 +859,7 @@ fn test_checked_add() {
assert!(a.checked_add(&(-&c)).unwrap() == (-&b)); assert!(a.checked_add(&(-&c)).unwrap() == (-&b));
assert!(b.checked_add(&(-&c)).unwrap() == (-&a)); assert!(b.checked_add(&(-&c)).unwrap() == (-&a));
assert!((-&a).checked_add(&(-&b)).unwrap() == (-&c)); assert!((-&a).checked_add(&(-&b)).unwrap() == (-&c));
assert!(a.checked_add(&(-&a)).unwrap() == BigInt::zero()); assert!(a.checked_add(&(-&a)).unwrap() == Zero::zero());
} }
} }
@ -918,7 +878,7 @@ fn test_checked_sub() {
assert!(b.checked_sub(&(-&a)).unwrap() == c); assert!(b.checked_sub(&(-&a)).unwrap() == c);
assert!(a.checked_sub(&(-&b)).unwrap() == c); assert!(a.checked_sub(&(-&b)).unwrap() == c);
assert!((-&c).checked_sub(&(-&a)).unwrap() == (-&b)); assert!((-&c).checked_sub(&(-&a)).unwrap() == (-&b));
assert!(a.checked_sub(&a).unwrap() == BigInt::zero()); assert!(a.checked_sub(&a).unwrap() == Zero::zero());
} }
} }
@ -980,9 +940,6 @@ fn test_gcd() {
let big_c: BigInt = FromPrimitive::from_isize(c).unwrap(); let big_c: BigInt = FromPrimitive::from_isize(c).unwrap();
assert_eq!(big_a.gcd(&big_b), big_c); assert_eq!(big_a.gcd(&big_b), big_c);
assert_eq!(big_a.extended_gcd(&big_b).gcd, big_c);
assert_eq!(big_a.gcd_lcm(&big_b).0, big_c);
assert_eq!(big_a.extended_gcd_lcm(&big_b).0.gcd, big_c);
} }
check(10, 2, 2); check(10, 2, 2);
@ -1003,8 +960,6 @@ fn test_lcm() {
let big_c: BigInt = FromPrimitive::from_isize(c).unwrap(); let big_c: BigInt = FromPrimitive::from_isize(c).unwrap();
assert_eq!(big_a.lcm(&big_b), big_c); assert_eq!(big_a.lcm(&big_b), big_c);
assert_eq!(big_a.gcd_lcm(&big_b).1, big_c);
assert_eq!(big_a.extended_gcd_lcm(&big_b).1, big_c);
} }
check(0, 0, 0); check(0, 0, 0);
@ -1018,78 +973,6 @@ fn test_lcm() {
check(11, 5, 55); check(11, 5, 55);
} }
#[test]
fn test_next_multiple_of() {
assert_eq!(
BigInt::from(16).next_multiple_of(&BigInt::from(8)),
BigInt::from(16)
);
assert_eq!(
BigInt::from(23).next_multiple_of(&BigInt::from(8)),
BigInt::from(24)
);
assert_eq!(
BigInt::from(16).next_multiple_of(&BigInt::from(-8)),
BigInt::from(16)
);
assert_eq!(
BigInt::from(23).next_multiple_of(&BigInt::from(-8)),
BigInt::from(16)
);
assert_eq!(
BigInt::from(-16).next_multiple_of(&BigInt::from(8)),
BigInt::from(-16)
);
assert_eq!(
BigInt::from(-23).next_multiple_of(&BigInt::from(8)),
BigInt::from(-16)
);
assert_eq!(
BigInt::from(-16).next_multiple_of(&BigInt::from(-8)),
BigInt::from(-16)
);
assert_eq!(
BigInt::from(-23).next_multiple_of(&BigInt::from(-8)),
BigInt::from(-24)
);
}
#[test]
fn test_prev_multiple_of() {
assert_eq!(
BigInt::from(16).prev_multiple_of(&BigInt::from(8)),
BigInt::from(16)
);
assert_eq!(
BigInt::from(23).prev_multiple_of(&BigInt::from(8)),
BigInt::from(16)
);
assert_eq!(
BigInt::from(16).prev_multiple_of(&BigInt::from(-8)),
BigInt::from(16)
);
assert_eq!(
BigInt::from(23).prev_multiple_of(&BigInt::from(-8)),
BigInt::from(24)
);
assert_eq!(
BigInt::from(-16).prev_multiple_of(&BigInt::from(8)),
BigInt::from(-16)
);
assert_eq!(
BigInt::from(-23).prev_multiple_of(&BigInt::from(8)),
BigInt::from(-24)
);
assert_eq!(
BigInt::from(-16).prev_multiple_of(&BigInt::from(-8)),
BigInt::from(-16)
);
assert_eq!(
BigInt::from(-23).prev_multiple_of(&BigInt::from(-8)),
BigInt::from(-16)
);
}
#[test] #[test]
fn test_abs_sub() { fn test_abs_sub() {
let zero: BigInt = Zero::zero(); let zero: BigInt = Zero::zero();
@ -1139,7 +1022,7 @@ fn test_from_str_radix() {
#[test] #[test]
fn test_lower_hex() { fn test_lower_hex() {
let a = BigInt::parse_bytes(b"A", 16).unwrap(); let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes(b"-22405534230753963835153736737", 10).unwrap(); let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:x}", a), "a"); assert_eq!(format!("{:x}", a), "a");
assert_eq!(format!("{:x}", hello), "-48656c6c6f20776f726c6421"); assert_eq!(format!("{:x}", hello), "-48656c6c6f20776f726c6421");
@ -1149,7 +1032,7 @@ fn test_lower_hex() {
#[test] #[test]
fn test_upper_hex() { fn test_upper_hex() {
let a = BigInt::parse_bytes(b"A", 16).unwrap(); let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes(b"-22405534230753963835153736737", 10).unwrap(); let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:X}", a), "A"); assert_eq!(format!("{:X}", a), "A");
assert_eq!(format!("{:X}", hello), "-48656C6C6F20776F726C6421"); assert_eq!(format!("{:X}", hello), "-48656C6C6F20776F726C6421");
@ -1159,7 +1042,7 @@ fn test_upper_hex() {
#[test] #[test]
fn test_binary() { fn test_binary() {
let a = BigInt::parse_bytes(b"A", 16).unwrap(); let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes(b"-224055342307539", 10).unwrap(); let hello = BigInt::parse_bytes("-224055342307539".as_bytes(), 10).unwrap();
assert_eq!(format!("{:b}", a), "1010"); assert_eq!(format!("{:b}", a), "1010");
assert_eq!( assert_eq!(
@ -1172,7 +1055,7 @@ fn test_binary() {
#[test] #[test]
fn test_octal() { fn test_octal() {
let a = BigInt::parse_bytes(b"A", 16).unwrap(); let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes(b"-22405534230753963835153736737", 10).unwrap(); let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:o}", a), "12"); assert_eq!(format!("{:o}", a), "12");
assert_eq!(format!("{:o}", hello), "-22062554330674403566756233062041"); assert_eq!(format!("{:o}", hello), "-22062554330674403566756233062041");
@ -1182,7 +1065,7 @@ fn test_octal() {
#[test] #[test]
fn test_display() { fn test_display() {
let a = BigInt::parse_bytes(b"A", 16).unwrap(); let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes(b"-22405534230753963835153736737", 10).unwrap(); let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{}", a), "10"); assert_eq!(format!("{}", a), "10");
assert_eq!(format!("{}", hello), "-22405534230753963835153736737"); assert_eq!(format!("{}", hello), "-22405534230753963835153736737");
@ -1205,6 +1088,25 @@ fn test_negative_shr() {
assert_eq!(BigInt::from(-3) >> 2, BigInt::from(-1)); assert_eq!(BigInt::from(-3) >> 2, BigInt::from(-1));
} }
#[test]
#[cfg(feature = "rand")]
fn test_random_shr() {
use rand::distributions::Standard;
use rand::Rng;
let mut rng = rand::thread_rng();
for p in rng.sample_iter::<i64, _>(&Standard).take(1000) {
let big = BigInt::from(p);
let bigger = &big << 1000;
assert_eq!(&bigger >> 1000, big);
for i in 0..64 {
let answer = BigInt::from(p >> i);
assert_eq!(&big >> i, answer);
assert_eq!(&bigger >> (1000 + i), answer);
}
}
}
#[test] #[test]
fn test_iter_sum() { fn test_iter_sum() {
let result: BigInt = FromPrimitive::from_isize(-1234567).unwrap(); let result: BigInt = FromPrimitive::from_isize(-1234567).unwrap();
@ -1218,8 +1120,8 @@ fn test_iter_sum() {
FromPrimitive::from_i32(-7).unwrap(), FromPrimitive::from_i32(-7).unwrap(),
]; ];
assert_eq!(result, data.iter().sum::<BigInt>()); assert_eq!(result, data.iter().sum());
assert_eq!(result, data.into_iter().sum::<BigInt>()); assert_eq!(result, data.into_iter().sum());
} }
#[test] #[test]
@ -1237,8 +1139,8 @@ fn test_iter_product() {
* data.get(3).unwrap() * data.get(3).unwrap()
* data.get(4).unwrap(); * data.get(4).unwrap();
assert_eq!(result, data.iter().product::<BigInt>()); assert_eq!(result, data.iter().product());
assert_eq!(result, data.into_iter().product::<BigInt>()); assert_eq!(result, data.into_iter().product());
} }
#[test] #[test]
@ -1246,8 +1148,8 @@ fn test_iter_sum_generic() {
let result: BigInt = FromPrimitive::from_isize(-1234567).unwrap(); let result: BigInt = FromPrimitive::from_isize(-1234567).unwrap();
let data = vec![-1000000, -200000, -30000, -4000, -500, -60, -7]; let data = vec![-1000000, -200000, -30000, -4000, -500, -60, -7];
assert_eq!(result, data.iter().sum::<BigInt>()); assert_eq!(result, data.iter().sum());
assert_eq!(result, data.into_iter().sum::<BigInt>()); assert_eq!(result, data.into_iter().sum());
} }
#[test] #[test]
@ -1259,8 +1161,8 @@ fn test_iter_product_generic() {
* data[3].to_bigint().unwrap() * data[3].to_bigint().unwrap()
* data[4].to_bigint().unwrap(); * data[4].to_bigint().unwrap();
assert_eq!(result, data.iter().product::<BigInt>()); assert_eq!(result, data.iter().product());
assert_eq!(result, data.into_iter().product::<BigInt>()); assert_eq!(result, data.into_iter().product());
} }
#[test] #[test]
@ -1272,15 +1174,15 @@ fn test_pow() {
let minus_two = BigInt::from(-2i32); let minus_two = BigInt::from(-2i32);
macro_rules! check { macro_rules! check {
($t:ty) => { ($t:ty) => {
assert_eq!(Pow::pow(&two, 0 as $t), one); assert_eq!(two.pow(0 as $t), one);
assert_eq!(Pow::pow(&two, 1 as $t), two); assert_eq!(two.pow(1 as $t), two);
assert_eq!(Pow::pow(&two, 2 as $t), four); assert_eq!(two.pow(2 as $t), four);
assert_eq!(Pow::pow(&two, 3 as $t), eight); assert_eq!(two.pow(3 as $t), eight);
assert_eq!(Pow::pow(&two, &(3 as $t)), eight); assert_eq!(two.pow(&(3 as $t)), eight);
assert_eq!(Pow::pow(&minus_two, 0 as $t), one, "-2^0"); assert_eq!(minus_two.pow(0 as $t), one, "-2^0");
assert_eq!(Pow::pow(&minus_two, 1 as $t), minus_two, "-2^1"); assert_eq!(minus_two.pow(1 as $t), minus_two, "-2^1");
assert_eq!(Pow::pow(&minus_two, 2 as $t), four, "-2^2"); assert_eq!(minus_two.pow(2 as $t), four, "-2^2");
assert_eq!(Pow::pow(&minus_two, 3 as $t), -&eight, "-2^3"); assert_eq!(minus_two.pow(3 as $t), -&eight, "-2^3");
}; };
} }
check!(u8); check!(u8);

Просмотреть файл

@ -1,3 +1,6 @@
extern crate num_bigint;
extern crate num_traits;
use num_bigint::{BigInt, Sign, ToBigInt}; use num_bigint::{BigInt, Sign, ToBigInt};
use num_traits::ToPrimitive; use num_traits::ToPrimitive;
use std::{i32, i64, u32}; use std::{i32, i64, u32};
@ -8,7 +11,7 @@ enum ValueVec {
M(&'static [u32]), M(&'static [u32]),
} }
use crate::ValueVec::*; use ValueVec::*;
impl ToBigInt for ValueVec { impl ToBigInt for ValueVec {
fn to_bigint(&self) -> Option<BigInt> { fn to_bigint(&self) -> Option<BigInt> {
@ -21,7 +24,7 @@ impl ToBigInt for ValueVec {
} }
// a, !a // a, !a
const NOT_VALUES: &[(ValueVec, ValueVec)] = &[ const NOT_VALUES: &'static [(ValueVec, ValueVec)] = &[
(N, M(&[1])), (N, M(&[1])),
(P(&[1]), M(&[2])), (P(&[1]), M(&[2])),
(P(&[2]), M(&[3])), (P(&[2]), M(&[3])),
@ -33,7 +36,7 @@ const NOT_VALUES: &[(ValueVec, ValueVec)] = &[
]; ];
// a, b, a & b, a | b, a ^ b // a, b, a & b, a | b, a ^ b
const BITWISE_VALUES: &[(ValueVec, ValueVec, ValueVec, ValueVec, ValueVec)] = &[ const BITWISE_VALUES: &'static [(ValueVec, ValueVec, ValueVec, ValueVec, ValueVec)] = &[
(N, N, N, N, N), (N, N, N, N, N),
(N, P(&[1]), N, P(&[1]), P(&[1])), (N, P(&[1]), N, P(&[1]), P(&[1])),
(N, P(&[!0]), N, P(&[!0]), P(&[!0])), (N, P(&[!0]), N, P(&[!0]), P(&[!0])),
@ -59,7 +62,7 @@ const I32_MAX: i64 = i32::MAX as i64;
const U32_MAX: i64 = u32::MAX as i64; const U32_MAX: i64 = u32::MAX as i64;
// some corner cases // some corner cases
const I64_VALUES: &[i64] = &[ const I64_VALUES: &'static [i64] = &[
i64::MIN, i64::MIN,
i64::MIN + 1, i64::MIN + 1,
i64::MIN + 2, i64::MIN + 2,

Просмотреть файл

@ -1,3 +1,6 @@
extern crate num_bigint;
extern crate num_traits;
use num_bigint::BigInt; use num_bigint::BigInt;
use num_bigint::Sign::Plus; use num_bigint::Sign::Plus;
use num_traits::{Signed, ToPrimitive, Zero}; use num_traits::{Signed, ToPrimitive, Zero};
@ -5,7 +8,7 @@ use num_traits::{Signed, ToPrimitive, Zero};
use std::ops::Neg; use std::ops::Neg;
mod consts; mod consts;
use crate::consts::*; use consts::*;
#[macro_use] #[macro_use]
mod macros; mod macros;
@ -15,7 +18,6 @@ fn test_scalar_add() {
fn check(x: &BigInt, y: &BigInt, z: &BigInt) { fn check(x: &BigInt, y: &BigInt, z: &BigInt) {
let (x, y, z) = (x.clone(), y.clone(), z.clone()); let (x, y, z) = (x.clone(), y.clone(), z.clone());
assert_signed_scalar_op!(x + y == z); assert_signed_scalar_op!(x + y == z);
assert_signed_scalar_assign_op!(x += y == z);
} }
for elm in SUM_TRIPLES.iter() { for elm in SUM_TRIPLES.iter() {
@ -41,7 +43,6 @@ fn test_scalar_sub() {
fn check(x: &BigInt, y: &BigInt, z: &BigInt) { fn check(x: &BigInt, y: &BigInt, z: &BigInt) {
let (x, y, z) = (x.clone(), y.clone(), z.clone()); let (x, y, z) = (x.clone(), y.clone(), z.clone());
assert_signed_scalar_op!(x - y == z); assert_signed_scalar_op!(x - y == z);
assert_signed_scalar_assign_op!(x -= y == z);
} }
for elm in SUM_TRIPLES.iter() { for elm in SUM_TRIPLES.iter() {
@ -67,7 +68,6 @@ fn test_scalar_mul() {
fn check(x: &BigInt, y: &BigInt, z: &BigInt) { fn check(x: &BigInt, y: &BigInt, z: &BigInt) {
let (x, y, z) = (x.clone(), y.clone(), z.clone()); let (x, y, z) = (x.clone(), y.clone(), z.clone());
assert_signed_scalar_op!(x * y == z); assert_signed_scalar_op!(x * y == z);
assert_signed_scalar_assign_op!(x *= y == z);
} }
for elm in MUL_TRIPLES.iter() { for elm in MUL_TRIPLES.iter() {
@ -93,23 +93,20 @@ fn test_scalar_div_rem() {
if !r.is_zero() { if !r.is_zero() {
assert_eq!(r.sign(), a.sign()); assert_eq!(r.sign(), a.sign());
} }
assert!(r.abs() <= BigInt::from(b)); assert!(r.abs() <= From::from(b));
assert!(*a == b * &q + &r); assert!(*a == b * &q + &r);
assert!(q == *ans_q); assert!(q == *ans_q);
assert!(r == *ans_r); assert!(r == *ans_r);
let b = BigInt::from(b); let (a, b, ans_q, ans_r) = (a.clone(), b.clone(), ans_q.clone(), ans_r.clone());
let (a, ans_q, ans_r) = (a.clone(), ans_q.clone(), ans_r.clone()); assert_op!(a / b == ans_q);
assert_signed_scalar_op!(a / b == ans_q); assert_op!(a % b == ans_r);
assert_signed_scalar_op!(a % b == ans_r);
assert_signed_scalar_assign_op!(a /= b == ans_q);
assert_signed_scalar_assign_op!(a %= b == ans_r);
let nb = -b; if b <= i32::max_value() as u32 {
assert_signed_scalar_op!(a / nb == -ans_q.clone()); let nb = -(b as i32);
assert_signed_scalar_op!(a % nb == ans_r); assert_op!(a / nb == -ans_q.clone());
assert_signed_scalar_assign_op!(a /= nb == -ans_q.clone()); assert_op!(a % nb == ans_r);
assert_signed_scalar_assign_op!(a %= nb == ans_r); }
} }
fn check(a: &BigInt, b: u32, q: &BigInt, r: &BigInt) { fn check(a: &BigInt, b: u32, q: &BigInt, r: &BigInt) {

214
third_party/rust/num-bigint/tests/biguint.rs поставляемый
Просмотреть файл

@ -1,3 +1,7 @@
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
use num_bigint::Sign::Plus; use num_bigint::Sign::Plus;
use num_bigint::{BigInt, ToBigInt}; use num_bigint::{BigInt, ToBigInt};
use num_bigint::{BigUint, ToBigUint}; use num_bigint::{BigUint, ToBigUint};
@ -10,16 +14,17 @@ use std::i64;
use std::iter::repeat; use std::iter::repeat;
use std::str::FromStr; use std::str::FromStr;
use std::{f32, f64}; use std::{f32, f64};
#[cfg(has_i128)]
use std::{i128, u128}; use std::{i128, u128};
use std::{u16, u32, u64, u8, usize}; use std::{u16, u32, u64, u8, usize};
use num_traits::{ use num_traits::{
pow, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, Num, One, Pow, ToPrimitive, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, Float, FromPrimitive, Num, One, Pow,
Zero, ToPrimitive, Zero,
}; };
mod consts; mod consts;
use crate::consts::*; use consts::*;
#[macro_use] #[macro_use]
mod macros; mod macros;
@ -36,7 +41,7 @@ fn test_from_bytes_be() {
check("AA", "16705"); check("AA", "16705");
check("AB", "16706"); check("AB", "16706");
check("Hello world!", "22405534230753963835153736737"); check("Hello world!", "22405534230753963835153736737");
assert_eq!(BigUint::from_bytes_be(&[]), BigUint::zero()); assert_eq!(BigUint::from_bytes_be(&[]), Zero::zero());
} }
#[test] #[test]
@ -69,7 +74,7 @@ fn test_from_bytes_le() {
check("AA", "16705"); check("AA", "16705");
check("BA", "16706"); check("BA", "16706");
check("!dlrow olleH", "22405534230753963835153736737"); check("!dlrow olleH", "22405534230753963835153736737");
assert_eq!(BigUint::from_bytes_le(&[]), BigUint::zero()); assert_eq!(BigUint::from_bytes_le(&[]), Zero::zero());
} }
#[test] #[test]
@ -135,7 +140,7 @@ fn hash<T: Hash>(x: &T) -> u64 {
#[test] #[test]
fn test_hash() { fn test_hash() {
use crate::hash; use hash;
let a = BigUint::new(vec![]); let a = BigUint::new(vec![]);
let b = BigUint::new(vec![0]); let b = BigUint::new(vec![0]);
@ -149,7 +154,13 @@ fn test_hash() {
} }
// LEFT, RIGHT, AND, OR, XOR // LEFT, RIGHT, AND, OR, XOR
const BIT_TESTS: &[(&[u32], &[u32], &[u32], &[u32], &[u32])] = &[ const BIT_TESTS: &'static [(
&'static [u32],
&'static [u32],
&'static [u32],
&'static [u32],
&'static [u32],
)] = &[
(&[], &[], &[], &[], &[]), (&[], &[], &[], &[], &[]),
(&[1, 0, 1], &[1, 1], &[1], &[1, 1, 1], &[0, 1, 1]), (&[1, 0, 1], &[1, 1], &[1], &[1, 1, 1], &[0, 1, 1]),
(&[1, 0, 1], &[0, 1, 1], &[0, 0, 1], &[1, 1, 1], &[1, 1]), (&[1, 0, 1], &[0, 1, 1], &[0, 0, 1], &[1, 1, 1], &[1, 1]),
@ -531,6 +542,7 @@ fn test_convert_i64() {
} }
#[test] #[test]
#[cfg(has_i128)]
fn test_convert_i128() { fn test_convert_i128() {
fn check(b1: BigUint, i: i128) { fn check(b1: BigUint, i: i128) {
let b2: BigUint = FromPrimitive::from_i128(i).unwrap(); let b2: BigUint = FromPrimitive::from_i128(i).unwrap();
@ -579,6 +591,7 @@ fn test_convert_u64() {
} }
#[test] #[test]
#[cfg(has_i128)]
fn test_convert_u128() { fn test_convert_u128() {
fn check(b1: BigUint, u: u128) { fn check(b1: BigUint, u: u128) {
let b2: BigUint = FromPrimitive::from_u128(u).unwrap(); let b2: BigUint = FromPrimitive::from_u128(u).unwrap();
@ -602,7 +615,6 @@ fn test_convert_u128() {
} }
#[test] #[test]
#[allow(clippy::float_cmp)]
fn test_convert_f32() { fn test_convert_f32() {
fn check(b1: &BigUint, f: f32) { fn check(b1: &BigUint, f: f32) {
let b2 = BigUint::from_f32(f).unwrap(); let b2 = BigUint::from_f32(f).unwrap();
@ -612,14 +624,14 @@ fn test_convert_f32() {
check(&BigUint::zero(), 0.0); check(&BigUint::zero(), 0.0);
check(&BigUint::one(), 1.0); check(&BigUint::one(), 1.0);
check(&BigUint::from(u16::MAX), pow(2.0_f32, 16) - 1.0); check(&BigUint::from(u16::MAX), 2.0.powi(16) - 1.0);
check(&BigUint::from(1u64 << 32), pow(2.0_f32, 32)); check(&BigUint::from(1u64 << 32), 2.0.powi(32));
check(&BigUint::from_slice(&[0, 0, 1]), pow(2.0_f32, 64)); check(&BigUint::from_slice(&[0, 0, 1]), 2.0.powi(64));
check( check(
&((BigUint::one() << 100) + (BigUint::one() << 123)), &((BigUint::one() << 100) + (BigUint::one() << 123)),
pow(2.0_f32, 100) + pow(2.0_f32, 123), 2.0.powi(100) + 2.0.powi(123),
); );
check(&(BigUint::one() << 127), pow(2.0_f32, 127)); check(&(BigUint::one() << 127), 2.0.powi(127));
check(&(BigUint::from((1u64 << 24) - 1) << (128 - 24)), f32::MAX); check(&(BigUint::from((1u64 << 24) - 1) << (128 - 24)), f32::MAX);
// keeping all 24 digits with the bits at different offsets to the BigDigits // keeping all 24 digits with the bits at different offsets to the BigDigits
@ -629,7 +641,7 @@ fn test_convert_f32() {
for _ in 0..64 { for _ in 0..64 {
check(&b, f); check(&b, f);
f *= 2.0; f *= 2.0;
b <<= 1; b = b << 1;
} }
// this number when rounded to f64 then f32 isn't the same as when rounded straight to f32 // this number when rounded to f64 then f32 isn't the same as when rounded straight to f32
@ -643,7 +655,7 @@ fn test_convert_f32() {
for _ in 0..64 { for _ in 0..64 {
assert_eq!(b.to_f32(), Some(f)); assert_eq!(b.to_f32(), Some(f));
f *= 2.0; f *= 2.0;
b <<= 1; b = b << 1;
} }
// rounding // rounding
@ -671,16 +683,15 @@ fn test_convert_f32() {
assert_eq!(BigUint::from_f32(f32::MIN), None); assert_eq!(BigUint::from_f32(f32::MIN), None);
// largest BigUint that will round to a finite f32 value // largest BigUint that will round to a finite f32 value
let big_num = (BigUint::one() << 128u8) - 1u8 - (BigUint::one() << (128u8 - 25)); let big_num = (BigUint::one() << 128) - BigUint::one() - (BigUint::one() << (128 - 25));
assert_eq!(big_num.to_f32(), Some(f32::MAX)); assert_eq!(big_num.to_f32(), Some(f32::MAX));
assert_eq!((big_num + 1u8).to_f32(), None); assert_eq!((big_num + BigUint::one()).to_f32(), None);
assert_eq!(((BigUint::one() << 128u8) - 1u8).to_f32(), None); assert_eq!(((BigUint::one() << 128) - BigUint::one()).to_f32(), None);
assert_eq!((BigUint::one() << 128u8).to_f32(), None); assert_eq!((BigUint::one() << 128).to_f32(), None);
} }
#[test] #[test]
#[allow(clippy::float_cmp)]
fn test_convert_f64() { fn test_convert_f64() {
fn check(b1: &BigUint, f: f64) { fn check(b1: &BigUint, f: f64) {
let b2 = BigUint::from_f64(f).unwrap(); let b2 = BigUint::from_f64(f).unwrap();
@ -690,14 +701,14 @@ fn test_convert_f64() {
check(&BigUint::zero(), 0.0); check(&BigUint::zero(), 0.0);
check(&BigUint::one(), 1.0); check(&BigUint::one(), 1.0);
check(&BigUint::from(u32::MAX), pow(2.0_f64, 32) - 1.0); check(&BigUint::from(u32::MAX), 2.0.powi(32) - 1.0);
check(&BigUint::from(1u64 << 32), pow(2.0_f64, 32)); check(&BigUint::from(1u64 << 32), 2.0.powi(32));
check(&BigUint::from_slice(&[0, 0, 1]), pow(2.0_f64, 64)); check(&BigUint::from_slice(&[0, 0, 1]), 2.0.powi(64));
check( check(
&((BigUint::one() << 100) + (BigUint::one() << 152)), &((BigUint::one() << 100) + (BigUint::one() << 152)),
pow(2.0_f64, 100) + pow(2.0_f64, 152), 2.0.powi(100) + 2.0.powi(152),
); );
check(&(BigUint::one() << 1023), pow(2.0_f64, 1023)); check(&(BigUint::one() << 1023), 2.0.powi(1023));
check(&(BigUint::from((1u64 << 53) - 1) << (1024 - 53)), f64::MAX); check(&(BigUint::from((1u64 << 53) - 1) << (1024 - 53)), f64::MAX);
// keeping all 53 digits with the bits at different offsets to the BigDigits // keeping all 53 digits with the bits at different offsets to the BigDigits
@ -707,7 +718,7 @@ fn test_convert_f64() {
for _ in 0..128 { for _ in 0..128 {
check(&b, f); check(&b, f);
f *= 2.0; f *= 2.0;
b <<= 1; b = b << 1;
} }
// test rounding up with the bits at different offsets to the BigDigits // test rounding up with the bits at different offsets to the BigDigits
@ -716,7 +727,7 @@ fn test_convert_f64() {
for _ in 0..128 { for _ in 0..128 {
assert_eq!(b.to_f64(), Some(f)); assert_eq!(b.to_f64(), Some(f));
f *= 2.0; f *= 2.0;
b <<= 1; b = b << 1;
} }
// rounding // rounding
@ -744,12 +755,12 @@ fn test_convert_f64() {
assert_eq!(BigUint::from_f64(f64::MIN), None); assert_eq!(BigUint::from_f64(f64::MIN), None);
// largest BigUint that will round to a finite f64 value // largest BigUint that will round to a finite f64 value
let big_num = (BigUint::one() << 1024u16) - 1u8 - (BigUint::one() << (1024u16 - 54)); let big_num = (BigUint::one() << 1024) - BigUint::one() - (BigUint::one() << (1024 - 54));
assert_eq!(big_num.to_f64(), Some(f64::MAX)); assert_eq!(big_num.to_f64(), Some(f64::MAX));
assert_eq!((big_num + 1u8).to_f64(), None); assert_eq!((big_num + BigUint::one()).to_f64(), None);
assert_eq!(((BigUint::one() << 1024u16) - 1u8).to_f64(), None); assert_eq!(((BigInt::one() << 1024) - BigInt::one()).to_f64(), None);
assert_eq!((BigUint::one() << 1024u16).to_f64(), None); assert_eq!((BigUint::one() << 1024).to_f64(), None);
} }
#[test] #[test]
@ -780,6 +791,7 @@ fn test_convert_from_uint() {
check!(u16, BigUint::from_slice(&[u16::MAX as u32])); check!(u16, BigUint::from_slice(&[u16::MAX as u32]));
check!(u32, BigUint::from_slice(&[u32::MAX])); check!(u32, BigUint::from_slice(&[u32::MAX]));
check!(u64, BigUint::from_slice(&[u32::MAX, u32::MAX])); check!(u64, BigUint::from_slice(&[u32::MAX, u32::MAX]));
#[cfg(has_i128)]
check!( check!(
u128, u128,
BigUint::from_slice(&[u32::MAX, u32::MAX, u32::MAX, u32::MAX]) BigUint::from_slice(&[u32::MAX, u32::MAX, u32::MAX, u32::MAX])
@ -860,17 +872,17 @@ fn test_div_rem() {
if !a.is_zero() { if !a.is_zero() {
assert_op!(c / a == b); assert_op!(c / a == b);
assert_op!(c % a == BigUint::zero()); assert_op!(c % a == Zero::zero());
assert_assign_op!(c /= a == b); assert_assign_op!(c /= a == b);
assert_assign_op!(c %= a == BigUint::zero()); assert_assign_op!(c %= a == Zero::zero());
assert_eq!(c.div_rem(&a), (b.clone(), BigUint::zero())); assert_eq!(c.div_rem(&a), (b.clone(), Zero::zero()));
} }
if !b.is_zero() { if !b.is_zero() {
assert_op!(c / b == a); assert_op!(c / b == a);
assert_op!(c % b == BigUint::zero()); assert_op!(c % b == Zero::zero());
assert_assign_op!(c /= b == a); assert_assign_op!(c /= b == a);
assert_assign_op!(c %= b == BigUint::zero()); assert_assign_op!(c %= b == Zero::zero());
assert_eq!(c.div_rem(&b), (a.clone(), BigUint::zero())); assert_eq!(c.div_rem(&b), (a.clone(), Zero::zero()));
} }
} }
@ -891,43 +903,6 @@ fn test_div_rem() {
} }
} }
#[test]
fn test_div_ceil() {
fn check(a: &BigUint, b: &BigUint, d: &BigUint, m: &BigUint) {
if m.is_zero() {
assert_eq!(a.div_ceil(b), *d);
} else {
assert_eq!(a.div_ceil(b), d + 1u32);
}
}
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
if !a.is_zero() {
check(&c, &a, &b, &Zero::zero());
}
if !b.is_zero() {
check(&c, &b, &a, &Zero::zero());
}
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
let d = BigUint::from_slice(d_vec);
if !b.is_zero() {
check(&a, &b, &c, &d);
}
}
}
#[test] #[test]
fn test_checked_add() { fn test_checked_add() {
for elm in SUM_TRIPLES.iter() { for elm in SUM_TRIPLES.iter() {
@ -1021,7 +996,6 @@ fn test_gcd() {
let big_c: BigUint = FromPrimitive::from_usize(c).unwrap(); let big_c: BigUint = FromPrimitive::from_usize(c).unwrap();
assert_eq!(big_a.gcd(&big_b), big_c); assert_eq!(big_a.gcd(&big_b), big_c);
assert_eq!(big_a.gcd_lcm(&big_b).0, big_c);
} }
check(10, 2, 2); check(10, 2, 2);
@ -1039,7 +1013,6 @@ fn test_lcm() {
let big_c: BigUint = FromPrimitive::from_usize(c).unwrap(); let big_c: BigUint = FromPrimitive::from_usize(c).unwrap();
assert_eq!(big_a.lcm(&big_b), big_c); assert_eq!(big_a.lcm(&big_b), big_c);
assert_eq!(big_a.gcd_lcm(&big_b).1, big_c);
} }
check(0, 0, 0); check(0, 0, 0);
@ -1051,30 +1024,6 @@ fn test_lcm() {
check(99, 17, 1683); check(99, 17, 1683);
} }
#[test]
fn test_next_multiple_of() {
assert_eq!(
BigUint::from(16u32).next_multiple_of(&BigUint::from(8u32)),
BigUint::from(16u32)
);
assert_eq!(
BigUint::from(23u32).next_multiple_of(&BigUint::from(8u32)),
BigUint::from(24u32)
);
}
#[test]
fn test_prev_multiple_of() {
assert_eq!(
BigUint::from(16u32).prev_multiple_of(&BigUint::from(8u32)),
BigUint::from(16u32)
);
assert_eq!(
BigUint::from(23u32).prev_multiple_of(&BigUint::from(8u32)),
BigUint::from(16u32)
);
}
#[test] #[test]
fn test_is_even() { fn test_is_even() {
let one: BigUint = FromStr::from_str("1").unwrap(); let one: BigUint = FromStr::from_str("1").unwrap();
@ -1087,8 +1036,8 @@ fn test_is_even() {
assert!(thousand.is_even()); assert!(thousand.is_even());
assert!(big.is_even()); assert!(big.is_even());
assert!(bigger.is_odd()); assert!(bigger.is_odd());
assert!((&one << 64u8).is_even()); assert!((&one << 64).is_even());
assert!(((&one << 64u8) + one).is_odd()); assert!(((&one << 64) + one).is_odd());
} }
fn to_str_pairs() -> Vec<(BigUint, Vec<(u32, String)>)> { fn to_str_pairs() -> Vec<(BigUint, Vec<(u32, String)>)> {
@ -1216,7 +1165,7 @@ fn test_to_str_radix() {
#[test] #[test]
fn test_from_and_to_radix() { fn test_from_and_to_radix() {
const GROUND_TRUTH: &[(&[u8], u32, &[u8])] = &[ const GROUND_TRUTH: &'static [(&'static [u8], u32, &'static [u8])] = &[
(b"0", 42, &[0]), (b"0", 42, &[0]),
( (
b"ffffeeffbb", b"ffffeeffbb",
@ -1566,6 +1515,9 @@ fn test_from_str_radix() {
#[test] #[test]
fn test_all_str_radix() { fn test_all_str_radix() {
#[allow(deprecated, unused_imports)]
use std::ascii::AsciiExt;
let n = BigUint::new((0..10).collect()); let n = BigUint::new((0..10).collect());
for radix in 2..37 { for radix in 2..37 {
let s = n.to_str_radix(radix); let s = n.to_str_radix(radix);
@ -1581,7 +1533,7 @@ fn test_all_str_radix() {
#[test] #[test]
fn test_lower_hex() { fn test_lower_hex() {
let a = BigUint::parse_bytes(b"A", 16).unwrap(); let a = BigUint::parse_bytes(b"A", 16).unwrap();
let hello = BigUint::parse_bytes(b"22405534230753963835153736737", 10).unwrap(); let hello = BigUint::parse_bytes("22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:x}", a), "a"); assert_eq!(format!("{:x}", a), "a");
assert_eq!(format!("{:x}", hello), "48656c6c6f20776f726c6421"); assert_eq!(format!("{:x}", hello), "48656c6c6f20776f726c6421");
@ -1591,7 +1543,7 @@ fn test_lower_hex() {
#[test] #[test]
fn test_upper_hex() { fn test_upper_hex() {
let a = BigUint::parse_bytes(b"A", 16).unwrap(); let a = BigUint::parse_bytes(b"A", 16).unwrap();
let hello = BigUint::parse_bytes(b"22405534230753963835153736737", 10).unwrap(); let hello = BigUint::parse_bytes("22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:X}", a), "A"); assert_eq!(format!("{:X}", a), "A");
assert_eq!(format!("{:X}", hello), "48656C6C6F20776F726C6421"); assert_eq!(format!("{:X}", hello), "48656C6C6F20776F726C6421");
@ -1601,7 +1553,7 @@ fn test_upper_hex() {
#[test] #[test]
fn test_binary() { fn test_binary() {
let a = BigUint::parse_bytes(b"A", 16).unwrap(); let a = BigUint::parse_bytes(b"A", 16).unwrap();
let hello = BigUint::parse_bytes(b"224055342307539", 10).unwrap(); let hello = BigUint::parse_bytes("224055342307539".as_bytes(), 10).unwrap();
assert_eq!(format!("{:b}", a), "1010"); assert_eq!(format!("{:b}", a), "1010");
assert_eq!( assert_eq!(
@ -1614,7 +1566,7 @@ fn test_binary() {
#[test] #[test]
fn test_octal() { fn test_octal() {
let a = BigUint::parse_bytes(b"A", 16).unwrap(); let a = BigUint::parse_bytes(b"A", 16).unwrap();
let hello = BigUint::parse_bytes(b"22405534230753963835153736737", 10).unwrap(); let hello = BigUint::parse_bytes("22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:o}", a), "12"); assert_eq!(format!("{:o}", a), "12");
assert_eq!(format!("{:o}", hello), "22062554330674403566756233062041"); assert_eq!(format!("{:o}", hello), "22062554330674403566756233062041");
@ -1624,7 +1576,7 @@ fn test_octal() {
#[test] #[test]
fn test_display() { fn test_display() {
let a = BigUint::parse_bytes(b"A", 16).unwrap(); let a = BigUint::parse_bytes(b"A", 16).unwrap();
let hello = BigUint::parse_bytes(b"22405534230753963835153736737", 10).unwrap(); let hello = BigUint::parse_bytes("22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{}", a), "10"); assert_eq!(format!("{}", a), "10");
assert_eq!(format!("{}", hello), "22405534230753963835153736737"); assert_eq!(format!("{}", hello), "22405534230753963835153736737");
@ -1635,18 +1587,21 @@ fn test_display() {
fn test_factor() { fn test_factor() {
fn factor(n: usize) -> BigUint { fn factor(n: usize) -> BigUint {
let mut f: BigUint = One::one(); let mut f: BigUint = One::one();
for i in 2..=n { for i in 2..n + 1 {
// FIXME(#5992): assignment operator overloads // FIXME(#5992): assignment operator overloads
// f *= FromPrimitive::from_usize(i); // f *= FromPrimitive::from_usize(i);
let bu: BigUint = FromPrimitive::from_usize(i).unwrap(); let bu: BigUint = FromPrimitive::from_usize(i).unwrap();
f *= bu; f = f * bu;
} }
f return f;
} }
fn check(n: usize, s: &str) { fn check(n: usize, s: &str) {
let n = factor(n); let n = factor(n);
let ans = BigUint::from_str_radix(s, 10).unwrap(); let ans = match BigUint::from_str_radix(s, 10) {
Ok(x) => x,
Err(_) => panic!(),
};
assert_eq!(n, ans); assert_eq!(n, ans);
} }
@ -1668,7 +1623,7 @@ fn test_bits() {
let n: BigUint = BigUint::from_str_radix("4000000000", 16).unwrap(); let n: BigUint = BigUint::from_str_radix("4000000000", 16).unwrap();
assert_eq!(n.bits(), 39); assert_eq!(n.bits(), 39);
let one: BigUint = One::one(); let one: BigUint = One::one();
assert_eq!((one << 426u16).bits(), 427); assert_eq!((one << 426).bits(), 427);
} }
#[test] #[test]
@ -1684,8 +1639,8 @@ fn test_iter_sum() {
FromPrimitive::from_u32(7).unwrap(), FromPrimitive::from_u32(7).unwrap(),
]; ];
assert_eq!(result, data.iter().sum::<BigUint>()); assert_eq!(result, data.iter().sum());
assert_eq!(result, data.into_iter().sum::<BigUint>()); assert_eq!(result, data.into_iter().sum());
} }
#[test] #[test]
@ -1703,8 +1658,8 @@ fn test_iter_product() {
* data.get(3).unwrap() * data.get(3).unwrap()
* data.get(4).unwrap(); * data.get(4).unwrap();
assert_eq!(result, data.iter().product::<BigUint>()); assert_eq!(result, data.iter().product());
assert_eq!(result, data.into_iter().product::<BigUint>()); assert_eq!(result, data.into_iter().product());
} }
#[test] #[test]
@ -1712,8 +1667,8 @@ fn test_iter_sum_generic() {
let result: BigUint = FromPrimitive::from_isize(1234567).unwrap(); let result: BigUint = FromPrimitive::from_isize(1234567).unwrap();
let data = vec![1000000_u32, 200000, 30000, 4000, 500, 60, 7]; let data = vec![1000000_u32, 200000, 30000, 4000, 500, 60, 7];
assert_eq!(result, data.iter().sum::<BigUint>()); assert_eq!(result, data.iter().sum());
assert_eq!(result, data.into_iter().sum::<BigUint>()); assert_eq!(result, data.into_iter().sum());
} }
#[test] #[test]
@ -1725,8 +1680,8 @@ fn test_iter_product_generic() {
* data[3].to_biguint().unwrap() * data[3].to_biguint().unwrap()
* data[4].to_biguint().unwrap(); * data[4].to_biguint().unwrap();
assert_eq!(result, data.iter().product::<BigUint>()); assert_eq!(result, data.iter().product());
assert_eq!(result, data.into_iter().product::<BigUint>()); assert_eq!(result, data.into_iter().product());
} }
#[test] #[test]
@ -1739,19 +1694,20 @@ fn test_pow() {
let twentyfourtyeight = BigUint::from(2048u32); let twentyfourtyeight = BigUint::from(2048u32);
macro_rules! check { macro_rules! check {
($t:ty) => { ($t:ty) => {
assert_eq!(Pow::pow(&two, 0 as $t), one); assert_eq!(two.pow(0 as $t), one);
assert_eq!(Pow::pow(&two, 1 as $t), two); assert_eq!(two.pow(1 as $t), two);
assert_eq!(Pow::pow(&two, 2 as $t), four); assert_eq!(two.pow(2 as $t), four);
assert_eq!(Pow::pow(&two, 3 as $t), eight); assert_eq!(two.pow(3 as $t), eight);
assert_eq!(Pow::pow(&two, 10 as $t), tentwentyfour); assert_eq!(two.pow(10 as $t), tentwentyfour);
assert_eq!(Pow::pow(&two, 11 as $t), twentyfourtyeight); assert_eq!(two.pow(11 as $t), twentyfourtyeight);
assert_eq!(Pow::pow(&two, &(11 as $t)), twentyfourtyeight); assert_eq!(two.pow(&(11 as $t)), twentyfourtyeight);
}; };
} }
check!(u8); check!(u8);
check!(u16); check!(u16);
check!(u32); check!(u32);
check!(u64); check!(u64);
check!(u128);
check!(usize); check!(usize);
#[cfg(has_i128)]
check!(u128);
} }

Просмотреть файл

@ -1,8 +1,11 @@
extern crate num_bigint;
extern crate num_traits;
use num_bigint::BigUint; use num_bigint::BigUint;
use num_traits::{ToPrimitive, Zero}; use num_traits::{ToPrimitive, Zero};
mod consts; mod consts;
use crate::consts::*; use consts::*;
#[macro_use] #[macro_use]
mod macros; mod macros;
@ -12,7 +15,6 @@ fn test_scalar_add() {
fn check(x: &BigUint, y: &BigUint, z: &BigUint) { fn check(x: &BigUint, y: &BigUint, z: &BigUint) {
let (x, y, z) = (x.clone(), y.clone(), z.clone()); let (x, y, z) = (x.clone(), y.clone(), z.clone());
assert_unsigned_scalar_op!(x + y == z); assert_unsigned_scalar_op!(x + y == z);
assert_unsigned_scalar_assign_op!(x += y == z);
} }
for elm in SUM_TRIPLES.iter() { for elm in SUM_TRIPLES.iter() {
@ -31,7 +33,6 @@ fn test_scalar_sub() {
fn check(x: &BigUint, y: &BigUint, z: &BigUint) { fn check(x: &BigUint, y: &BigUint, z: &BigUint) {
let (x, y, z) = (x.clone(), y.clone(), z.clone()); let (x, y, z) = (x.clone(), y.clone(), z.clone());
assert_unsigned_scalar_op!(x - y == z); assert_unsigned_scalar_op!(x - y == z);
assert_unsigned_scalar_assign_op!(x -= y == z);
} }
for elm in SUM_TRIPLES.iter() { for elm in SUM_TRIPLES.iter() {
@ -50,7 +51,6 @@ fn test_scalar_mul() {
fn check(x: &BigUint, y: &BigUint, z: &BigUint) { fn check(x: &BigUint, y: &BigUint, z: &BigUint) {
let (x, y, z) = (x.clone(), y.clone(), z.clone()); let (x, y, z) = (x.clone(), y.clone(), z.clone());
assert_unsigned_scalar_op!(x * y == z); assert_unsigned_scalar_op!(x * y == z);
assert_unsigned_scalar_assign_op!(x *= y == z);
} }
for elm in MUL_TRIPLES.iter() { for elm in MUL_TRIPLES.iter() {
@ -66,8 +66,8 @@ fn test_scalar_mul() {
#[test] #[test]
fn test_scalar_rem_noncommutative() { fn test_scalar_rem_noncommutative() {
assert_eq!(5u8 % BigUint::from(7u8), BigUint::from(5u8)); assert_eq!(5u8 % BigUint::from(7u8), 5u8.into());
assert_eq!(BigUint::from(5u8) % 7u8, BigUint::from(5u8)); assert_eq!(BigUint::from(5u8) % 7u8, 5u8.into());
} }
#[test] #[test]
@ -76,8 +76,6 @@ fn test_scalar_div_rem() {
let (x, y, z, r) = (x.clone(), y.clone(), z.clone(), r.clone()); let (x, y, z, r) = (x.clone(), y.clone(), z.clone(), r.clone());
assert_unsigned_scalar_op!(x / y == z); assert_unsigned_scalar_op!(x / y == z);
assert_unsigned_scalar_op!(x % y == r); assert_unsigned_scalar_op!(x % y == r);
assert_unsigned_scalar_assign_op!(x /= y == z);
assert_unsigned_scalar_assign_op!(x %= y == r);
} }
for elm in MUL_TRIPLES.iter() { for elm in MUL_TRIPLES.iter() {
@ -106,8 +104,6 @@ fn test_scalar_div_rem() {
check(&a, &b, &c, &d); check(&a, &b, &c, &d);
assert_unsigned_scalar_op!(a / b == c); assert_unsigned_scalar_op!(a / b == c);
assert_unsigned_scalar_op!(a % b == d); assert_unsigned_scalar_op!(a % b == d);
assert_unsigned_scalar_assign_op!(a /= b == c);
assert_unsigned_scalar_assign_op!(a %= b == d);
} }
} }
} }

Просмотреть файл

@ -3,7 +3,7 @@
pub const N1: u32 = -1i32 as u32; pub const N1: u32 = -1i32 as u32;
pub const N2: u32 = -2i32 as u32; pub const N2: u32 = -2i32 as u32;
pub const SUM_TRIPLES: &[(&[u32], &[u32], &[u32])] = &[ pub const SUM_TRIPLES: &'static [(&'static [u32], &'static [u32], &'static [u32])] = &[
(&[], &[], &[]), (&[], &[], &[]),
(&[], &[1], &[1]), (&[], &[1], &[1]),
(&[1], &[1], &[2]), (&[1], &[1], &[2]),
@ -17,7 +17,7 @@ pub const SUM_TRIPLES: &[(&[u32], &[u32], &[u32])] = &[
]; ];
pub const M: u32 = ::std::u32::MAX; pub const M: u32 = ::std::u32::MAX;
pub const MUL_TRIPLES: &[(&[u32], &[u32], &[u32])] = &[ pub const MUL_TRIPLES: &'static [(&'static [u32], &'static [u32], &'static [u32])] = &[
(&[], &[], &[]), (&[], &[], &[]),
(&[], &[1], &[]), (&[], &[1], &[]),
(&[2], &[], &[]), (&[2], &[], &[]),
@ -41,7 +41,12 @@ pub const MUL_TRIPLES: &[(&[u32], &[u32], &[u32])] = &[
(&[0, 0, 1], &[0, 0, 0, 1], &[0, 0, 0, 0, 0, 1]), (&[0, 0, 1], &[0, 0, 0, 1], &[0, 0, 0, 0, 0, 1]),
]; ];
pub const DIV_REM_QUADRUPLES: &[(&[u32], &[u32], &[u32], &[u32])] = &[ pub const DIV_REM_QUADRUPLES: &'static [(
&'static [u32],
&'static [u32],
&'static [u32],
&'static [u32],
)] = &[
(&[1], &[2], &[], &[1]), (&[1], &[2], &[], &[1]),
(&[3], &[2], &[1], &[1]), (&[3], &[2], &[1], &[1]),
(&[1, 1], &[2], &[M / 2 + 1], &[1]), (&[1, 1], &[2], &[M / 2 + 1], &[1]),

Просмотреть файл

@ -35,6 +35,15 @@ macro_rules! assert_scalar_op {
}; };
} }
#[cfg(not(has_i128))]
macro_rules! assert_unsigned_scalar_op {
($left:ident $op:tt $right:ident == $expected:expr) => {
assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize)
$left $op $right == $expected);
};
}
#[cfg(has_i128)]
macro_rules! assert_unsigned_scalar_op { macro_rules! assert_unsigned_scalar_op {
($left:ident $op:tt $right:ident == $expected:expr) => { ($left:ident $op:tt $right:ident == $expected:expr) => {
assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize, to_u128) assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize, to_u128)
@ -42,6 +51,16 @@ macro_rules! assert_unsigned_scalar_op {
}; };
} }
#[cfg(not(has_i128))]
macro_rules! assert_signed_scalar_op {
($left:ident $op:tt $right:ident == $expected:expr) => {
assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize,
to_i8, to_i16, to_i32, to_i64, to_isize)
$left $op $right == $expected);
};
}
#[cfg(has_i128)]
macro_rules! assert_signed_scalar_op { macro_rules! assert_signed_scalar_op {
($left:ident $op:tt $right:ident == $expected:expr) => { ($left:ident $op:tt $right:ident == $expected:expr) => {
assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize, to_u128, assert_scalar_op!((to_u8, to_u16, to_u32, to_u64, to_usize, to_u128,
@ -49,30 +68,3 @@ macro_rules! assert_signed_scalar_op {
$left $op $right == $expected); $left $op $right == $expected);
}; };
} }
/// Assert that an op works for scalar right
macro_rules! assert_scalar_assign_op {
(($($to:ident),*) $left:ident $op:tt $right:ident == $expected:expr) => {
$(
if let Some(right) = $right.$to() {
let mut left = $left.clone();
assert_eq!({ left $op right; left}, $expected);
}
)*
};
}
macro_rules! assert_unsigned_scalar_assign_op {
($left:ident $op:tt $right:ident == $expected:expr) => {
assert_scalar_assign_op!((to_u8, to_u16, to_u32, to_u64, to_usize, to_u128)
$left $op $right == $expected);
};
}
macro_rules! assert_signed_scalar_assign_op {
($left:ident $op:tt $right:ident == $expected:expr) => {
assert_scalar_assign_op!((to_u8, to_u16, to_u32, to_u64, to_usize, to_u128,
to_i8, to_i16, to_i32, to_i64, to_isize, to_i128)
$left $op $right == $expected);
};
}

151
third_party/rust/num-bigint/tests/modpow.rs поставляемый
Просмотреть файл

@ -1,56 +1,60 @@
static BIG_B: &str = "\ extern crate num_bigint;
efac3c0a_0de55551_fee0bfe4_67fa017a_1a898fa1_6ca57cb1\ extern crate num_integer;
ca9e3248_cacc09a9_b99d6abc_38418d0f_82ae4238_d9a68832\ extern crate num_traits;
aadec7c1_ac5fed48_7a56a71b_67ac59d5_afb28022_20d9592d\
247c4efc_abbd9b75_586088ee_1dc00dc4_232a8e15_6e8191dd\
675b6ae0_c80f5164_752940bc_284b7cee_885c1e10_e495345b\
8fbe9cfd_e5233fe1_19459d0b_d64be53c_27de5a02_a829976b\
33096862_82dad291_bd38b6a9_be396646_ddaf8039_a2573c39\
1b14e8bc_2cb53e48_298c047e_d9879e9c_5a521076_f0e27df3\
990e1659_d3d8205b_6443ebc0_9918ebee_6764f668_9f2b2be3\
b59cbc76_d76d0dfc_d737c3ec_0ccf9c00_ad0554bf_17e776ad\
b4edf9cc_6ce540be_76229093_5c53893b";
static BIG_E: &str = "\ static BIG_B: &'static str = "\
be0e6ea6_08746133_e0fbc1bf_82dba91e_e2b56231_a81888d2\ efac3c0a_0de55551_fee0bfe4_67fa017a_1a898fa1_6ca57cb1\
a833a1fc_f7ff002a_3c486a13_4f420bf3_a5435be9_1a5c8391\ ca9e3248_cacc09a9_b99d6abc_38418d0f_82ae4238_d9a68832\
774d6e6c_085d8357_b0c97d4d_2bb33f7c_34c68059_f78d2541\ aadec7c1_ac5fed48_7a56a71b_67ac59d5_afb28022_20d9592d\
eacc8832_426f1816_d3be001e_b69f9242_51c7708e_e10efe98\ 247c4efc_abbd9b75_586088ee_1dc00dc4_232a8e15_6e8191dd\
449c9a4a_b55a0f23_9d797410_515da00d_3ea07970_4478a2ca\ 675b6ae0_c80f5164_752940bc_284b7cee_885c1e10_e495345b\
c3d5043c_bd9be1b4_6dce479d_4302d344_84a939e6_0ab5ada7\ 8fbe9cfd_e5233fe1_19459d0b_d64be53c_27de5a02_a829976b\
12ae34b2_30cc473c_9f8ee69d_2cac5970_29f5bf18_bc8203e4\ 33096862_82dad291_bd38b6a9_be396646_ddaf8039_a2573c39\
f3e895a2_13c94f1e_24c73d77_e517e801_53661fdd_a2ce9e47\ 1b14e8bc_2cb53e48_298c047e_d9879e9c_5a521076_f0e27df3\
a73dd7f8_2f2adb1e_3f136bf7_8ae5f3b8_08730de1_a4eff678\ 990e1659_d3d8205b_6443ebc0_9918ebee_6764f668_9f2b2be3\
e77a06d0_19a522eb_cbefba2a_9caf7736_b157c5c6_2d192591\ b59cbc76_d76d0dfc_d737c3ec_0ccf9c00_ad0554bf_17e776ad\
17946850_2ddb1822_117b68a0_32f7db88"; b4edf9cc_6ce540be_76229093_5c53893b";
static BIG_E: &'static str = "\
be0e6ea6_08746133_e0fbc1bf_82dba91e_e2b56231_a81888d2\
a833a1fc_f7ff002a_3c486a13_4f420bf3_a5435be9_1a5c8391\
774d6e6c_085d8357_b0c97d4d_2bb33f7c_34c68059_f78d2541\
eacc8832_426f1816_d3be001e_b69f9242_51c7708e_e10efe98\
449c9a4a_b55a0f23_9d797410_515da00d_3ea07970_4478a2ca\
c3d5043c_bd9be1b4_6dce479d_4302d344_84a939e6_0ab5ada7\
12ae34b2_30cc473c_9f8ee69d_2cac5970_29f5bf18_bc8203e4\
f3e895a2_13c94f1e_24c73d77_e517e801_53661fdd_a2ce9e47\
a73dd7f8_2f2adb1e_3f136bf7_8ae5f3b8_08730de1_a4eff678\
e77a06d0_19a522eb_cbefba2a_9caf7736_b157c5c6_2d192591\
17946850_2ddb1822_117b68a0_32f7db88";
// This modulus is the prime from the 2048-bit MODP DH group: // This modulus is the prime from the 2048-bit MODP DH group:
// https://tools.ietf.org/html/rfc3526#section-3 // https://tools.ietf.org/html/rfc3526#section-3
static BIG_M: &str = "\ static BIG_M: &'static str = "\
FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\ FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\
29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\ 29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\
EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\ EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\
E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\ E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\
EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\ EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\
C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\ C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\
83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\ 83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\
670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\ 670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\
E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\ E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\
DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\ DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\
15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF"; 15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF";
static BIG_R: &str = "\ static BIG_R: &'static str = "\
a1468311_6e56edc9_7a98228b_5e924776_0dd7836e_caabac13\ a1468311_6e56edc9_7a98228b_5e924776_0dd7836e_caabac13\
eda5373b_4752aa65_a1454850_40dc770e_30aa8675_6be7d3a8\ eda5373b_4752aa65_a1454850_40dc770e_30aa8675_6be7d3a8\
9d3085e4_da5155cf_b451ef62_54d0da61_cf2b2c87_f495e096\ 9d3085e4_da5155cf_b451ef62_54d0da61_cf2b2c87_f495e096\
055309f7_77802bbb_37271ba8_1313f1b5_075c75d1_024b6c77\ 055309f7_77802bbb_37271ba8_1313f1b5_075c75d1_024b6c77\
fdb56f17_b05bce61_e527ebfd_2ee86860_e9907066_edd526e7\ fdb56f17_b05bce61_e527ebfd_2ee86860_e9907066_edd526e7\
93d289bf_6726b293_41b0de24_eff82424_8dfd374b_4ec59542\ 93d289bf_6726b293_41b0de24_eff82424_8dfd374b_4ec59542\
35ced2b2_6b195c90_10042ffb_8f58ce21_bc10ec42_64fda779\ 35ced2b2_6b195c90_10042ffb_8f58ce21_bc10ec42_64fda779\
d352d234_3d4eaea6_a86111ad_a37e9555_43ca78ce_2885bed7\ d352d234_3d4eaea6_a86111ad_a37e9555_43ca78ce_2885bed7\
5a30d182_f1cf6834_dc5b6e27_1a41ac34_a2e91e11_33363ff0\ 5a30d182_f1cf6834_dc5b6e27_1a41ac34_a2e91e11_33363ff0\
f88a7b04_900227c9_f6e6d06b_7856b4bb_4e354d61_060db6c8\ f88a7b04_900227c9_f6e6d06b_7856b4bb_4e354d61_060db6c8\
109c4735_6e7db425_7b5d74c7_0b709508"; 109c4735_6e7db425_7b5d74c7_0b709508";
mod biguint { mod biguint {
use num_bigint::BigUint; use num_bigint::BigUint;
@ -72,24 +76,11 @@ mod biguint {
} }
#[test] #[test]
fn test_modpow_single() { fn test_modpow() {
check_modpow::<u32>(1, 0, 11, 1); check_modpow::<u32>(1, 0, 11, 1);
check_modpow::<u32>(0, 15, 11, 0); check_modpow::<u32>(0, 15, 11, 0);
check_modpow::<u32>(3, 7, 11, 9); check_modpow::<u32>(3, 7, 11, 9);
check_modpow::<u32>(5, 117, 19, 1); check_modpow::<u32>(5, 117, 19, 1);
check_modpow::<u32>(20, 1, 2, 0);
check_modpow::<u32>(20, 1, 3, 2);
}
#[test]
fn test_modpow_small() {
for b in 0u64..11 {
for e in 0u64..11 {
for m in 1..11 {
check_modpow::<u64>(b, e, m, b.pow(e as u32) % m);
}
}
}
} }
#[test] #[test]
@ -111,13 +102,13 @@ mod biguint {
mod bigint { mod bigint {
use num_bigint::BigInt; use num_bigint::BigInt;
use num_integer::Integer; use num_integer::Integer;
use num_traits::{Num, One, Signed}; use num_traits::{Num, One, Signed, Zero};
fn check_modpow<T: Into<BigInt>>(b: T, e: T, m: T, r: T) { fn check_modpow<T: Into<BigInt>>(b: T, e: T, m: T, r: T) {
fn check(b: &BigInt, e: &BigInt, m: &BigInt, r: &BigInt) { fn check(b: &BigInt, e: &BigInt, m: &BigInt, r: &BigInt) {
assert_eq!(&b.modpow(e, m), r, "{} ** {} (mod {}) != {}", b, e, m, r); assert_eq!(&b.modpow(e, m), r);
let even_m = m << 1u8; let even_m = m << 1;
let even_modpow = b.modpow(e, m); let even_modpow = b.modpow(e, m);
assert!(even_modpow.abs() < even_m.abs()); assert!(even_modpow.abs() < even_m.abs());
assert_eq!(&even_modpow.mod_floor(&m), r); assert_eq!(&even_modpow.mod_floor(&m), r);
@ -131,18 +122,12 @@ mod bigint {
let m: BigInt = m.into(); let m: BigInt = m.into();
let r: BigInt = r.into(); let r: BigInt = r.into();
let neg_b_r = if e.is_odd() { let neg_r = if r.is_zero() { BigInt::zero() } else { &m - &r };
(-&r).mod_floor(&m)
} else {
r.clone()
};
let neg_m_r = r.mod_floor(&-&m);
let neg_bm_r = neg_b_r.mod_floor(&-&m);
check(&b, &e, &m, &r); check(&b, &e, &m, &r);
check(&-&b, &e, &m, &neg_b_r); check(&-&b, &e, &m, &neg_r);
check(&b, &e, &-&m, &neg_m_r); check(&b, &e, &-&m, &-neg_r);
check(&-b, &e, &-&m, &neg_bm_r); check(&-b, &e, &-m, &-r);
} }
#[test] #[test]
@ -151,22 +136,6 @@ mod bigint {
check_modpow(0, 15, 11, 0); check_modpow(0, 15, 11, 0);
check_modpow(3, 7, 11, 9); check_modpow(3, 7, 11, 9);
check_modpow(5, 117, 19, 1); check_modpow(5, 117, 19, 1);
check_modpow(-20, 1, 2, 0);
check_modpow(-20, 1, 3, 1);
}
#[test]
fn test_modpow_small() {
for b in -10i64..11 {
for e in 0i64..11 {
for m in -10..11 {
if m == 0 {
continue;
}
check_modpow(b, e, m, b.pow(e as u32).mod_floor(&m));
}
}
}
} }
#[test] #[test]

Просмотреть файл

Просмотреть файл

34
third_party/rust/num-bigint/tests/roots.rs поставляемый
Просмотреть файл

@ -1,6 +1,13 @@
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
#[cfg(feature = "rand")]
extern crate rand;
mod biguint { mod biguint {
use num_bigint::BigUint; use num_bigint::BigUint;
use num_traits::{One, Zero}; use num_traits::{One, Pow, Zero};
use std::{i32, u32}; use std::{i32, u32};
fn check<T: Into<BigUint>>(x: T, n: u32) { fn check<T: Into<BigUint>>(x: T, n: u32) {
@ -81,7 +88,7 @@ mod biguint {
let x = BigUint::one() << LOG2; let x = BigUint::one() << LOG2;
// the perfect divisors are just powers of two // the perfect divisors are just powers of two
for exp in 1..=EXP { for exp in 1..EXP + 1 {
let n = 2u32.pow(exp); let n = 2u32.pow(exp);
let expected = BigUint::one() << (LOG2 / n as usize); let expected = BigUint::one() << (LOG2 / n as usize);
assert_eq!(x.nth_root(n), expected); assert_eq!(x.nth_root(n), expected);
@ -94,6 +101,25 @@ mod biguint {
assert!(x.nth_root(u32::MAX).is_one()); assert!(x.nth_root(u32::MAX).is_one());
} }
#[cfg(feature = "rand")]
#[test]
fn test_roots_rand() {
use num_bigint::RandBigInt;
use rand::distributions::Uniform;
use rand::{thread_rng, Rng};
let mut rng = thread_rng();
let bit_range = Uniform::new(0, 2048);
let sample_bits: Vec<_> = rng.sample_iter(&bit_range).take(100).collect();
for bits in sample_bits {
let x = rng.gen_biguint(bits);
for n in 2..11 {
check(x.clone(), n);
}
check(x.clone(), 100);
}
}
#[test] #[test]
fn test_roots_rand1() { fn test_roots_rand1() {
// A random input that found regressions // A random input that found regressions
@ -108,13 +134,13 @@ mod biguint {
check(x.clone(), 2); check(x.clone(), 2);
check(x.clone(), 3); check(x.clone(), 3);
check(x.clone(), 10); check(x.clone(), 10);
check(x, 100); check(x.clone(), 100);
} }
} }
mod bigint { mod bigint {
use num_bigint::BigInt; use num_bigint::BigInt;
use num_traits::Signed; use num_traits::{Pow, Signed};
fn check(x: i64, n: u32) { fn check(x: i64, n: u32) {
let big_x = BigInt::from(x); let big_x = BigInt::from(x);

Просмотреть файл

Просмотреть файл

Просмотреть файл

@ -1 +0,0 @@
{"files":{"Cargo.toml":"ae77ec097a983a6d365193723032ccc161f15ef5a37ffc14c1b3fd26caacbf1d","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"60255cfba4fe9fc25ca1e1f51702ce8e52e7a8b2d747e3e2055eacb04e2bae70","RELEASES.md":"834ab68be8ce6e4a46fb2f591bc93ff01e6481955e6b027adfb60f393c24a6b6","src/cast.rs":"8206bcfb99b712340383332fb760dba9cee4be8c994bd9a38d0b8c6e6bc5f7b1","src/crand.rs":"81dd604ea3bc74d7ed5e132cddecb3d6a1aaa5f6cdadac7311b62beac5e7ef89","src/lib.rs":"ef7fff45cc8ef75df68836f0b5d8dd3bd9f3a686c20e7b8761295c3b6e39699a","src/pow.rs":"974fd585da8c2b7ac3f68e93a3881c56a3f0f3e506009fb3d862c6000064abb7"},"package":"b05ad05bd8977050b171b3f6b48175fea6e0565b7981059b486075e1026a9fb5"}

47
third_party/rust/num-complex/Cargo.toml поставляемый
Просмотреть файл

@ -1,47 +0,0 @@
# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
#
# When uploading crates to the registry Cargo will automatically
# "normalize" Cargo.toml files for maximal compatibility
# with all versions of Cargo and also rewrite `path` dependencies
# to registry (e.g., crates.io) dependencies
#
# If you believe there's an error in this file please file an
# issue against the rust-lang/cargo repository. If you're
# editing this file be aware that the upstream Cargo.toml
# will likely look very different (and much more reasonable)
[package]
edition = "2018"
name = "num-complex"
version = "0.3.0"
authors = ["The Rust Project Developers"]
exclude = ["/bors.toml", "/ci/*", "/.github/*"]
description = "Complex numbers implementation for Rust"
homepage = "https://github.com/rust-num/num-complex"
documentation = "https://docs.rs/num-complex"
readme = "README.md"
keywords = ["mathematics", "numerics"]
categories = ["algorithms", "data-structures", "science", "no-std"]
license = "MIT/Apache-2.0"
repository = "https://github.com/rust-num/num-complex"
[package.metadata.docs.rs]
features = ["std", "serde", "rand"]
[dependencies.num-traits]
version = "0.2.11"
features = ["i128"]
default-features = false
[dependencies.rand]
version = "0.7"
optional = true
default-features = false
[dependencies.serde]
version = "1.0"
optional = true
default-features = false
[features]
default = ["std"]
libm = ["num-traits/libm"]
std = ["num-traits/std"]

201
third_party/rust/num-complex/LICENSE-APACHE поставляемый
Просмотреть файл

@ -1,201 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

25
third_party/rust/num-complex/LICENSE-MIT поставляемый
Просмотреть файл

@ -1,25 +0,0 @@
Copyright (c) 2014 The Rust Project Developers
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

40
third_party/rust/num-complex/README.md поставляемый
Просмотреть файл

@ -1,40 +0,0 @@
# num-complex
[![crate](https://img.shields.io/crates/v/num-complex.svg)](https://crates.io/crates/num-complex)
[![documentation](https://docs.rs/num-complex/badge.svg)](https://docs.rs/num-complex)
[![minimum rustc 1.31](https://img.shields.io/badge/rustc-1.31+-red.svg)](https://rust-lang.github.io/rfcs/2495-min-rust-version.html)
[![build status](https://github.com/rust-num/num-complex/workflows/master/badge.svg)](https://github.com/rust-num/num-complex/actions)
`Complex` numbers for Rust.
## Usage
Add this to your `Cargo.toml`:
```toml
[dependencies]
num-complex = "0.3"
```
## Features
This crate can be used without the standard library (`#![no_std]`) by disabling
the default `std` feature. Use this in `Cargo.toml`:
```toml
[dependencies.num-complex]
version = "0.3"
default-features = false
```
Features based on `Float` types are only available when `std` or `libm` is
enabled. Where possible, `FloatCore` is used instead. Formatting complex
numbers only supports format width when `std` is enabled.
## Releases
Release notes are available in [RELEASES.md](RELEASES.md).
## Compatibility
The `num-complex` crate is tested for rustc 1.31 and greater.

125
third_party/rust/num-complex/RELEASES.md поставляемый
Просмотреть файл

@ -1,125 +0,0 @@
# Release 0.3.0 (2020-06-13)
### Enhancements
- [The new "libm" feature passes through to `num-traits`][73], enabling `Float`
features on no-`std` builds.
### Breaking Changes
- `num-complex` now requires Rust 1.31 or greater.
- The "i128" opt-in feature was removed, now always available.
- [Updated public dependences][65]:
- `rand` support has been updated to 0.7, requiring Rust 1.32.
- [Methods for `T: Float` now take values instead of references][82], most
notably affecting the constructor `from_polar`.
**Contributors**: @cuviper, @SOF3, @vks
[65]: https://github.com/rust-num/num-complex/pull/65
[73]: https://github.com/rust-num/num-complex/pull/73
[82]: https://github.com/rust-num/num-complex/pull/82
# Release 0.2.4 (2020-01-09)
- [`Complex::new` is now a `const fn` for Rust 1.31 and later][63].
- [Updated the `autocfg` build dependency to 1.0][68].
**Contributors**: @burrbull, @cuviper, @dingelish
[63]: https://github.com/rust-num/num-complex/pull/63
[68]: https://github.com/rust-num/num-complex/pull/68
# Release 0.2.3 (2019-06-11)
- [`Complex::sqrt()` is now more accurate for negative reals][60].
- [`Complex::cbrt()` computes the principal cube root][61].
**Contributors**: @cuviper
[60]: https://github.com/rust-num/num-complex/pull/60
[61]: https://github.com/rust-num/num-complex/pull/61
# Release 0.2.2 (2019-06-10)
- [`Complex::l1_norm()` computes the Manhattan distance from the origin][43].
- [`Complex::fdiv()` and `finv()` use floating-point for inversion][41], which
may avoid overflows for some inputs, at the cost of trigonometric rounding.
- [`Complex` now implements `num_traits::MulAdd` and `MulAddAssign`][44].
- [`Complex` now implements `Zero::set_zero` and `One::set_one`][57].
- [`Complex` now implements `num_traits::Pow` and adds `powi` and `powu`][56].
**Contributors**: @adamnemecek, @cuviper, @ignatenkobrain, @Schultzer
[41]: https://github.com/rust-num/num-complex/pull/41
[43]: https://github.com/rust-num/num-complex/pull/43
[44]: https://github.com/rust-num/num-complex/pull/44
[56]: https://github.com/rust-num/num-complex/pull/56
[57]: https://github.com/rust-num/num-complex/pull/57
# Release 0.2.1 (2018-10-08)
- [`Complex` now implements `ToPrimitive`, `FromPrimitive`, `AsPrimitive`, and `NumCast`][33].
**Contributors**: @cuviper, @termoshtt
[33]: https://github.com/rust-num/num-complex/pull/33
# Release 0.2.0 (2018-05-24)
### Enhancements
- [`Complex` now implements `num_traits::Inv` and `One::is_one`][17].
- [`Complex` now implements `Sum` and `Product`][11].
- [`Complex` now supports `i128` and `u128` components][27] with Rust 1.26+.
- [`Complex` now optionally supports `rand` 0.5][28], implementing the
`Standard` distribution and [a generic `ComplexDistribution`][30].
- [`Rem` with a scalar divisor now avoids `norm_sqr` overflow][25].
### Breaking Changes
- [`num-complex` now requires rustc 1.15 or greater][16].
- [There is now a `std` feature][22], enabled by default, along with the
implication that building *without* this feature makes this a `#![no_std]`
crate. A few methods now require `FloatCore`, and the remaining methods
based on `Float` are only supported with `std`.
- [The `serde` dependency has been updated to 1.0][7], and `rustc-serialize`
is no longer supported by `num-complex`.
**Contributors**: @clarcharr, @cuviper, @shingtaklam1324, @termoshtt
[7]: https://github.com/rust-num/num-complex/pull/7
[11]: https://github.com/rust-num/num-complex/pull/11
[16]: https://github.com/rust-num/num-complex/pull/16
[17]: https://github.com/rust-num/num-complex/pull/17
[22]: https://github.com/rust-num/num-complex/pull/22
[25]: https://github.com/rust-num/num-complex/pull/25
[27]: https://github.com/rust-num/num-complex/pull/27
[28]: https://github.com/rust-num/num-complex/pull/28
[30]: https://github.com/rust-num/num-complex/pull/30
# Release 0.1.43 (2018-03-08)
- [Fix a usage typo in README.md][20].
**Contributors**: @shingtaklam1324
[20]: https://github.com/rust-num/num-complex/pull/20
# Release 0.1.42 (2018-02-07)
- [num-complex now has its own source repository][num-356] at [rust-num/num-complex][home].
**Contributors**: @cuviper
[home]: https://github.com/rust-num/num-complex
[num-356]: https://github.com/rust-num/num/pull/356
# Prior releases
No prior release notes were kept. Thanks all the same to the many
contributors that have made this crate what it is!

119
third_party/rust/num-complex/src/cast.rs поставляемый
Просмотреть файл

@ -1,119 +0,0 @@
use super::Complex;
use num_traits::{AsPrimitive, FromPrimitive, Num, NumCast, ToPrimitive};
macro_rules! impl_to_primitive {
($ty:ty, $to:ident) => {
#[inline]
fn $to(&self) -> Option<$ty> {
if self.im.is_zero() {
self.re.$to()
} else {
None
}
}
};
} // impl_to_primitive
// Returns None if Complex part is non-zero
impl<T: ToPrimitive + Num> ToPrimitive for Complex<T> {
impl_to_primitive!(usize, to_usize);
impl_to_primitive!(isize, to_isize);
impl_to_primitive!(u8, to_u8);
impl_to_primitive!(u16, to_u16);
impl_to_primitive!(u32, to_u32);
impl_to_primitive!(u64, to_u64);
impl_to_primitive!(i8, to_i8);
impl_to_primitive!(i16, to_i16);
impl_to_primitive!(i32, to_i32);
impl_to_primitive!(i64, to_i64);
impl_to_primitive!(u128, to_u128);
impl_to_primitive!(i128, to_i128);
impl_to_primitive!(f32, to_f32);
impl_to_primitive!(f64, to_f64);
}
macro_rules! impl_from_primitive {
($ty:ty, $from_xx:ident) => {
#[inline]
fn $from_xx(n: $ty) -> Option<Self> {
Some(Complex {
re: T::$from_xx(n)?,
im: T::zero(),
})
}
};
} // impl_from_primitive
impl<T: FromPrimitive + Num> FromPrimitive for Complex<T> {
impl_from_primitive!(usize, from_usize);
impl_from_primitive!(isize, from_isize);
impl_from_primitive!(u8, from_u8);
impl_from_primitive!(u16, from_u16);
impl_from_primitive!(u32, from_u32);
impl_from_primitive!(u64, from_u64);
impl_from_primitive!(i8, from_i8);
impl_from_primitive!(i16, from_i16);
impl_from_primitive!(i32, from_i32);
impl_from_primitive!(i64, from_i64);
impl_from_primitive!(u128, from_u128);
impl_from_primitive!(i128, from_i128);
impl_from_primitive!(f32, from_f32);
impl_from_primitive!(f64, from_f64);
}
impl<T: NumCast + Num> NumCast for Complex<T> {
fn from<U: ToPrimitive>(n: U) -> Option<Self> {
Some(Complex {
re: T::from(n)?,
im: T::zero(),
})
}
}
impl<T, U> AsPrimitive<U> for Complex<T>
where
T: AsPrimitive<U>,
U: 'static + Copy,
{
fn as_(self) -> U {
self.re.as_()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_to_primitive() {
let a: Complex<u32> = Complex { re: 3, im: 0 };
assert_eq!(a.to_i32(), Some(3_i32));
let b: Complex<u32> = Complex { re: 3, im: 1 };
assert_eq!(b.to_i32(), None);
let x: Complex<f32> = Complex { re: 1.0, im: 0.1 };
assert_eq!(x.to_f32(), None);
let y: Complex<f32> = Complex { re: 1.0, im: 0.0 };
assert_eq!(y.to_f32(), Some(1.0));
let z: Complex<f32> = Complex { re: 1.0, im: 0.0 };
assert_eq!(z.to_i32(), Some(1));
}
#[test]
fn test_from_primitive() {
let a: Complex<f32> = FromPrimitive::from_i32(2).unwrap();
assert_eq!(a, Complex { re: 2.0, im: 0.0 });
}
#[test]
fn test_num_cast() {
let a: Complex<f32> = NumCast::from(2_i32).unwrap();
assert_eq!(a, Complex { re: 2.0, im: 0.0 });
}
#[test]
fn test_as_primitive() {
let a: Complex<f32> = Complex { re: 2.0, im: 0.2 };
let a_: i32 = a.as_();
assert_eq!(a_, 2_i32);
}
}

115
third_party/rust/num-complex/src/crand.rs поставляемый
Просмотреть файл

@ -1,115 +0,0 @@
//! Rand implementations for complex numbers
use crate::Complex;
use num_traits::Num;
use rand::distributions::Standard;
use rand::prelude::*;
impl<T> Distribution<Complex<T>> for Standard
where
T: Num + Clone,
Standard: Distribution<T>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Complex<T> {
Complex::new(self.sample(rng), self.sample(rng))
}
}
/// A generic random value distribution for complex numbers.
#[derive(Clone, Copy, Debug)]
pub struct ComplexDistribution<Re, Im = Re> {
re: Re,
im: Im,
}
impl<Re, Im> ComplexDistribution<Re, Im> {
/// Creates a complex distribution from independent
/// distributions of the real and imaginary parts.
pub fn new(re: Re, im: Im) -> Self {
ComplexDistribution { re, im }
}
}
impl<T, Re, Im> Distribution<Complex<T>> for ComplexDistribution<Re, Im>
where
T: Num + Clone,
Re: Distribution<T>,
Im: Distribution<T>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Complex<T> {
Complex::new(self.re.sample(rng), self.im.sample(rng))
}
}
#[cfg(test)]
fn test_rng() -> StdRng {
StdRng::from_seed([42; 32])
}
#[test]
fn standard_f64() {
let mut rng = test_rng();
for _ in 0..100 {
let c: Complex<f64> = rng.gen();
assert!(c.re >= 0.0 && c.re < 1.0);
assert!(c.im >= 0.0 && c.im < 1.0);
}
}
#[test]
fn generic_standard_f64() {
let mut rng = test_rng();
let dist = ComplexDistribution::new(Standard, Standard);
for _ in 0..100 {
let c: Complex<f64> = rng.sample(&dist);
assert!(c.re >= 0.0 && c.re < 1.0);
assert!(c.im >= 0.0 && c.im < 1.0);
}
}
#[test]
fn generic_uniform_f64() {
use rand::distributions::Uniform;
let mut rng = test_rng();
let re = Uniform::new(-100.0, 0.0);
let im = Uniform::new(0.0, 100.0);
let dist = ComplexDistribution::new(re, im);
for _ in 0..100 {
// no type annotation required, since `Uniform` only produces one type.
let c = rng.sample(&dist);
assert!(c.re >= -100.0 && c.re < 0.0);
assert!(c.im >= 0.0 && c.im < 100.0);
}
}
#[test]
fn generic_mixed_f64() {
use rand::distributions::Uniform;
let mut rng = test_rng();
let re = Uniform::new(-100.0, 0.0);
let dist = ComplexDistribution::new(re, Standard);
for _ in 0..100 {
// no type annotation required, since `Uniform` only produces one type.
let c = rng.sample(&dist);
assert!(c.re >= -100.0 && c.re < 0.0);
assert!(c.im >= 0.0 && c.im < 1.0);
}
}
#[test]
fn generic_uniform_i32() {
use rand::distributions::Uniform;
let mut rng = test_rng();
let re = Uniform::new(-100, 0);
let im = Uniform::new(0, 100);
let dist = ComplexDistribution::new(re, im);
for _ in 0..100 {
// no type annotation required, since `Uniform` only produces one type.
let c = rng.sample(&dist);
assert!(c.re >= -100 && c.re < 0);
assert!(c.im >= 0 && c.im < 100);
}
}

2636
third_party/rust/num-complex/src/lib.rs поставляемый

Разница между файлами не показана из-за своего большого размера Загрузить разницу

186
third_party/rust/num-complex/src/pow.rs поставляемый
Просмотреть файл

@ -1,186 +0,0 @@
use super::Complex;
use core::ops::Neg;
#[cfg(any(feature = "std", feature = "libm"))]
use num_traits::Float;
use num_traits::{Num, One, Pow};
macro_rules! pow_impl {
($U:ty, $S:ty) => {
impl<'a, T: Clone + Num> Pow<$U> for &'a Complex<T> {
type Output = Complex<T>;
#[inline]
fn pow(self, mut exp: $U) -> Self::Output {
if exp == 0 {
return Complex::one();
}
let mut base = self.clone();
while exp & 1 == 0 {
base = base.clone() * base;
exp >>= 1;
}
if exp == 1 {
return base;
}
let mut acc = base.clone();
while exp > 1 {
exp >>= 1;
base = base.clone() * base;
if exp & 1 == 1 {
acc = acc * base.clone();
}
}
acc
}
}
impl<'a, 'b, T: Clone + Num> Pow<&'b $U> for &'a Complex<T> {
type Output = Complex<T>;
#[inline]
fn pow(self, exp: &$U) -> Self::Output {
self.pow(*exp)
}
}
impl<'a, T: Clone + Num + Neg<Output = T>> Pow<$S> for &'a Complex<T> {
type Output = Complex<T>;
#[inline]
fn pow(self, exp: $S) -> Self::Output {
if exp < 0 {
Pow::pow(&self.inv(), exp.wrapping_neg() as $U)
} else {
Pow::pow(self, exp as $U)
}
}
}
impl<'a, 'b, T: Clone + Num + Neg<Output = T>> Pow<&'b $S> for &'a Complex<T> {
type Output = Complex<T>;
#[inline]
fn pow(self, exp: &$S) -> Self::Output {
self.pow(*exp)
}
}
};
}
pow_impl!(u8, i8);
pow_impl!(u16, i16);
pow_impl!(u32, i32);
pow_impl!(u64, i64);
pow_impl!(usize, isize);
pow_impl!(u128, i128);
// Note: we can't add `impl<T: Float> Pow<T> for Complex<T>` because new blanket impls are a
// breaking change. Someone could already have their own `F` and `impl Pow<F> for Complex<F>`
// which would conflict. We can't even do this in a new semantic version, because we have to
// gate it on the "std" feature, and features can't add breaking changes either.
macro_rules! powf_impl {
($F:ty) => {
#[cfg(any(feature = "std", feature = "libm"))]
impl<'a, T: Float> Pow<$F> for &'a Complex<T>
where
$F: Into<T>,
{
type Output = Complex<T>;
#[inline]
fn pow(self, exp: $F) -> Self::Output {
self.powf(exp.into())
}
}
#[cfg(any(feature = "std", feature = "libm"))]
impl<'a, 'b, T: Float> Pow<&'b $F> for &'a Complex<T>
where
$F: Into<T>,
{
type Output = Complex<T>;
#[inline]
fn pow(self, &exp: &$F) -> Self::Output {
self.powf(exp.into())
}
}
#[cfg(any(feature = "std", feature = "libm"))]
impl<T: Float> Pow<$F> for Complex<T>
where
$F: Into<T>,
{
type Output = Complex<T>;
#[inline]
fn pow(self, exp: $F) -> Self::Output {
self.powf(exp.into())
}
}
#[cfg(any(feature = "std", feature = "libm"))]
impl<'b, T: Float> Pow<&'b $F> for Complex<T>
where
$F: Into<T>,
{
type Output = Complex<T>;
#[inline]
fn pow(self, &exp: &$F) -> Self::Output {
self.powf(exp.into())
}
}
};
}
powf_impl!(f32);
powf_impl!(f64);
// These blanket impls are OK, because both the target type and the trait parameter would be
// foreign to anyone else trying to implement something that would overlap, raising E0117.
#[cfg(any(feature = "std", feature = "libm"))]
impl<'a, T: Float> Pow<Complex<T>> for &'a Complex<T> {
type Output = Complex<T>;
#[inline]
fn pow(self, exp: Complex<T>) -> Self::Output {
self.powc(exp)
}
}
#[cfg(any(feature = "std", feature = "libm"))]
impl<'a, 'b, T: Float> Pow<&'b Complex<T>> for &'a Complex<T> {
type Output = Complex<T>;
#[inline]
fn pow(self, &exp: &'b Complex<T>) -> Self::Output {
self.powc(exp)
}
}
#[cfg(any(feature = "std", feature = "libm"))]
impl<T: Float> Pow<Complex<T>> for Complex<T> {
type Output = Complex<T>;
#[inline]
fn pow(self, exp: Complex<T>) -> Self::Output {
self.powc(exp)
}
}
#[cfg(any(feature = "std", feature = "libm"))]
impl<'b, T: Float> Pow<&'b Complex<T>> for Complex<T> {
type Output = Complex<T>;
#[inline]
fn pow(self, &exp: &'b Complex<T>) -> Self::Output {
self.powc(exp)
}
}

Просмотреть файл

@ -1 +1 @@
{"files":{"Cargo.toml":"df725a7c5780368b03dbe14ac170989ddd987e2e3c8a69bfb47d34025e0e06ec","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"c49fdda3780903fa8c17bb5811ea3029e271e9e79a8f6c59aa3b2468eb9b203f","RELEASES.md":"756843fa25e29f642367b6b3fc161ce34a72d01ae0fb67d5531a280245d287c8","benches/average.rs":"2a30b4ccd8ece8663d17583ae2e3623e654b5f401babef90f1634722824e6c2b","benches/gcd.rs":"9b5c0ae8ccd6c7fc8f8384fb351d10cfdd0be5fbea9365f9ea925d8915b015bf","benches/roots.rs":"79b4ab2d8fe7bbf43fe65314d2e1bc206165bc4cb34b3ceaa899f9ea7af31c09","build.rs":"b4b2d0df90ca7570a339ca4d84a72e4ef00d9dced8927350424e666790c752d7","src/average.rs":"a66cf6a49f893e60697c17b2540258e69daa15ab97d8d444c6f2e8cac2f01ae9","src/lib.rs":"bf0ce9a09f92f606ca038288cde7a29670ccca480d42ec97e88f3c56b117e33c","src/roots.rs":"2a9b908bd3666b5cffc58c1b37d329e46ed02f71ad6d5deea1e8440c10660e1a","tests/average.rs":"5f26a31be042626e9af66f7b751798621561fa090da48b1ec5ab63e388288a91","tests/roots.rs":"a0caa4142899ec8cb806a7a0d3410c39d50de97cceadc4c2ceca707be91b1ddd"},"package":"8d59457e662d541ba17869cf51cf177c0b5f0cbf476c66bdc90bf1edac4f875b"} {"files":{"Cargo.toml":"f491aec76f2252ca15a333dd3cfd18cfd91ebf841c7d607857dfa75c7080cb9a","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"7ad5fb625f7ef61595a2180f3b26715457552faa8bb08526c70b416da29b2533","RELEASES.md":"ebe114c148e4fc43b63c2523e13e9d903f07db139ab70f48320f9cb8c17ac9d8","benches/roots.rs":"df3554c0025d78235b5dca975b641f3bb10cae8d5ad3a79eb6cbd1a21475f133","bors.toml":"1c81ede536a37edd30fe4e622ff0531b25372403ac9475a5d6c50f14156565a2","build.rs":"16de2aa57e754fc1526d0400b5d87a3f771296705fca54601aa598b6f74ded8f","ci/rustup.sh":"2aa9e89e4af81ed9da86bdcf7cdabe512287c877248783b69eed1eccf09ad6bb","ci/test_full.sh":"fd4928a73c13905d939d009801bd448a7a9d2ca00a30260eedd1feb03fc88e11","src/lib.rs":"1e19a19aa0d414d7548e4bc9510f89bed122430564e044302edd4a21a1b83134","src/roots.rs":"51a994a5e0bf505911cf912954283f52e7aa582ce0cd1c483e6b2e4c09a47b9e","tests/roots.rs":"ef70f711cb1544311c343dbaf411ad2598432e82b6dfa3d166c1d99096991d9e"},"package":"e83d528d2677f0518c570baf2b7abdcf0cd2d248860b68507bdcb3e91d4c0cea"}

9
third_party/rust/num-integer/Cargo.toml поставляемый
Просмотреть файл

@ -3,7 +3,7 @@
# When uploading crates to the registry Cargo will automatically # When uploading crates to the registry Cargo will automatically
# "normalize" Cargo.toml files for maximal compatibility # "normalize" Cargo.toml files for maximal compatibility
# with all versions of Cargo and also rewrite `path` dependencies # with all versions of Cargo and also rewrite `path` dependencies
# to registry (e.g., crates.io) dependencies # to registry (e.g. crates.io) dependencies
# #
# If you believe there's an error in this file please file an # If you believe there's an error in this file please file an
# issue against the rust-lang/cargo repository. If you're # issue against the rust-lang/cargo repository. If you're
@ -12,10 +12,9 @@
[package] [package]
name = "num-integer" name = "num-integer"
version = "0.1.43" version = "0.1.39"
authors = ["The Rust Project Developers"] authors = ["The Rust Project Developers"]
build = "build.rs" build = "build.rs"
exclude = ["/bors.toml", "/ci/*", "/.github/*"]
description = "Integer traits and functions" description = "Integer traits and functions"
homepage = "https://github.com/rust-num/num-integer" homepage = "https://github.com/rust-num/num-integer"
documentation = "https://docs.rs/num-integer" documentation = "https://docs.rs/num-integer"
@ -27,10 +26,8 @@ repository = "https://github.com/rust-num/num-integer"
[package.metadata.docs.rs] [package.metadata.docs.rs]
features = ["std"] features = ["std"]
[dependencies.num-traits] [dependencies.num-traits]
version = "0.2.11" version = "0.2.4"
default-features = false default-features = false
[build-dependencies.autocfg]
version = "1"
[features] [features]
default = ["std"] default = ["std"]

4
third_party/rust/num-integer/README.md поставляемый
Просмотреть файл

@ -2,8 +2,8 @@
[![crate](https://img.shields.io/crates/v/num-integer.svg)](https://crates.io/crates/num-integer) [![crate](https://img.shields.io/crates/v/num-integer.svg)](https://crates.io/crates/num-integer)
[![documentation](https://docs.rs/num-integer/badge.svg)](https://docs.rs/num-integer) [![documentation](https://docs.rs/num-integer/badge.svg)](https://docs.rs/num-integer)
[![minimum rustc 1.8](https://img.shields.io/badge/rustc-1.8+-red.svg)](https://rust-lang.github.io/rfcs/2495-min-rust-version.html) ![minimum rustc 1.8](https://img.shields.io/badge/rustc-1.8+-red.svg)
[![build status](https://github.com/rust-num/num-integer/workflows/master/badge.svg)](https://github.com/rust-num/num-integer/actions) [![Travis status](https://travis-ci.org/rust-num/num-integer.svg?branch=master)](https://travis-ci.org/rust-num/num-integer)
`Integer` trait and functions for Rust. `Integer` trait and functions for Rust.

47
third_party/rust/num-integer/RELEASES.md поставляемый
Просмотреть файл

@ -1,43 +1,4 @@
# Release 0.1.43 (2020-06-11) # Release 0.1.39
- [The new `Average` trait][31] computes fast integer averages, rounded up or
down, without any risk of overflow.
**Contributors**: @althonos, @cuviper
[31]: https://github.com/rust-num/num-integer/pull/31
# Release 0.1.42 (2020-01-09)
- [Updated the `autocfg` build dependency to 1.0][29].
**Contributors**: @cuviper, @dingelish
[29]: https://github.com/rust-num/num-integer/pull/29
# Release 0.1.41 (2019-05-21)
- [Fixed feature detection on `no_std` targets][25].
**Contributors**: @cuviper
[25]: https://github.com/rust-num/num-integer/pull/25
# Release 0.1.40 (2019-05-20)
- [Optimized primitive `gcd` by avoiding memory swaps][11].
- [Fixed `lcm(0, 0)` to return `0`, rather than panicking][18].
- [Added `Integer::div_ceil`, `next_multiple_of`, and `prev_multiple_of`][16].
- [Added `Integer::gcd_lcm`, `extended_gcd`, and `extended_gcd_lcm`][19].
**Contributors**: @cuviper, @ignatenkobrain, @smarnach, @strake
[11]: https://github.com/rust-num/num-integer/pull/11
[16]: https://github.com/rust-num/num-integer/pull/16
[18]: https://github.com/rust-num/num-integer/pull/18
[19]: https://github.com/rust-num/num-integer/pull/19
# Release 0.1.39 (2018-06-20)
- [The new `Roots` trait provides `sqrt`, `cbrt`, and `nth_root` methods][9], - [The new `Roots` trait provides `sqrt`, `cbrt`, and `nth_root` methods][9],
calculating an `Integer`'s principal roots rounded toward zero. calculating an `Integer`'s principal roots rounded toward zero.
@ -46,7 +7,7 @@
[9]: https://github.com/rust-num/num-integer/pull/9 [9]: https://github.com/rust-num/num-integer/pull/9
# Release 0.1.38 (2018-05-11) # Release 0.1.38
- [Support for 128-bit integers is now automatically detected and enabled.][8] - [Support for 128-bit integers is now automatically detected and enabled.][8]
Setting the `i128` crate feature now causes the build script to panic if such Setting the `i128` crate feature now causes the build script to panic if such
@ -56,7 +17,7 @@
[8]: https://github.com/rust-num/num-integer/pull/8 [8]: https://github.com/rust-num/num-integer/pull/8
# Release 0.1.37 (2018-05-10) # Release 0.1.37
- [`Integer` is now implemented for `i128` and `u128`][7] starting with Rust - [`Integer` is now implemented for `i128` and `u128`][7] starting with Rust
1.26, enabled by the new `i128` crate feature. 1.26, enabled by the new `i128` crate feature.
@ -65,7 +26,7 @@
[7]: https://github.com/rust-num/num-integer/pull/7 [7]: https://github.com/rust-num/num-integer/pull/7
# Release 0.1.36 (2018-02-06) # Release 0.1.36
- [num-integer now has its own source repository][num-356] at [rust-num/num-integer][home]. - [num-integer now has its own source repository][num-356] at [rust-num/num-integer][home].
- [Corrected the argument order documented in `Integer::is_multiple_of`][1] - [Corrected the argument order documented in `Integer::is_multiple_of`][1]

Просмотреть файл

@ -1,414 +0,0 @@
//! Benchmark sqrt and cbrt
#![feature(test)]
extern crate num_integer;
extern crate num_traits;
extern crate test;
use num_integer::Integer;
use num_traits::{AsPrimitive, PrimInt, WrappingAdd, WrappingMul};
use std::cmp::{max, min};
use std::fmt::Debug;
use test::{black_box, Bencher};
// --- Utilities for RNG ----------------------------------------------------
trait BenchInteger: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {}
impl<T> BenchInteger for T where T: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {}
// Simple PRNG so we don't have to worry about rand compatibility
fn lcg<T>(x: T) -> T
where
u32: AsPrimitive<T>,
T: BenchInteger,
{
// LCG parameters from Numerical Recipes
// (but we're applying it to arbitrary sizes)
const LCG_A: u32 = 1664525;
const LCG_C: u32 = 1013904223;
x.wrapping_mul(&LCG_A.as_()).wrapping_add(&LCG_C.as_())
}
// --- Alt. Implementations -------------------------------------------------
trait NaiveAverage {
fn naive_average_ceil(&self, other: &Self) -> Self;
fn naive_average_floor(&self, other: &Self) -> Self;
}
trait UncheckedAverage {
fn unchecked_average_ceil(&self, other: &Self) -> Self;
fn unchecked_average_floor(&self, other: &Self) -> Self;
}
trait ModuloAverage {
fn modulo_average_ceil(&self, other: &Self) -> Self;
fn modulo_average_floor(&self, other: &Self) -> Self;
}
macro_rules! naive_average {
($T:ident) => {
impl super::NaiveAverage for $T {
fn naive_average_floor(&self, other: &$T) -> $T {
match self.checked_add(*other) {
Some(z) => z.div_floor(&2),
None => {
if self > other {
let diff = self - other;
other + diff.div_floor(&2)
} else {
let diff = other - self;
self + diff.div_floor(&2)
}
}
}
}
fn naive_average_ceil(&self, other: &$T) -> $T {
match self.checked_add(*other) {
Some(z) => z.div_ceil(&2),
None => {
if self > other {
let diff = self - other;
self - diff.div_floor(&2)
} else {
let diff = other - self;
other - diff.div_floor(&2)
}
}
}
}
}
};
}
macro_rules! unchecked_average {
($T:ident) => {
impl super::UncheckedAverage for $T {
fn unchecked_average_floor(&self, other: &$T) -> $T {
self.wrapping_add(*other) / 2
}
fn unchecked_average_ceil(&self, other: &$T) -> $T {
(self.wrapping_add(*other) / 2).wrapping_add(1)
}
}
};
}
macro_rules! modulo_average {
($T:ident) => {
impl super::ModuloAverage for $T {
fn modulo_average_ceil(&self, other: &$T) -> $T {
let (q1, r1) = self.div_mod_floor(&2);
let (q2, r2) = other.div_mod_floor(&2);
q1 + q2 + (r1 | r2)
}
fn modulo_average_floor(&self, other: &$T) -> $T {
let (q1, r1) = self.div_mod_floor(&2);
let (q2, r2) = other.div_mod_floor(&2);
q1 + q2 + (r1 * r2)
}
}
};
}
// --- Bench functions ------------------------------------------------------
fn bench_unchecked<T, F>(b: &mut Bencher, v: &[(T, T)], f: F)
where
T: Integer + Debug + Copy,
F: Fn(&T, &T) -> T,
{
b.iter(|| {
for (x, y) in v {
black_box(f(x, y));
}
});
}
fn bench_ceil<T, F>(b: &mut Bencher, v: &[(T, T)], f: F)
where
T: Integer + Debug + Copy,
F: Fn(&T, &T) -> T,
{
for &(i, j) in v {
let rt = f(&i, &j);
let (a, b) = (min(i, j), max(i, j));
// if both number are the same sign, check rt is in the middle
if (a < T::zero()) == (b < T::zero()) {
if (b - a).is_even() {
assert_eq!(rt - a, b - rt);
} else {
assert_eq!(rt - a, b - rt + T::one());
}
// if both number have a different sign,
} else {
if (a + b).is_even() {
assert_eq!(rt, (a + b) / (T::one() + T::one()))
} else {
assert_eq!(rt, (a + b + T::one()) / (T::one() + T::one()))
}
}
}
bench_unchecked(b, v, f);
}
fn bench_floor<T, F>(b: &mut Bencher, v: &[(T, T)], f: F)
where
T: Integer + Debug + Copy,
F: Fn(&T, &T) -> T,
{
for &(i, j) in v {
let rt = f(&i, &j);
let (a, b) = (min(i, j), max(i, j));
// if both number are the same sign, check rt is in the middle
if (a < T::zero()) == (b < T::zero()) {
if (b - a).is_even() {
assert_eq!(rt - a, b - rt);
} else {
assert_eq!(rt - a + T::one(), b - rt);
}
// if both number have a different sign,
} else {
if (a + b).is_even() {
assert_eq!(rt, (a + b) / (T::one() + T::one()))
} else {
assert_eq!(rt, (a + b - T::one()) / (T::one() + T::one()))
}
}
}
bench_unchecked(b, v, f);
}
// --- Bench implementation -------------------------------------------------
macro_rules! bench_average {
($($T:ident),*) => {$(
mod $T {
use test::Bencher;
use num_integer::{Average, Integer};
use super::{UncheckedAverage, NaiveAverage, ModuloAverage};
use super::{bench_ceil, bench_floor, bench_unchecked};
naive_average!($T);
unchecked_average!($T);
modulo_average!($T);
const SIZE: $T = 30;
fn overflowing() -> Vec<($T, $T)> {
(($T::max_value()-SIZE)..$T::max_value())
.flat_map(|x| -> Vec<_> {
(($T::max_value()-100)..($T::max_value()-100+SIZE))
.map(|y| (x, y))
.collect()
})
.collect()
}
fn small() -> Vec<($T, $T)> {
(0..SIZE)
.flat_map(|x| -> Vec<_> {(0..SIZE).map(|y| (x, y)).collect()})
.collect()
}
fn rand() -> Vec<($T, $T)> {
small()
.into_iter()
.map(|(x, y)| (super::lcg(x), super::lcg(y)))
.collect()
}
mod ceil {
use super::*;
mod small {
use super::*;
#[bench]
fn optimized(b: &mut Bencher) {
let v = small();
bench_ceil(b, &v, |x: &$T, y: &$T| x.average_ceil(y));
}
#[bench]
fn naive(b: &mut Bencher) {
let v = small();
bench_ceil(b, &v, |x: &$T, y: &$T| x.naive_average_ceil(y));
}
#[bench]
fn unchecked(b: &mut Bencher) {
let v = small();
bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_ceil(y));
}
#[bench]
fn modulo(b: &mut Bencher) {
let v = small();
bench_ceil(b, &v, |x: &$T, y: &$T| x.modulo_average_ceil(y));
}
}
mod overflowing {
use super::*;
#[bench]
fn optimized(b: &mut Bencher) {
let v = overflowing();
bench_ceil(b, &v, |x: &$T, y: &$T| x.average_ceil(y));
}
#[bench]
fn naive(b: &mut Bencher) {
let v = overflowing();
bench_ceil(b, &v, |x: &$T, y: &$T| x.naive_average_ceil(y));
}
#[bench]
fn unchecked(b: &mut Bencher) {
let v = overflowing();
bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_ceil(y));
}
#[bench]
fn modulo(b: &mut Bencher) {
let v = overflowing();
bench_ceil(b, &v, |x: &$T, y: &$T| x.modulo_average_ceil(y));
}
}
mod rand {
use super::*;
#[bench]
fn optimized(b: &mut Bencher) {
let v = rand();
bench_ceil(b, &v, |x: &$T, y: &$T| x.average_ceil(y));
}
#[bench]
fn naive(b: &mut Bencher) {
let v = rand();
bench_ceil(b, &v, |x: &$T, y: &$T| x.naive_average_ceil(y));
}
#[bench]
fn unchecked(b: &mut Bencher) {
let v = rand();
bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_ceil(y));
}
#[bench]
fn modulo(b: &mut Bencher) {
let v = rand();
bench_ceil(b, &v, |x: &$T, y: &$T| x.modulo_average_ceil(y));
}
}
}
mod floor {
use super::*;
mod small {
use super::*;
#[bench]
fn optimized(b: &mut Bencher) {
let v = small();
bench_floor(b, &v, |x: &$T, y: &$T| x.average_floor(y));
}
#[bench]
fn naive(b: &mut Bencher) {
let v = small();
bench_floor(b, &v, |x: &$T, y: &$T| x.naive_average_floor(y));
}
#[bench]
fn unchecked(b: &mut Bencher) {
let v = small();
bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_floor(y));
}
#[bench]
fn modulo(b: &mut Bencher) {
let v = small();
bench_floor(b, &v, |x: &$T, y: &$T| x.modulo_average_floor(y));
}
}
mod overflowing {
use super::*;
#[bench]
fn optimized(b: &mut Bencher) {
let v = overflowing();
bench_floor(b, &v, |x: &$T, y: &$T| x.average_floor(y));
}
#[bench]
fn naive(b: &mut Bencher) {
let v = overflowing();
bench_floor(b, &v, |x: &$T, y: &$T| x.naive_average_floor(y));
}
#[bench]
fn unchecked(b: &mut Bencher) {
let v = overflowing();
bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_floor(y));
}
#[bench]
fn modulo(b: &mut Bencher) {
let v = overflowing();
bench_floor(b, &v, |x: &$T, y: &$T| x.modulo_average_floor(y));
}
}
mod rand {
use super::*;
#[bench]
fn optimized(b: &mut Bencher) {
let v = rand();
bench_floor(b, &v, |x: &$T, y: &$T| x.average_floor(y));
}
#[bench]
fn naive(b: &mut Bencher) {
let v = rand();
bench_floor(b, &v, |x: &$T, y: &$T| x.naive_average_floor(y));
}
#[bench]
fn unchecked(b: &mut Bencher) {
let v = rand();
bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_floor(y));
}
#[bench]
fn modulo(b: &mut Bencher) {
let v = rand();
bench_floor(b, &v, |x: &$T, y: &$T| x.modulo_average_floor(y));
}
}
}
}
)*}
}
bench_average!(i8, i16, i32, i64, i128, isize);
bench_average!(u8, u16, u32, u64, u128, usize);

176
third_party/rust/num-integer/benches/gcd.rs поставляемый
Просмотреть файл

@ -1,176 +0,0 @@
//! Benchmark comparing the current GCD implemtation against an older one.
#![feature(test)]
extern crate num_integer;
extern crate num_traits;
extern crate test;
use num_integer::Integer;
use num_traits::{AsPrimitive, Bounded, Signed};
use test::{black_box, Bencher};
trait GcdOld: Integer {
fn gcd_old(&self, other: &Self) -> Self;
}
macro_rules! impl_gcd_old_for_isize {
($T:ty) => {
impl GcdOld for $T {
/// Calculates the Greatest Common Divisor (GCD) of the number and
/// `other`. The result is always positive.
#[inline]
fn gcd_old(&self, other: &Self) -> Self {
// Use Stein's algorithm
let mut m = *self;
let mut n = *other;
if m == 0 || n == 0 {
return (m | n).abs();
}
// find common factors of 2
let shift = (m | n).trailing_zeros();
// The algorithm needs positive numbers, but the minimum value
// can't be represented as a positive one.
// It's also a power of two, so the gcd can be
// calculated by bitshifting in that case
// Assuming two's complement, the number created by the shift
// is positive for all numbers except gcd = abs(min value)
// The call to .abs() causes a panic in debug mode
if m == Self::min_value() || n == Self::min_value() {
return (1 << shift).abs();
}
// guaranteed to be positive now, rest like unsigned algorithm
m = m.abs();
n = n.abs();
// divide n and m by 2 until odd
// m inside loop
n >>= n.trailing_zeros();
while m != 0 {
m >>= m.trailing_zeros();
if n > m {
std::mem::swap(&mut n, &mut m)
}
m -= n;
}
n << shift
}
}
};
}
impl_gcd_old_for_isize!(i8);
impl_gcd_old_for_isize!(i16);
impl_gcd_old_for_isize!(i32);
impl_gcd_old_for_isize!(i64);
impl_gcd_old_for_isize!(isize);
impl_gcd_old_for_isize!(i128);
macro_rules! impl_gcd_old_for_usize {
($T:ty) => {
impl GcdOld for $T {
/// Calculates the Greatest Common Divisor (GCD) of the number and
/// `other`. The result is always positive.
#[inline]
fn gcd_old(&self, other: &Self) -> Self {
// Use Stein's algorithm
let mut m = *self;
let mut n = *other;
if m == 0 || n == 0 {
return m | n;
}
// find common factors of 2
let shift = (m | n).trailing_zeros();
// divide n and m by 2 until odd
// m inside loop
n >>= n.trailing_zeros();
while m != 0 {
m >>= m.trailing_zeros();
if n > m {
std::mem::swap(&mut n, &mut m)
}
m -= n;
}
n << shift
}
}
};
}
impl_gcd_old_for_usize!(u8);
impl_gcd_old_for_usize!(u16);
impl_gcd_old_for_usize!(u32);
impl_gcd_old_for_usize!(u64);
impl_gcd_old_for_usize!(usize);
impl_gcd_old_for_usize!(u128);
/// Return an iterator that yields all Fibonacci numbers fitting into a u128.
fn fibonacci() -> impl Iterator<Item = u128> {
(0..185).scan((0, 1), |&mut (ref mut a, ref mut b), _| {
let tmp = *a;
*a = *b;
*b += tmp;
Some(*b)
})
}
fn run_bench<T: Integer + Bounded + Copy + 'static>(b: &mut Bencher, gcd: fn(&T, &T) -> T)
where
T: AsPrimitive<u128>,
u128: AsPrimitive<T>,
{
let max_value: u128 = T::max_value().as_();
let pairs: Vec<(T, T)> = fibonacci()
.collect::<Vec<_>>()
.windows(2)
.filter(|&pair| pair[0] <= max_value && pair[1] <= max_value)
.map(|pair| (pair[0].as_(), pair[1].as_()))
.collect();
b.iter(|| {
for &(ref m, ref n) in &pairs {
black_box(gcd(m, n));
}
});
}
macro_rules! bench_gcd {
($T:ident) => {
mod $T {
use crate::{run_bench, GcdOld};
use num_integer::Integer;
use test::Bencher;
#[bench]
fn bench_gcd(b: &mut Bencher) {
run_bench(b, $T::gcd);
}
#[bench]
fn bench_gcd_old(b: &mut Bencher) {
run_bench(b, $T::gcd_old);
}
}
};
}
bench_gcd!(u8);
bench_gcd!(u16);
bench_gcd!(u32);
bench_gcd!(u64);
bench_gcd!(u128);
bench_gcd!(i8);
bench_gcd!(i16);
bench_gcd!(i32);
bench_gcd!(i64);
bench_gcd!(i128);

Просмотреть файл

@ -13,7 +13,11 @@ use test::{black_box, Bencher};
trait BenchInteger: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {} trait BenchInteger: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {}
impl<T> BenchInteger for T where T: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {} impl<T> BenchInteger for T
where
T: Integer + PrimInt + WrappingAdd + WrappingMul + 'static,
{
}
fn bench<T, F>(b: &mut Bencher, v: &[T], f: F, n: u32) fn bench<T, F>(b: &mut Bencher, v: &[T], f: F, n: u32)
where where

Просмотреть файл

33
third_party/rust/num-integer/build.rs поставляемый
Просмотреть файл

@ -1,14 +1,35 @@
extern crate autocfg;
use std::env; use std::env;
use std::io::Write;
use std::process::{Command, Stdio};
fn main() { fn main() {
let ac = autocfg::new(); if probe("fn main() { 0i128; }") {
if ac.probe_type("i128") {
println!("cargo:rustc-cfg=has_i128"); println!("cargo:rustc-cfg=has_i128");
} else if env::var_os("CARGO_FEATURE_I128").is_some() { } else if env::var_os("CARGO_FEATURE_I128").is_some() {
panic!("i128 support was not detected!"); panic!("i128 support was not detected!");
} }
}
autocfg::rerun_path("build.rs");
/// Test if a code snippet can be compiled
fn probe(code: &str) -> bool {
let rustc = env::var_os("RUSTC").unwrap_or_else(|| "rustc".into());
let out_dir = env::var_os("OUT_DIR").expect("environment variable OUT_DIR");
let mut child = Command::new(rustc)
.arg("--out-dir")
.arg(out_dir)
.arg("--emit=obj")
.arg("-")
.stdin(Stdio::piped())
.spawn()
.expect("rustc probe");
child
.stdin
.as_mut()
.expect("rustc stdin")
.write_all(code.as_bytes())
.expect("write rustc stdin");
child.wait().expect("rustc probe").success()
} }

12
third_party/rust/num-integer/ci/rustup.sh поставляемый Executable file
Просмотреть файл

@ -0,0 +1,12 @@
#!/bin/sh
# Use rustup to locally run the same suite of tests as .travis.yml.
# (You should first install/update 1.8.0, stable, beta, and nightly.)
set -ex
export TRAVIS_RUST_VERSION
for TRAVIS_RUST_VERSION in 1.8.0 1.15.0 1.20.0 stable beta nightly; do
run="rustup run $TRAVIS_RUST_VERSION"
$run cargo build --verbose
$run $PWD/ci/test_full.sh
done

23
third_party/rust/num-integer/ci/test_full.sh поставляемый Executable file
Просмотреть файл

@ -0,0 +1,23 @@
#!/bin/bash
set -ex
echo Testing num-integer on rustc ${TRAVIS_RUST_VERSION}
# num-integer should build and test everywhere.
cargo build --verbose
cargo test --verbose
# test `no_std`
cargo build --verbose --no-default-features
cargo test --verbose --no-default-features
# test `i128`
if [[ "$TRAVIS_RUST_VERSION" =~ ^(nightly|beta|stable)$ ]]; then
cargo build --verbose --features=i128
cargo test --verbose --features=i128
fi
if [[ "$TRAVIS_RUST_VERSION" == "nightly" ]]; then
cargo test --verbose --all-features --benches
fi

78
third_party/rust/num-integer/src/average.rs поставляемый
Просмотреть файл

@ -1,78 +0,0 @@
use core::ops::{BitAnd, BitOr, BitXor, Shr};
use Integer;
/// Provides methods to compute the average of two integers, without overflows.
pub trait Average: Integer {
/// Returns the ceiling value of the average of `self` and `other`.
/// -- `⌈(self + other)/2⌉`
///
/// # Examples
///
/// ```
/// use num_integer::Average;
///
/// assert_eq!(( 3).average_ceil(&10), 7);
/// assert_eq!((-2).average_ceil(&-5), -3);
/// assert_eq!(( 4).average_ceil(& 4), 4);
///
/// assert_eq!(u8::max_value().average_ceil(&2), 129);
/// assert_eq!(i8::min_value().average_ceil(&-1), -64);
/// assert_eq!(i8::min_value().average_ceil(&i8::max_value()), 0);
/// ```
///
fn average_ceil(&self, other: &Self) -> Self;
/// Returns the floor value of the average of `self` and `other`.
/// -- `⌊(self + other)/2⌋`
///
/// # Examples
///
/// ```
/// use num_integer::Average;
///
/// assert_eq!(( 3).average_floor(&10), 6);
/// assert_eq!((-2).average_floor(&-5), -4);
/// assert_eq!(( 4).average_floor(& 4), 4);
///
/// assert_eq!(u8::max_value().average_floor(&2), 128);
/// assert_eq!(i8::min_value().average_floor(&-1), -65);
/// assert_eq!(i8::min_value().average_floor(&i8::max_value()), -1);
/// ```
///
fn average_floor(&self, other: &Self) -> Self;
}
impl<I> Average for I
where
I: Integer + Shr<usize, Output = I>,
for<'a, 'b> &'a I:
BitAnd<&'b I, Output = I> + BitOr<&'b I, Output = I> + BitXor<&'b I, Output = I>,
{
// The Henry Gordon Dietz implementation as shown in the Hacker's Delight,
// see http://aggregate.org/MAGIC/#Average%20of%20Integers
/// Returns the floor value of the average of `self` and `other`.
#[inline]
fn average_floor(&self, other: &I) -> I {
(self & other) + ((self ^ other) >> 1)
}
/// Returns the ceil value of the average of `self` and `other`.
#[inline]
fn average_ceil(&self, other: &I) -> I {
(self | other) - ((self ^ other) >> 1)
}
}
/// Returns the floor value of the average of `x` and `y` --
/// see [Average::average_floor](trait.Average.html#tymethod.average_floor).
#[inline]
pub fn average_floor<T: Average>(x: T, y: T) -> T {
x.average_floor(&y)
}
/// Returns the ceiling value of the average of `x` and `y` --
/// see [Average::average_ceil](trait.Average.html#tymethod.average_ceil).
#[inline]
pub fn average_ceil<T: Average>(x: T, y: T) -> T {
x.average_ceil(&y)
}

514
third_party/rust/num-integer/src/lib.rs поставляемый
Просмотреть файл

@ -15,24 +15,21 @@
//! The `num-integer` crate is tested for rustc 1.8 and greater. //! The `num-integer` crate is tested for rustc 1.8 and greater.
#![doc(html_root_url = "https://docs.rs/num-integer/0.1")] #![doc(html_root_url = "https://docs.rs/num-integer/0.1")]
#![no_std] #![no_std]
#[cfg(feature = "std")] #[cfg(feature = "std")]
extern crate std; extern crate std;
extern crate num_traits as traits; extern crate num_traits as traits;
use core::mem;
use core::ops::Add; use core::ops::Add;
use core::mem;
use traits::{Num, Signed, Zero}; use traits::{Num, Signed};
mod roots; mod roots;
pub use roots::Roots; pub use roots::Roots;
pub use roots::{cbrt, nth_root, sqrt}; pub use roots::{sqrt, cbrt, nth_root};
mod average;
pub use average::Average;
pub use average::{average_ceil, average_floor};
pub trait Integer: Sized + Num + PartialOrd + Ord + Eq { pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
/// Floored integer division. /// Floored integer division.
@ -77,31 +74,6 @@ pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
/// ~~~ /// ~~~
fn mod_floor(&self, other: &Self) -> Self; fn mod_floor(&self, other: &Self) -> Self;
/// Ceiled integer division.
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert_eq!(( 8).div_ceil( &3), 3);
/// assert_eq!(( 8).div_ceil(&-3), -2);
/// assert_eq!((-8).div_ceil( &3), -2);
/// assert_eq!((-8).div_ceil(&-3), 3);
///
/// assert_eq!(( 1).div_ceil( &2), 1);
/// assert_eq!(( 1).div_ceil(&-2), 0);
/// assert_eq!((-1).div_ceil( &2), 0);
/// assert_eq!((-1).div_ceil(&-2), 1);
/// ~~~
fn div_ceil(&self, other: &Self) -> Self {
let (q, r) = self.div_mod_floor(other);
if r.is_zero() {
q
} else {
q + Self::one()
}
}
/// Greatest Common Divisor (GCD). /// Greatest Common Divisor (GCD).
/// ///
/// # Examples /// # Examples
@ -121,93 +93,9 @@ pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
/// # use num_integer::Integer; /// # use num_integer::Integer;
/// assert_eq!(7.lcm(&3), 21); /// assert_eq!(7.lcm(&3), 21);
/// assert_eq!(2.lcm(&4), 4); /// assert_eq!(2.lcm(&4), 4);
/// assert_eq!(0.lcm(&0), 0);
/// ~~~ /// ~~~
fn lcm(&self, other: &Self) -> Self; fn lcm(&self, other: &Self) -> Self;
/// Greatest Common Divisor (GCD) and
/// Lowest Common Multiple (LCM) together.
///
/// Potentially more efficient than calling `gcd` and `lcm`
/// individually for identical inputs.
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert_eq!(10.gcd_lcm(&4), (2, 20));
/// assert_eq!(8.gcd_lcm(&9), (1, 72));
/// ~~~
#[inline]
fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
(self.gcd(other), self.lcm(other))
}
/// Greatest common divisor and Bézout coefficients.
///
/// # Examples
///
/// ~~~
/// # extern crate num_integer;
/// # extern crate num_traits;
/// # fn main() {
/// # use num_integer::{ExtendedGcd, Integer};
/// # use num_traits::NumAssign;
/// fn check<A: Copy + Integer + NumAssign>(a: A, b: A) -> bool {
/// let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
/// gcd == x * a + y * b
/// }
/// assert!(check(10isize, 4isize));
/// assert!(check(8isize, 9isize));
/// # }
/// ~~~
#[inline]
fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
where
Self: Clone,
{
let mut s = (Self::zero(), Self::one());
let mut t = (Self::one(), Self::zero());
let mut r = (other.clone(), self.clone());
while !r.0.is_zero() {
let q = r.1.clone() / r.0.clone();
let f = |mut r: (Self, Self)| {
mem::swap(&mut r.0, &mut r.1);
r.0 = r.0 - q.clone() * r.1.clone();
r
};
r = f(r);
s = f(s);
t = f(t);
}
if r.1 >= Self::zero() {
ExtendedGcd {
gcd: r.1,
x: s.1,
y: t.1,
_hidden: (),
}
} else {
ExtendedGcd {
gcd: Self::zero() - r.1,
x: Self::zero() - s.1,
y: Self::zero() - t.1,
_hidden: (),
}
}
}
/// Greatest common divisor, least common multiple, and Bézout coefficients.
#[inline]
fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self)
where
Self: Clone + Signed,
{
(self.extended_gcd(other), self.lcm(other))
}
/// Deprecated, use `is_multiple_of` instead. /// Deprecated, use `is_multiple_of` instead.
fn divides(&self, other: &Self) -> bool; fn divides(&self, other: &Self) -> bool;
@ -261,6 +149,7 @@ pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
/// assert_eq!((-1).div_rem( &2), ( 0, -1)); /// assert_eq!((-1).div_rem( &2), ( 0, -1));
/// assert_eq!((-1).div_rem(&-2), ( 0, -1)); /// assert_eq!((-1).div_rem(&-2), ( 0, -1));
/// ~~~ /// ~~~
#[inline]
fn div_rem(&self, other: &Self) -> (Self, Self); fn div_rem(&self, other: &Self) -> (Self, Self);
/// Simultaneous floored integer division and modulus. /// Simultaneous floored integer division and modulus.
@ -283,80 +172,6 @@ pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
fn div_mod_floor(&self, other: &Self) -> (Self, Self) { fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
(self.div_floor(other), self.mod_floor(other)) (self.div_floor(other), self.mod_floor(other))
} }
/// Rounds up to nearest multiple of argument.
///
/// # Notes
///
/// For signed types, `a.next_multiple_of(b) = a.prev_multiple_of(b.neg())`.
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert_eq!(( 16).next_multiple_of(& 8), 16);
/// assert_eq!(( 23).next_multiple_of(& 8), 24);
/// assert_eq!(( 16).next_multiple_of(&-8), 16);
/// assert_eq!(( 23).next_multiple_of(&-8), 16);
/// assert_eq!((-16).next_multiple_of(& 8), -16);
/// assert_eq!((-23).next_multiple_of(& 8), -16);
/// assert_eq!((-16).next_multiple_of(&-8), -16);
/// assert_eq!((-23).next_multiple_of(&-8), -24);
/// ~~~
#[inline]
fn next_multiple_of(&self, other: &Self) -> Self
where
Self: Clone,
{
let m = self.mod_floor(other);
self.clone()
+ if m.is_zero() {
Self::zero()
} else {
other.clone() - m
}
}
/// Rounds down to nearest multiple of argument.
///
/// # Notes
///
/// For signed types, `a.prev_multiple_of(b) = a.next_multiple_of(b.neg())`.
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert_eq!(( 16).prev_multiple_of(& 8), 16);
/// assert_eq!(( 23).prev_multiple_of(& 8), 16);
/// assert_eq!(( 16).prev_multiple_of(&-8), 16);
/// assert_eq!(( 23).prev_multiple_of(&-8), 24);
/// assert_eq!((-16).prev_multiple_of(& 8), -16);
/// assert_eq!((-23).prev_multiple_of(& 8), -24);
/// assert_eq!((-16).prev_multiple_of(&-8), -16);
/// assert_eq!((-23).prev_multiple_of(&-8), -16);
/// ~~~
#[inline]
fn prev_multiple_of(&self, other: &Self) -> Self
where
Self: Clone,
{
self.clone() - self.mod_floor(other)
}
}
/// Greatest common divisor and Bézout coefficients
///
/// ```no_build
/// let e = isize::extended_gcd(a, b);
/// assert_eq!(e.gcd, e.x*a + e.y*b);
/// ```
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct ExtendedGcd<A> {
pub gcd: A,
pub x: A,
pub y: A,
_hidden: (),
} }
/// Simultaneous integer division and modulus /// Simultaneous integer division and modulus
@ -379,11 +194,6 @@ pub fn mod_floor<T: Integer>(x: T, y: T) -> T {
pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) { pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) {
x.div_mod_floor(&y) x.div_mod_floor(&y)
} }
/// Ceiled integer division
#[inline]
pub fn div_ceil<T: Integer>(x: T, y: T) -> T {
x.div_ceil(&y)
}
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The
/// result is always positive. /// result is always positive.
@ -397,26 +207,18 @@ pub fn lcm<T: Integer>(x: T, y: T) -> T {
x.lcm(&y) x.lcm(&y)
} }
/// Calculates the Greatest Common Divisor (GCD) and
/// Lowest Common Multiple (LCM) of the number and `other`.
#[inline(always)]
pub fn gcd_lcm<T: Integer>(x: T, y: T) -> (T, T) {
x.gcd_lcm(&y)
}
macro_rules! impl_integer_for_isize { macro_rules! impl_integer_for_isize {
($T:ty, $test_mod:ident) => { ($T:ty, $test_mod:ident) => (
impl Integer for $T { impl Integer for $T {
/// Floored integer division /// Floored integer division
#[inline] #[inline]
fn div_floor(&self, other: &Self) -> Self { fn div_floor(&self, other: &Self) -> Self {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
let (d, r) = self.div_rem(other); match self.div_rem(other) {
if (r > 0 && *other < 0) || (r < 0 && *other > 0) { (d, r) if (r > 0 && *other < 0)
d - 1 || (r < 0 && *other > 0) => d - 1,
} else { (d, _) => d,
d
} }
} }
@ -425,11 +227,10 @@ macro_rules! impl_integer_for_isize {
fn mod_floor(&self, other: &Self) -> Self { fn mod_floor(&self, other: &Self) -> Self {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
let r = *self % *other; match *self % *other {
if (r > 0 && *other < 0) || (r < 0 && *other > 0) { r if (r > 0 && *other < 0)
r + *other || (r < 0 && *other > 0) => r + *other,
} else { r => r,
r
} }
} }
@ -438,21 +239,10 @@ macro_rules! impl_integer_for_isize {
fn div_mod_floor(&self, other: &Self) -> (Self, Self) { fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
let (d, r) = self.div_rem(other); match self.div_rem(other) {
if (r > 0 && *other < 0) || (r < 0 && *other > 0) { (d, r) if (r > 0 && *other < 0)
(d - 1, r + *other) || (r < 0 && *other > 0) => (d - 1, r + *other),
} else { (d, r) => (d, r),
(d, r)
}
}
#[inline]
fn div_ceil(&self, other: &Self) -> Self {
let (d, r) = self.div_rem(other);
if (r > 0 && *other > 0) || (r < 0 && *other < 0) {
d + 1
} else {
d
} }
} }
@ -463,9 +253,7 @@ macro_rules! impl_integer_for_isize {
// Use Stein's algorithm // Use Stein's algorithm
let mut m = *self; let mut m = *self;
let mut n = *other; let mut n = *other;
if m == 0 || n == 0 { if m == 0 || n == 0 { return (m | n).abs() }
return (m | n).abs();
}
// find common factors of 2 // find common factors of 2
let shift = (m | n).trailing_zeros(); let shift = (m | n).trailing_zeros();
@ -479,7 +267,7 @@ macro_rules! impl_integer_for_isize {
// is positive for all numbers except gcd = abs(min value) // is positive for all numbers except gcd = abs(min value)
// The call to .abs() causes a panic in debug mode // The call to .abs() causes a panic in debug mode
if m == Self::min_value() || n == Self::min_value() { if m == Self::min_value() || n == Self::min_value() {
return (1 << shift).abs(); return (1 << shift).abs()
} }
// guaranteed to be positive now, rest like unsigned algorithm // guaranteed to be positive now, rest like unsigned algorithm
@ -487,51 +275,24 @@ macro_rules! impl_integer_for_isize {
n = n.abs(); n = n.abs();
// divide n and m by 2 until odd // divide n and m by 2 until odd
m >>= m.trailing_zeros(); // m inside loop
n >>= n.trailing_zeros(); n >>= n.trailing_zeros();
while m != n { while m != 0 {
if m > n { m >>= m.trailing_zeros();
m -= n; if n > m { mem::swap(&mut n, &mut m) }
m >>= m.trailing_zeros(); m -= n;
} else {
n -= m;
n >>= n.trailing_zeros();
}
} }
m << shift
}
#[inline] n << shift
fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) {
let egcd = self.extended_gcd(other);
// should not have to recalculate abs
let lcm = if egcd.gcd.is_zero() {
Self::zero()
} else {
(*self * (*other / egcd.gcd)).abs()
};
(egcd, lcm)
} }
/// Calculates the Lowest Common Multiple (LCM) of the number and /// Calculates the Lowest Common Multiple (LCM) of the number and
/// `other`. /// `other`.
#[inline] #[inline]
fn lcm(&self, other: &Self) -> Self { fn lcm(&self, other: &Self) -> Self {
self.gcd_lcm(other).1
}
/// Calculates the Greatest Common Divisor (GCD) and
/// Lowest Common Multiple (LCM) of the number and `other`.
#[inline]
fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
if self.is_zero() && other.is_zero() {
return (Self::zero(), Self::zero());
}
let gcd = self.gcd(other);
// should not have to recalculate abs // should not have to recalculate abs
let lcm = (*self * (*other / gcd)).abs(); (*self * (*other / self.gcd(other))).abs()
(gcd, lcm)
} }
/// Deprecated, use `is_multiple_of` instead. /// Deprecated, use `is_multiple_of` instead.
@ -548,15 +309,11 @@ macro_rules! impl_integer_for_isize {
/// Returns `true` if the number is divisible by `2` /// Returns `true` if the number is divisible by `2`
#[inline] #[inline]
fn is_even(&self) -> bool { fn is_even(&self) -> bool { (*self) & 1 == 0 }
(*self) & 1 == 0
}
/// Returns `true` if the number is not divisible by `2` /// Returns `true` if the number is not divisible by `2`
#[inline] #[inline]
fn is_odd(&self) -> bool { fn is_odd(&self) -> bool { !self.is_even() }
!self.is_even()
}
/// Simultaneous truncated integer division and modulus. /// Simultaneous truncated integer division and modulus.
#[inline] #[inline]
@ -567,8 +324,8 @@ macro_rules! impl_integer_for_isize {
#[cfg(test)] #[cfg(test)]
mod $test_mod { mod $test_mod {
use core::mem;
use Integer; use Integer;
use core::mem;
/// Checks that the division rule holds for: /// Checks that the division rule holds for:
/// ///
@ -576,14 +333,14 @@ macro_rules! impl_integer_for_isize {
/// - `d`: denominator (divisor) /// - `d`: denominator (divisor)
/// - `qr`: quotient and remainder /// - `qr`: quotient and remainder
#[cfg(test)] #[cfg(test)]
fn test_division_rule((n, d): ($T, $T), (q, r): ($T, $T)) { fn test_division_rule((n,d): ($T, $T), (q,r): ($T, $T)) {
assert_eq!(d * q + r, n); assert_eq!(d * q + r, n);
} }
#[test] #[test]
fn test_div_rem() { fn test_div_rem() {
fn test_nd_dr(nd: ($T, $T), qr: ($T, $T)) { fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) {
let (n, d) = nd; let (n,d) = nd;
let separate_div_rem = (n / d, n % d); let separate_div_rem = (n / d, n % d);
let combined_div_rem = n.div_rem(&d); let combined_div_rem = n.div_rem(&d);
@ -594,21 +351,21 @@ macro_rules! impl_integer_for_isize {
test_division_rule(nd, combined_div_rem); test_division_rule(nd, combined_div_rem);
} }
test_nd_dr((8, 3), (2, 2)); test_nd_dr(( 8, 3), ( 2, 2));
test_nd_dr((8, -3), (-2, 2)); test_nd_dr(( 8, -3), (-2, 2));
test_nd_dr((-8, 3), (-2, -2)); test_nd_dr((-8, 3), (-2, -2));
test_nd_dr((-8, -3), (2, -2)); test_nd_dr((-8, -3), ( 2, -2));
test_nd_dr((1, 2), (0, 1)); test_nd_dr(( 1, 2), ( 0, 1));
test_nd_dr((1, -2), (0, 1)); test_nd_dr(( 1, -2), ( 0, 1));
test_nd_dr((-1, 2), (0, -1)); test_nd_dr((-1, 2), ( 0, -1));
test_nd_dr((-1, -2), (0, -1)); test_nd_dr((-1, -2), ( 0, -1));
} }
#[test] #[test]
fn test_div_mod_floor() { fn test_div_mod_floor() {
fn test_nd_dm(nd: ($T, $T), dm: ($T, $T)) { fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) {
let (n, d) = nd; let (n,d) = nd;
let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d)); let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
let combined_div_mod_floor = n.div_mod_floor(&d); let combined_div_mod_floor = n.div_mod_floor(&d);
@ -619,15 +376,15 @@ macro_rules! impl_integer_for_isize {
test_division_rule(nd, combined_div_mod_floor); test_division_rule(nd, combined_div_mod_floor);
} }
test_nd_dm((8, 3), (2, 2)); test_nd_dm(( 8, 3), ( 2, 2));
test_nd_dm((8, -3), (-3, -1)); test_nd_dm(( 8, -3), (-3, -1));
test_nd_dm((-8, 3), (-3, 1)); test_nd_dm((-8, 3), (-3, 1));
test_nd_dm((-8, -3), (2, -2)); test_nd_dm((-8, -3), ( 2, -2));
test_nd_dm((1, 2), (0, 1)); test_nd_dm(( 1, 2), ( 0, 1));
test_nd_dm((1, -2), (-1, -1)); test_nd_dm(( 1, -2), (-1, -1));
test_nd_dm((-1, 2), (-1, 1)); test_nd_dm((-1, 2), (-1, 1));
test_nd_dm((-1, -2), (0, -1)); test_nd_dm((-1, -2), ( 0, -1));
} }
#[test] #[test]
@ -657,7 +414,7 @@ macro_rules! impl_integer_for_isize {
// for i8 // for i8
for i in -127..127 { for i in -127..127 {
for j in -127..127 { for j in -127..127 {
assert_eq!(euclidean_gcd(i, j), i.gcd(&j)); assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
} }
} }
@ -665,7 +422,7 @@ macro_rules! impl_integer_for_isize {
// FIXME: Use inclusive ranges for above loop when implemented // FIXME: Use inclusive ranges for above loop when implemented
let i = 127; let i = 127;
for j in -127..127 { for j in -127..127 {
assert_eq!(euclidean_gcd(i, j), i.gcd(&j)); assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
} }
assert_eq!(127.gcd(&127), 127); assert_eq!(127.gcd(&127), 127);
} }
@ -716,49 +473,6 @@ macro_rules! impl_integer_for_isize {
assert_eq!((11 as $T).lcm(&5), 55 as $T); assert_eq!((11 as $T).lcm(&5), 55 as $T);
} }
#[test]
fn test_gcd_lcm() {
use core::iter::once;
for i in once(0)
.chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
.chain(once(-128))
{
for j in once(0)
.chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
.chain(once(-128))
{
assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j)));
}
}
}
#[test]
fn test_extended_gcd_lcm() {
use core::fmt::Debug;
use traits::NumAssign;
use ExtendedGcd;
fn check<A: Copy + Debug + Integer + NumAssign>(a: A, b: A) {
let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
assert_eq!(gcd, x * a + y * b);
}
use core::iter::once;
for i in once(0)
.chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
.chain(once(-128))
{
for j in once(0)
.chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
.chain(once(-128))
{
check(i, j);
let (ExtendedGcd { gcd, .. }, lcm) = i.extended_gcd_lcm(&j);
assert_eq!((gcd, lcm), (i.gcd(&j), i.lcm(&j)));
}
}
}
#[test] #[test]
fn test_even() { fn test_even() {
assert_eq!((-4 as $T).is_even(), true); assert_eq!((-4 as $T).is_even(), true);
@ -785,7 +499,7 @@ macro_rules! impl_integer_for_isize {
assert_eq!((4 as $T).is_odd(), false); assert_eq!((4 as $T).is_odd(), false);
} }
} }
}; )
} }
impl_integer_for_isize!(i8, test_integer_i8); impl_integer_for_isize!(i8, test_integer_i8);
@ -797,7 +511,7 @@ impl_integer_for_isize!(isize, test_integer_isize);
impl_integer_for_isize!(i128, test_integer_i128); impl_integer_for_isize!(i128, test_integer_i128);
macro_rules! impl_integer_for_usize { macro_rules! impl_integer_for_usize {
($T:ty, $test_mod:ident) => { ($T:ty, $test_mod:ident) => (
impl Integer for $T { impl Integer for $T {
/// Unsigned integer division. Returns the same result as `div` (`/`). /// Unsigned integer division. Returns the same result as `div` (`/`).
#[inline] #[inline]
@ -811,68 +525,34 @@ macro_rules! impl_integer_for_usize {
*self % *other *self % *other
} }
#[inline]
fn div_ceil(&self, other: &Self) -> Self {
*self / *other + (0 != *self % *other) as Self
}
/// Calculates the Greatest Common Divisor (GCD) of the number and `other` /// Calculates the Greatest Common Divisor (GCD) of the number and `other`
#[inline] #[inline]
fn gcd(&self, other: &Self) -> Self { fn gcd(&self, other: &Self) -> Self {
// Use Stein's algorithm // Use Stein's algorithm
let mut m = *self; let mut m = *self;
let mut n = *other; let mut n = *other;
if m == 0 || n == 0 { if m == 0 || n == 0 { return m | n }
return m | n;
}
// find common factors of 2 // find common factors of 2
let shift = (m | n).trailing_zeros(); let shift = (m | n).trailing_zeros();
// divide n and m by 2 until odd // divide n and m by 2 until odd
m >>= m.trailing_zeros(); // m inside loop
n >>= n.trailing_zeros(); n >>= n.trailing_zeros();
while m != n { while m != 0 {
if m > n { m >>= m.trailing_zeros();
m -= n; if n > m { mem::swap(&mut n, &mut m) }
m >>= m.trailing_zeros(); m -= n;
} else {
n -= m;
n >>= n.trailing_zeros();
}
} }
m << shift
}
#[inline] n << shift
fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) {
let egcd = self.extended_gcd(other);
// should not have to recalculate abs
let lcm = if egcd.gcd.is_zero() {
Self::zero()
} else {
*self * (*other / egcd.gcd)
};
(egcd, lcm)
} }
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`. /// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
#[inline] #[inline]
fn lcm(&self, other: &Self) -> Self { fn lcm(&self, other: &Self) -> Self {
self.gcd_lcm(other).1 *self * (*other / self.gcd(other))
}
/// Calculates the Greatest Common Divisor (GCD) and
/// Lowest Common Multiple (LCM) of the number and `other`.
#[inline]
fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
if self.is_zero() && other.is_zero() {
return (Self::zero(), Self::zero());
}
let gcd = self.gcd(other);
let lcm = *self * (*other / gcd);
(gcd, lcm)
} }
/// Deprecated, use `is_multiple_of` instead. /// Deprecated, use `is_multiple_of` instead.
@ -908,8 +588,8 @@ macro_rules! impl_integer_for_usize {
#[cfg(test)] #[cfg(test)]
mod $test_mod { mod $test_mod {
use core::mem;
use Integer; use Integer;
use core::mem;
#[test] #[test]
fn test_div_mod_floor() { fn test_div_mod_floor() {
@ -945,7 +625,7 @@ macro_rules! impl_integer_for_usize {
for i in 0..255 { for i in 0..255 {
for j in 0..255 { for j in 0..255 {
assert_eq!(euclidean_gcd(i, j), i.gcd(&j)); assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
} }
} }
@ -953,7 +633,7 @@ macro_rules! impl_integer_for_usize {
// FIXME: Use inclusive ranges for above loop when implemented // FIXME: Use inclusive ranges for above loop when implemented
let i = 255; let i = 255;
for j in 0..255 { for j in 0..255 {
assert_eq!(euclidean_gcd(i, j), i.gcd(&j)); assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
} }
assert_eq!(255.gcd(&255), 255); assert_eq!(255.gcd(&255), 255);
} }
@ -968,15 +648,6 @@ macro_rules! impl_integer_for_usize {
assert_eq!((15 as $T).lcm(&17), 255 as $T); assert_eq!((15 as $T).lcm(&17), 255 as $T);
} }
#[test]
fn test_gcd_lcm() {
for i in (0..).take(256) {
for j in (0..).take(256) {
assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j)));
}
}
}
#[test] #[test]
fn test_is_multiple_of() { fn test_is_multiple_of() {
assert!((6 as $T).is_multiple_of(&(6 as $T))); assert!((6 as $T).is_multiple_of(&(6 as $T)));
@ -1002,7 +673,7 @@ macro_rules! impl_integer_for_usize {
assert_eq!((4 as $T).is_odd(), false); assert_eq!((4 as $T).is_odd(), false);
} }
} }
}; )
} }
impl_integer_for_usize!(u8, test_integer_u8); impl_integer_for_usize!(u8, test_integer_u8);
@ -1021,8 +692,7 @@ pub struct IterBinomial<T> {
} }
impl<T> IterBinomial<T> impl<T> IterBinomial<T>
where where T: Integer,
T: Integer,
{ {
/// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n. /// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n.
/// ///
@ -1044,16 +714,13 @@ where
/// For larger n, `T` should be a bigint type. /// For larger n, `T` should be a bigint type.
pub fn new(n: T) -> IterBinomial<T> { pub fn new(n: T) -> IterBinomial<T> {
IterBinomial { IterBinomial {
k: T::zero(), k: T::zero(), a: T::one(), n: n
a: T::one(),
n: n,
} }
} }
} }
impl<T> Iterator for IterBinomial<T> impl<T> Iterator for IterBinomial<T>
where where T: Integer + Clone
T: Integer + Clone,
{ {
type Item = T; type Item = T;
@ -1065,7 +732,7 @@ where
multiply_and_divide( multiply_and_divide(
self.a.clone(), self.a.clone(),
self.n.clone() - self.k.clone() + T::one(), self.n.clone() - self.k.clone() + T::one(),
self.k.clone(), self.k.clone()
) )
} else { } else {
T::one() T::one()
@ -1081,7 +748,7 @@ where
fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T { fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T {
// See http://blog.plover.com/math/choose-2.html for the idea. // See http://blog.plover.com/math/choose-2.html for the idea.
let g = gcd(r.clone(), b.clone()); let g = gcd(r.clone(), b.clone());
r / g.clone() * (a / (b / g)) r/g.clone() * (a / (b/g))
} }
/// Calculate the binomial coefficient. /// Calculate the binomial coefficient.
@ -1125,8 +792,7 @@ pub fn binomial<T: Integer + Clone>(mut n: T, k: T) -> T {
/// Calculate the multinomial coefficient. /// Calculate the multinomial coefficient.
pub fn multinomial<T: Integer + Clone>(k: &[T]) -> T pub fn multinomial<T: Integer + Clone>(k: &[T]) -> T
where where for<'a> T: Add<&'a T, Output = T>
for<'a> T: Add<&'a T, Output = T>,
{ {
let mut r = T::one(); let mut r = T::one();
let mut p = T::zero(); let mut p = T::zero();
@ -1140,20 +806,16 @@ where
#[test] #[test]
fn test_lcm_overflow() { fn test_lcm_overflow() {
macro_rules! check { macro_rules! check {
($t:ty, $x:expr, $y:expr, $r:expr) => {{ ($t:ty, $x:expr, $y:expr, $r:expr) => { {
let x: $t = $x; let x: $t = $x;
let y: $t = $y; let y: $t = $y;
let o = x.checked_mul(y); let o = x.checked_mul(y);
assert!( assert!(o.is_none(),
o.is_none(), "sanity checking that {} input {} * {} overflows",
"sanity checking that {} input {} * {} overflows", stringify!($t), x, y);
stringify!($t),
x,
y
);
assert_eq!(x.lcm(&y), $r); assert_eq!(x.lcm(&y), $r);
assert_eq!(y.lcm(&x), $r); assert_eq!(y.lcm(&x), $r);
}}; } }
} }
// Original bug (Issue #166) // Original bug (Issue #166)
@ -1172,13 +834,13 @@ fn test_lcm_overflow() {
#[test] #[test]
fn test_iter_binomial() { fn test_iter_binomial() {
macro_rules! check_simple { macro_rules! check_simple {
($t:ty) => {{ ($t:ty) => { {
let n: $t = 3; let n: $t = 3;
let expected = [1, 3, 3, 1]; let expected = [1, 3, 3, 1];
for (b, &e) in IterBinomial::new(n).zip(&expected) { for (b, &e) in IterBinomial::new(n).zip(&expected) {
assert_eq!(b, e); assert_eq!(b, e);
} }
}}; } }
} }
check_simple!(u8); check_simple!(u8);
@ -1191,14 +853,14 @@ fn test_iter_binomial() {
check_simple!(i64); check_simple!(i64);
macro_rules! check_binomial { macro_rules! check_binomial {
($t:ty, $n:expr) => {{ ($t:ty, $n:expr) => { {
let n: $t = $n; let n: $t = $n;
let mut k: $t = 0; let mut k: $t = 0;
for b in IterBinomial::new(n) { for b in IterBinomial::new(n) {
assert_eq!(b, binomial(n, k)); assert_eq!(b, binomial(n, k));
k += 1; k += 1;
} }
}}; } }
} }
// Check the largest n for which there is no overflow. // Check the largest n for which there is no overflow.
@ -1215,7 +877,7 @@ fn test_iter_binomial() {
#[test] #[test]
fn test_binomial() { fn test_binomial() {
macro_rules! check { macro_rules! check {
($t:ty, $x:expr, $y:expr, $r:expr) => {{ ($t:ty, $x:expr, $y:expr, $r:expr) => { {
let x: $t = $x; let x: $t = $x;
let y: $t = $y; let y: $t = $y;
let expected: $t = $r; let expected: $t = $r;
@ -1223,7 +885,7 @@ fn test_binomial() {
if y <= x { if y <= x {
assert_eq!(binomial(x, x - y), expected); assert_eq!(binomial(x, x - y), expected);
} }
}}; } }
} }
check!(u8, 9, 4, 126); check!(u8, 9, 4, 126);
check!(u8, 0, 0, 1); check!(u8, 0, 0, 1);
@ -1271,12 +933,12 @@ fn test_binomial() {
#[test] #[test]
fn test_multinomial() { fn test_multinomial() {
macro_rules! check_binomial { macro_rules! check_binomial {
($t:ty, $k:expr) => {{ ($t:ty, $k:expr) => { {
let n: $t = $k.iter().fold(0, |acc, &x| acc + x); let n: $t = $k.iter().fold(0, |acc, &x| acc + x);
let k: &[$t] = $k; let k: &[$t] = $k;
assert_eq!(k.len(), 2); assert_eq!(k.len(), 2);
assert_eq!(multinomial(k), binomial(n, k[0])); assert_eq!(multinomial(k), binomial(n, k[0]));
}}; } }
} }
check_binomial!(u8, &[4, 5]); check_binomial!(u8, &[4, 5]);
@ -1306,11 +968,11 @@ fn test_multinomial() {
check_binomial!(i64, &[4, 10]); check_binomial!(i64, &[4, 10]);
macro_rules! check_multinomial { macro_rules! check_multinomial {
($t:ty, $k:expr, $r:expr) => {{ ($t:ty, $k:expr, $r:expr) => { {
let k: &[$t] = $k; let k: &[$t] = $k;
let expected: $t = $r; let expected: $t = $r;
assert_eq!(multinomial(k), expected); assert_eq!(multinomial(k), expected);
}}; } }
} }
check_multinomial!(u8, &[2, 1, 2], 30); check_multinomial!(u8, &[2, 1, 2], 30);

301
third_party/rust/num-integer/src/roots.rs поставляемый
Просмотреть файл

@ -202,181 +202,170 @@ fn log2<T: PrimInt>(x: T) -> u32 {
macro_rules! unsigned_roots { macro_rules! unsigned_roots {
($T:ident) => { ($T:ident) => {
impl Roots for $T { impl Roots for $T {
#[inline]
fn nth_root(&self, n: u32) -> Self { fn nth_root(&self, n: u32) -> Self {
fn go(a: $T, n: u32) -> $T { // Specialize small roots
// Specialize small roots match n {
match n { 0 => panic!("can't find a root of degree 0!"),
0 => panic!("can't find a root of degree 0!"), 1 => return *self,
1 => return a, 2 => return self.sqrt(),
2 => return a.sqrt(), 3 => return self.cbrt(),
3 => return a.cbrt(), _ => (),
_ => (), }
}
// The root of values less than 2ⁿ can only be 0 or 1. // The root of values less than 2ⁿ can only be 0 or 1.
if bits::<$T>() <= n || a < (1 << n) { if bits::<$T>() <= n || *self < (1 << n) {
return (a > 0) as $T; return (*self > 0) as $T;
} }
if bits::<$T>() > 64 { if bits::<$T>() > 64 {
// 128-bit division is slow, so do a bitwise `nth_root` until it's small enough. // 128-bit division is slow, so do a bitwise `nth_root` until it's small enough.
return if a <= core::u64::MAX as $T { return if *self <= core::u64::MAX as $T {
(a as u64).nth_root(n) as $T (*self as u64).nth_root(n) as $T
} else { } else {
let lo = (a >> n).nth_root(n) << 1; let lo = (self >> n).nth_root(n) << 1;
let hi = lo + 1; let hi = lo + 1;
// 128-bit `checked_mul` also involves division, but we can't always // 128-bit `checked_mul` also involves division, but we can't always
// compute `hiⁿ` without risking overflow. Try to avoid it though... // compute `hiⁿ` without risking overflow. Try to avoid it though...
if hi.next_power_of_two().trailing_zeros() * n >= bits::<$T>() { if hi.next_power_of_two().trailing_zeros() * n >= bits::<$T>() {
match checked_pow(hi, n as usize) { match checked_pow(hi, n as usize) {
Some(x) if x <= a => hi, Some(x) if x <= *self => hi,
_ => lo, _ => lo,
}
} else {
if hi.pow(n) <= a {
hi
} else {
lo
}
} }
};
}
#[cfg(feature = "std")]
#[inline]
fn guess(x: $T, n: u32) -> $T {
// for smaller inputs, `f64` doesn't justify its cost.
if bits::<$T>() <= 32 || x <= core::u32::MAX as $T {
1 << ((log2(x) + n - 1) / n)
} else { } else {
((x as f64).ln() / f64::from(n)).exp() as $T if hi.pow(n) <= *self {
hi
} else {
lo
}
} }
}
#[cfg(not(feature = "std"))]
#[inline]
fn guess(x: $T, n: u32) -> $T {
1 << ((log2(x) + n - 1) / n)
}
// https://en.wikipedia.org/wiki/Nth_root_algorithm
let n1 = n - 1;
let next = |x: $T| {
let y = match checked_pow(x, n1 as usize) {
Some(ax) => a / ax,
None => 0,
};
(y + x * n1 as $T) / n as $T
}; };
fixpoint(guess(a, n), next)
} }
go(*self, n)
#[cfg(feature = "std")]
#[inline]
fn guess(x: $T, n: u32) -> $T {
// for smaller inputs, `f64` doesn't justify its cost.
if bits::<$T>() <= 32 || x <= core::u32::MAX as $T {
1 << ((log2(x) + n - 1) / n)
} else {
((x as f64).ln() / f64::from(n)).exp() as $T
}
}
#[cfg(not(feature = "std"))]
#[inline]
fn guess(x: $T, n: u32) -> $T {
1 << ((log2(x) + n - 1) / n)
}
// https://en.wikipedia.org/wiki/Nth_root_algorithm
let n1 = n - 1;
let next = |x: $T| {
let y = match checked_pow(x, n1 as usize) {
Some(ax) => self / ax,
None => 0,
};
(y + x * n1 as $T) / n as $T
};
fixpoint(guess(*self, n), next)
} }
#[inline]
fn sqrt(&self) -> Self { fn sqrt(&self) -> Self {
fn go(a: $T) -> $T { if bits::<$T>() > 64 {
if bits::<$T>() > 64 { // 128-bit division is slow, so do a bitwise `sqrt` until it's small enough.
// 128-bit division is slow, so do a bitwise `sqrt` until it's small enough. // https://en.wikipedia.org/wiki/Integer_square_root#Using_bitwise_operations
return if a <= core::u64::MAX as $T { return if *self <= core::u64::MAX as $T {
(a as u64).sqrt() as $T (*self as u64).sqrt() as $T
} else {
let lo = (self >> 2u32).sqrt() << 1;
let hi = lo + 1;
if hi * hi <= *self {
hi
} else { } else {
let lo = (a >> 2u32).sqrt() << 1; lo
let hi = lo + 1; }
if hi * hi <= a { };
hi
} else {
lo
}
};
}
if a < 4 {
return (a > 0) as $T;
}
#[cfg(feature = "std")]
#[inline]
fn guess(x: $T) -> $T {
(x as f64).sqrt() as $T
}
#[cfg(not(feature = "std"))]
#[inline]
fn guess(x: $T) -> $T {
1 << ((log2(x) + 1) / 2)
}
// https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
let next = |x: $T| (a / x + x) >> 1;
fixpoint(guess(a), next)
} }
go(*self)
if *self < 4 {
return (*self > 0) as Self;
}
#[cfg(feature = "std")]
#[inline]
fn guess(x: $T) -> $T {
(x as f64).sqrt() as $T
}
#[cfg(not(feature = "std"))]
#[inline]
fn guess(x: $T) -> $T {
1 << ((log2(x) + 1) / 2)
}
// https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
let next = |x: $T| (self / x + x) >> 1;
fixpoint(guess(*self), next)
} }
#[inline]
fn cbrt(&self) -> Self { fn cbrt(&self) -> Self {
fn go(a: $T) -> $T { if bits::<$T>() > 64 {
if bits::<$T>() > 64 { // 128-bit division is slow, so do a bitwise `cbrt` until it's small enough.
// 128-bit division is slow, so do a bitwise `cbrt` until it's small enough. return if *self <= core::u64::MAX as $T {
return if a <= core::u64::MAX as $T { (*self as u64).cbrt() as $T
(a as u64).cbrt() as $T } else {
let lo = (self >> 3u32).cbrt() << 1;
let hi = lo + 1;
if hi * hi * hi <= *self {
hi
} else { } else {
let lo = (a >> 3u32).cbrt() << 1; lo
let hi = lo + 1;
if hi * hi * hi <= a {
hi
} else {
lo
}
};
}
if bits::<$T>() <= 32 {
// Implementation based on Hacker's Delight `icbrt2`
let mut x = a;
let mut y2 = 0;
let mut y = 0;
let smax = bits::<$T>() / 3;
for s in (0..smax + 1).rev() {
let s = s * 3;
y2 *= 4;
y *= 2;
let b = 3 * (y2 + y) + 1;
if x >> s >= b {
x -= b << s;
y2 += 2 * y + 1;
y += 1;
}
} }
return y; };
}
if a < 8 {
return (a > 0) as $T;
}
if a <= core::u32::MAX as $T {
return (a as u32).cbrt() as $T;
}
#[cfg(feature = "std")]
#[inline]
fn guess(x: $T) -> $T {
(x as f64).cbrt() as $T
}
#[cfg(not(feature = "std"))]
#[inline]
fn guess(x: $T) -> $T {
1 << ((log2(x) + 2) / 3)
}
// https://en.wikipedia.org/wiki/Cube_root#Numerical_methods
let next = |x: $T| (a / (x * x) + x * 2) / 3;
fixpoint(guess(a), next)
} }
go(*self)
if bits::<$T>() <= 32 {
// Implementation based on Hacker's Delight `icbrt2`
let mut x = *self;
let mut y2 = 0;
let mut y = 0;
let smax = bits::<$T>() / 3;
for s in (0..smax + 1).rev() {
let s = s * 3;
y2 *= 4;
y *= 2;
let b = 3 * (y2 + y) + 1;
if x >> s >= b {
x -= b << s;
y2 += 2 * y + 1;
y += 1;
}
}
return y;
}
if *self < 8 {
return (*self > 0) as Self;
}
if *self <= core::u32::MAX as $T {
return (*self as u32).cbrt() as $T;
}
#[cfg(feature = "std")]
#[inline]
fn guess(x: $T) -> $T {
(x as f64).cbrt() as $T
}
#[cfg(not(feature = "std"))]
#[inline]
fn guess(x: $T) -> $T {
1 << ((log2(x) + 2) / 3)
}
// https://en.wikipedia.org/wiki/Cube_root#Numerical_methods
let next = |x: $T| (self / (x * x) + x * 2) / 3;
fixpoint(guess(*self), next)
} }
} }
}; };

100
third_party/rust/num-integer/tests/average.rs поставляемый
Просмотреть файл

@ -1,100 +0,0 @@
extern crate num_integer;
extern crate num_traits;
macro_rules! test_average {
($I:ident, $U:ident) => {
mod $I {
mod ceil {
use num_integer::Average;
#[test]
fn same_sign() {
assert_eq!((14 as $I).average_ceil(&16), 15 as $I);
assert_eq!((14 as $I).average_ceil(&17), 16 as $I);
let max = $crate::std::$I::MAX;
assert_eq!((max - 3).average_ceil(&(max - 1)), max - 2);
assert_eq!((max - 3).average_ceil(&(max - 2)), max - 2);
}
#[test]
fn different_sign() {
assert_eq!((14 as $I).average_ceil(&-4), 5 as $I);
assert_eq!((14 as $I).average_ceil(&-5), 5 as $I);
let min = $crate::std::$I::MIN;
let max = $crate::std::$I::MAX;
assert_eq!(min.average_ceil(&max), 0 as $I);
}
}
mod floor {
use num_integer::Average;
#[test]
fn same_sign() {
assert_eq!((14 as $I).average_floor(&16), 15 as $I);
assert_eq!((14 as $I).average_floor(&17), 15 as $I);
let max = $crate::std::$I::MAX;
assert_eq!((max - 3).average_floor(&(max - 1)), max - 2);
assert_eq!((max - 3).average_floor(&(max - 2)), max - 3);
}
#[test]
fn different_sign() {
assert_eq!((14 as $I).average_floor(&-4), 5 as $I);
assert_eq!((14 as $I).average_floor(&-5), 4 as $I);
let min = $crate::std::$I::MIN;
let max = $crate::std::$I::MAX;
assert_eq!(min.average_floor(&max), -1 as $I);
}
}
}
mod $U {
mod ceil {
use num_integer::Average;
#[test]
fn bounded() {
assert_eq!((14 as $U).average_ceil(&16), 15 as $U);
assert_eq!((14 as $U).average_ceil(&17), 16 as $U);
}
#[test]
fn overflow() {
let max = $crate::std::$U::MAX;
assert_eq!((max - 3).average_ceil(&(max - 1)), max - 2);
assert_eq!((max - 3).average_ceil(&(max - 2)), max - 2);
}
}
mod floor {
use num_integer::Average;
#[test]
fn bounded() {
assert_eq!((14 as $U).average_floor(&16), 15 as $U);
assert_eq!((14 as $U).average_floor(&17), 15 as $U);
}
#[test]
fn overflow() {
let max = $crate::std::$U::MAX;
assert_eq!((max - 3).average_floor(&(max - 1)), max - 2);
assert_eq!((max - 3).average_floor(&(max - 2)), max - 3);
}
}
}
};
}
test_average!(i8, u8);
test_average!(i16, u16);
test_average!(i32, u32);
test_average!(i64, u64);
#[cfg(has_i128)]
test_average!(i128, u128);
test_average!(isize, usize);

6
third_party/rust/num-integer/tests/roots.rs поставляемый
Просмотреть файл

@ -10,7 +10,11 @@ use std::mem;
trait TestInteger: Roots + PrimInt + Debug + AsPrimitive<f64> + 'static {} trait TestInteger: Roots + PrimInt + Debug + AsPrimitive<f64> + 'static {}
impl<T> TestInteger for T where T: Roots + PrimInt + Debug + AsPrimitive<f64> + 'static {} impl<T> TestInteger for T
where
T: Roots + PrimInt + Debug + AsPrimitive<f64> + 'static,
{
}
/// Check that each root is correct /// Check that each root is correct
/// ///

Просмотреть файл

@ -1 +1 @@
{"files":{"Cargo.toml":"a4d2d0bbd05ab5a51970062722652bacf4d4e30cff0fcca1fd923939fec2b274","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"57d78cdbd4b4adfac543cc95afb88d34b2415bf074eb1081631210f84cca54f3","RELEASES.md":"f947644ec5b4a6d5e25497dfa3dbdd0d14983b9593e41dad7e12d1218559b4fa","build.rs":"b4b2d0df90ca7570a339ca4d84a72e4ef00d9dced8927350424e666790c752d7","src/lib.rs":"7baa9cfcc89c27a6d16a4be0fe53c0488f3c1c424812219fc47be0918a197d9b"},"package":"7a6e6b7c748f995c4c29c5f5ae0248536e04a5739927c74ec0fa564805094b9f"} {"files":{"Cargo.toml":"c13da0848b07a604569216fdb430f87d43b83252055ab1f6e237fc4020897b2b","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"f3be0ace34d626865f124c492483c30cadc3362c17aabefed45fa2686c67a070","RELEASES.md":"1031b964f47fd9c33e0249d1343b3292c830d7e2e6c8d88931dcbc25a20a0337","bors.toml":"1c81ede536a37edd30fe4e622ff0531b25372403ac9475a5d6c50f14156565a2","build.rs":"16de2aa57e754fc1526d0400b5d87a3f771296705fca54601aa598b6f74ded8f","ci/rustup.sh":"2aa9e89e4af81ed9da86bdcf7cdabe512287c877248783b69eed1eccf09ad6bb","ci/test_full.sh":"22ab0d413456c350a8a0e62e3614da628dad06eb4c923b4d162aef4cb47b9dd2","src/lib.rs":"e6b0f870ab6e741f15293b76b11e5bc01193aa8e08c13f5f67e2f85c3808636f"},"package":"af3fdbbc3291a5464dc57b03860ec37ca6bf915ed6ee385e7c6c052c422b2124"}

11
third_party/rust/num-iter/Cargo.toml поставляемый
Просмотреть файл

@ -3,7 +3,7 @@
# When uploading crates to the registry Cargo will automatically # When uploading crates to the registry Cargo will automatically
# "normalize" Cargo.toml files for maximal compatibility # "normalize" Cargo.toml files for maximal compatibility
# with all versions of Cargo and also rewrite `path` dependencies # with all versions of Cargo and also rewrite `path` dependencies
# to registry (e.g., crates.io) dependencies # to registry (e.g. crates.io) dependencies
# #
# If you believe there's an error in this file please file an # If you believe there's an error in this file please file an
# issue against the rust-lang/cargo repository. If you're # issue against the rust-lang/cargo repository. If you're
@ -12,10 +12,9 @@
[package] [package]
name = "num-iter" name = "num-iter"
version = "0.1.41" version = "0.1.37"
authors = ["The Rust Project Developers"] authors = ["The Rust Project Developers"]
build = "build.rs" build = "build.rs"
exclude = ["/bors.toml", "/ci/*", "/.github/*"]
description = "External iterators for generic mathematics" description = "External iterators for generic mathematics"
homepage = "https://github.com/rust-num/num-iter" homepage = "https://github.com/rust-num/num-iter"
documentation = "https://docs.rs/num-iter" documentation = "https://docs.rs/num-iter"
@ -27,14 +26,12 @@ repository = "https://github.com/rust-num/num-iter"
[package.metadata.docs.rs] [package.metadata.docs.rs]
features = ["std"] features = ["std"]
[dependencies.num-integer] [dependencies.num-integer]
version = "0.1.42" version = "0.1.38"
default-features = false default-features = false
[dependencies.num-traits] [dependencies.num-traits]
version = "0.2.11" version = "0.2.4"
default-features = false default-features = false
[build-dependencies.autocfg]
version = "1"
[features] [features]
default = ["std"] default = ["std"]

4
third_party/rust/num-iter/README.md поставляемый
Просмотреть файл

@ -2,8 +2,8 @@
[![crate](https://img.shields.io/crates/v/num-iter.svg)](https://crates.io/crates/num-iter) [![crate](https://img.shields.io/crates/v/num-iter.svg)](https://crates.io/crates/num-iter)
[![documentation](https://docs.rs/num-iter/badge.svg)](https://docs.rs/num-iter) [![documentation](https://docs.rs/num-iter/badge.svg)](https://docs.rs/num-iter)
[![minimum rustc 1.8](https://img.shields.io/badge/rustc-1.8+-red.svg)](https://rust-lang.github.io/rfcs/2495-min-rust-version.html) ![minimum rustc 1.8](https://img.shields.io/badge/rustc-1.8+-red.svg)
[![build status](https://github.com/rust-num/num-iter/workflows/master/badge.svg)](https://github.com/rust-num/num-iter/actions) [![Travis status](https://travis-ci.org/rust-num/num-iter.svg?branch=master)](https://travis-ci.org/rust-num/num-iter)
Generic `Range` iterators for Rust. Generic `Range` iterators for Rust.

Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше